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Abstract
For k ≥ 1, let G be a k-connected graph of order n. In this note, it is proved that if γ(Gc) ≥ n − k − 1 then G is either
traceable or Kk ∨Kc

k+2, where γ(Gc) is the domination number of the complement of the graph G and Kk ∨Kc
k+2 is the join

of Kk and Kc
k+2.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology, not defined here,
follow those in [2]. LetG be a graph. We useGc to denote the complement ofG. We also use γ(G), ω(G), and α(G) to denote
the domination number, the clique number, and the independent (or stability) number of G, respectively. If S ⊆ V (G),
then N(S) denotes the neighborhood of S, that is, the set of all vertices in G adjacent to at least one vertex in S. For a
subgraph H of G and S ⊆ V (G) − V (H), let NH(S) = N(S) ∩ V (H). We use G ∨ H to denote the the join of two disjoint
graphs G and H. If P is a path of G, we use −→P to denote the path P with a given direction. For two vertices x, y in P , we
use −→P [x, y] to denote the consecutive vertices on P from x to y in the direction specified by −→P . The same vertices, in reverse
order, are given by←−P [y, x]. We use x+ and x− to denote respectively the successor and predecessor of a vertex x on P along
the direction of P . We also use x++ and x−− to denote (x+)+ and (x−)−, respectively. A cycle C in a graph G is called a
Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle.
A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable
if G has a Hamiltonian path.

Li in [4] presented the following sufficient condition for the Hamiltonicity of graphs.

Theorem 1.1. Let G be a k-connected (k ≥ 2) graph of order n. If γ(Gc) ≥ n− k, then G is Hamiltonian or Kk ∨Kc
k+1.

In this note, we present the following sufficient condition for the traceability of graphs.

Theorem 1.2. Let G be a k-connected (k ≥ 1) graph of order n. If γ(Gc) ≥ n− k − 1, then G is traceable or Kk ∨Kc
k+2.

2. The lemmas

The following two lemmas were used in the proofs of Theorem 1.1. The first one is from Theorem 1 of [3] and the second
one is the main result of [1].

Lemma 2.1. Let G be a graph of order n. Then, γ(G) + χ(G) ≤ n+ 1.

Lemma 2.2. Let G be a k-connected (k ≥ 2) graph with independent number α = k + 1. Let C be the longest cycle in G.
Then, G[V (G)− V (C)] is complete.

In order to prove Theorem 1.2, we need to prove the following lemma (that is, Lemma 2.3). Lemma 2.1 and Lemma 2.3
will be used in the proof of Theorem 1.2. Notice that Lemma 2.3 is motivated by Lemma 2.2 and some ideas used in the
proof of Lemma 2.2 will be used in the proof of Lemma 2.3.

Lemma 2.3. Let G be a k-connected (k ≥ 1) graph with independent number α = k + 2. Let P be the longest path cycle in
G. Then G[V (G)− V (P )] is complete.
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Proof. Let G be a graph satisfying the conditions in Lemma 2.3. Let P be any longest path in G. Assume the two end-
vertices of P are y and z. We assign an orientation from y to z for P [y, z]. Suppose G[V (G)− V (P )] is not complete and let
H1, H2, ..., Hl be the components of G[V (G)− V (P )].

Claim 1. |NP (V (Hi))| = k for each i with 1 ≤ i ≤ l.

Proof of Claim 1. Assume that NP (V (H1)) := { a1, a2, ..., ar} and biai ∈ E where bi ∈ V (H1) for each i with 1 ≤ i ≤ r.
Notice that b1, b2, ..., br are not necessarily distinct. We further assume that the appearance of a1, a2, ..., ar agrees with
the orientation of P . Since G is k-connected, we have r ≥ k. Since P is a longest path in G, we have y 6= a1,z 6= ar, and
{x, y, a+1 , a

+
2 , ..., a

+
r } is independent in G, where x is any vertex in H1. Otherwise we can easily find paths in G which are

longer than P . Thus r + 2 ≤ α = k + 2. Namely, r ≤ k. Therefore r = k and |NP (V (H1))| = k. Similarly, we can prove that
|NP (V (Hi))| = k for each i with 2 ≤ i ≤ l.

Claim 2. Hi is complete for each i with 1 ≤ i ≤ l.

Proof of Claim 2. SupposeH1 is not complete. From Claim 1, we have thatNP (V (H1)) := { a1, a2, ..., ar} = { a1, a2, ..., ak}.
Then we can find two vertices u and v in H1 such that uv 6∈ E. Notice that uy 6∈ E, ua+i 6∈ E for each i with 1 ≤ i ≤ k,
vy 6∈ E, and va+i 6∈ E for each i with 1 ≤ i ≤ k. Otherwise we can easily find paths in G which are longer than P . Thus
{u, v, y, a+1 , a

+
2 , ..., a

+
k } is an independent set with cardinality (k + 3), a contradiction. Therefore H1 is complete. Similarly,

we can prove that Hi is complete for each i with 2 ≤ i ≤ l.

Claim 3. l = 1.

Proof of Claim 3. Suppose l ≥ 2. From Claim 1, we have that NP (V (H1)) := { a1, a2, ..., ar} = { a1, a2, ..., ak}. Choose a
vertex u in H1 and a vertex v in H2. Since P is a longest path in G, we have uy 6∈ E, vy 6∈ E, and ua+i 6∈ E for each i with
1 ≤ i ≤ k. Notice that the set of

{u, v, y, a+1 , a
+
2 , ..., a

+
k }

has (k + 3) elements, it is not independent. Then, we have the following possible cases for the remaining proof of Claim 3.

Case 1. va+k ∈ E. Namely, v is adjacent to the successor of the last element in { a1, a2, ..., ak}, according to the orientation
of P .

Since P is a longest path in G, z 6= a+k and ya++
k 6∈ E otherwise we can easily find paths in G which are longer than P . If

k = 1, then {u, v, y, a++
1 } is an independent set of size 4, contradicting to the fact that α = k + 2. Now we have that k ≥ 2.

Notice that the set of
{u, v, y, a+1 , a

+
2 , ..., a

+
k−1, a

++
k }

has (k + 3) elements, it is not independent. Clearly, va++
k 6∈ E. Then there exists an index j such that a+j a++

k ∈ E and
1 ≤ j ≤ (k−1). Let bj and bk be two vertices in H1 such that bjaj ∈ E and bkak ∈ E. Notice that it may happen that bj = bk.
We use PH1 [bj , bk] to denote a path between bj and bk in H1. Since the path

P1 :=
−→
P [y, aj ]PH1

[bj , bk]
←−
P [ak, a

+
j ]
−→
P [a++

k , z]

is not shorter than P and P is a longest path in G, P1 is also a longest path in G. Now G[V (H2) ∪ {a+k }] is a component of
G[V (G)−V (P1)] and |NP1

(V (H2)∪{a+k })| = |(NP1
(V (H2)−{ a+k })∪{ ak, a

++
k }| = k− 1+ 2 = (k+1). Since P is any longest

path in G, we reach a contradiction to Claim 1.

Case 2. va+j ∈ E for some j with 1 ≤ j ≤ (k − 1).

For this case, we have the following two subcases.

Case 2.1. a++
j = aj+1.

Let bj and bj+1 be two vertices in H1 such that bjaj ∈ E and bj+1aj+1 ∈ E. Notice that it may happen that bj = bj+1. We
use PH1 [bj , bj+1] to denote a path between bj and bj+1 in H1. Since the path

P2 :=
−→
P [y, aj ]PH1

[bj , bj+1]
−→
P [aj+1, z]

is not shorter than P and P is a longest path in G, P2 is also a longest path in G. Now G[V (H2) ∪ {a+j }] is a component of
G[V (G)−V (P2)] and |NP2

(V (H2)∪{a+j })| = |(NP2
(V (H2)−{ a+j })∪{ aj , aj+1}| = k− 1+2 = (k+1), contradicting to Claim

1.

Case 2.2. a++
j 6= aj+1.
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Since P is a longest path, ya++
j 6∈ E otherwise we can easily find a path in G which is longer than P . If j = 1, then

{u, v, y, a++
1 } is an independent set of size 4, contradicting to the fact that α = k + 2. Now we have that j ≥ 2. Notice that

the set of
{u, v, y, a+1 , a

+
2 , ..., a

+
j−1, a

++
j , a+j+1, ..., a

+
k }

has (k + 3) elements, it is not independent. Clearly, va++
j 6∈ E. Then there exists an index s such that a+s a++

j ∈ E where
1 ≤ s ≤ k and s 6= j. Let bj and bs be two vertices inH1 such that bjaj ∈ E and bsas ∈ E. We use PH1

[bs, bj ] (resp., PH1
[bj , bs])

to denote a path between bs and bj (resp., bj and bs) in H1.
When s < j, since the path

P3 :=
−→
P [y, as]PH1

[bs, bj ]
←−
P [aj , a

+
s ]
−→
P [a++

j , z]

is not shorter than P and P is a longest path in G, P3 is also a longest path in G. Now G[V (H2) ∪ {a+j }] is a component of
G[V (G)−V (P3)] and |NP3(V (H2)∪{a+j })| = |(NP3(V (H2)−{ a+j })∪{ aj , a

++
j }| = k− 1+2 = (k+1), contradicting to Claim

1.
When s > j, since the path

P4 :=
−→
P [y, aj ]PH1

[bj , bs]
←−
P [as, a

++
j ]
−→
P [a+s , z]

is not shorter than P and P is a longest path in G, P4 is also a longest path in G. Now G[V (H2) ∪ {a+j }] is a component of
G[V (G)−V (P4)] and |NP4

(V (H2)∪{a+j })| = |(NP4
(V (H2)−{ a+j })∪{ aj , a

++
j }| = k− 1+2 = (k+1), contradicting to Claim

1.

The combination of Claim 2 and Claim 3 completes the proof of the lemma.

3. Proof of Theorem 1.2

Proof. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose that G is not traceable. Choose a longest path
P in G and give an orientation on P . Let y and z be the two end vertices of P . Since G is not traceable, there exists a vertex
x0 ∈ V (G)−V (P ). By Menger’s theorem, we can find s (s ≥ k) pairwise disjoint (except for x0) paths Q1, Q2, ..., Qs between
x0 and V (P ). Let ui be the end vertex ofQi on P , where 1 ≤ i ≤ s. Since P is a longest path in G, y 6= ui and z 6= ui, for each
i with 1 ≤ i ≤ s, otherwise G would have paths which are longer than P . We use u+i to denote the successor of ui along the
orientation of P , where 1 ≤ i ≤ s. Then {x0, y, u+1 , u+2 , ..., u+s } and {x0, z, u−1 , u−2 , ..., u−s } are independent otherwise G would
have paths which are longer than P . Since s ≥ k, we have an independent set S := {x0, y, u+1 , u

+
2 , ..., u

+
k } of size k + 2 in G

and a clique S of size k+2 in Gc. we also have an independent set T := {x0, z, u−1 , u
−
2 , ..., u

−
k } of size k+2 in G and a clique

T of size k + 2 in Gc. From Lemma 2.1, we have that

n+ 1 = n− k − 1 + k + 2 ≤ γ(Gc) + α(G)

= γ(Gc) + ω(Gc) ≤ γ(Gc) + χ(Gc) ≤ n+ 1.

Then γ(Gc) = n− k − 1 and α(G) = ω(Gc) = χ(Gc) = k + 2. Next we will present three claims and their proofs.

Claim 1. Gc[V (G) − S] (resp., Gc[V (G) − T ]) is an empty graph. Namely, G[V (G) − S] (resp., G[V (G) − T ]) is a complete
graph.

Proof of Claim 1. Suppose that Gc[V (G)− S] is not an empty graph. Then there exist vertices u, v ∈ V (G)− S such that
uv ∈ E(Gc). Notice that Gc[S] is complete. Then (V (G)− S − {u }) ∪ {w } is a domination set in Gc, where w is a vertex in
S. Thus n− k − 1 = γ(Gc) ≤ |V (G)− S| − 1 + 1 = n− k − 2, a contradiction. Similarly, we can prove that Gc[V (G)− T ] is
an empty graph.

Claim 2. There are no edges between S (resp., T ) and V (G)−S (resp. V (G)−T ) in Gc. Namely, for any vertex u ∈ S (resp.,
T ) and any vertex w ∈ V (G)− S (resp., V (G)− T ), uw ∈ E(G).

Proof of Claim 2. Suppose that there exist vertices u ∈ S and w ∈ V (G) − S such that uw ∈ E(Gc). Notice that Gc[S] is
complete. Then (V (G)−S−{w })∪{u } is a domination set in Gc. Thus n− k− 1 = γ(Gc) ≤ |V (G)−S| − 1+1 = n− k− 2,
a contradiction. Similarly, we can prove that there are no edges between T and V (G)− T in Gc.

Claim 3. y = u−1 and z = u+k .

Proof of Claim 3. Suppose y 6= u−1 . Then u−1 6∈ S. If z 6∈ S, then Claim 1 implies that zu−1 ∈ E, contradicting to the fact T
is independent. If z ∈ S, then Claim 2 implies that zu−1 ∈ E. Then we can easily find a path in G which is longer than P ,
a contradiction. Thus y = u−1 .
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Suppose z 6= u+k . Then u+k 6∈ T . If y 6∈ T , then Claim 1 implies that yu+k ∈ E, contradicting to the fact S is independent.
If y ∈ T , then Claim 2 implies that yu+k ∈ E. Then we can easily find a path in G which is longer than P , a contradiction.
Thus z = u+k .

Set Ti :=
−→
P [u++

i , ui+1], where 1 ≤ i ≤ k − 1. Obviously, |Ti| ≥ 1 for each i with 1 ≤ i ≤ k − 1. Set T := { i : |Ti| ≥ 2 }.
Next we, according to the different sizes of |T |, divide the remainder of the proofs into two cases.

Case 1. |T | = 0.

Since |T | = 0, we have P = yu1u
+
1 u2u

+
2 ...uku

+
k z. Next we will prove that V (G)−V (P ) = {x0 }. Suppose that V (G)−V (P ) 6=

{x0 }. Then there exists a vertex, say w, in V (G) − V (P ) − {x0 }. Since α(G) = k + 2, we have, by Lemma 2.3, that
G[V (G) − V (P )] is complete. Thus x0w ∈ E(G). If k = 1, then the path yu1x0w is longer than P , a contradiction. Now
we have that k ≥ 2. Since w ∈ V (G) − S and u2 ∈ V (G) − S, we, by Claim 1, have that wu2 ∈ E. Therefore G has a
path yQ1[u1, x0]wu2u

+
2 ...uku

+
k z which is longer than P , a contradiction. Now we, by Claim 1 and Claim 2, have that G is

Kk ∨Kc
k+2.

Case 2. |T | ≥ 1.

Since |T | ≥ 1, there exists an index t such that |Tt| = |
−→
P [u++

t , ut+1]| ≥ 2. Thus u+t 6= u−t+1 and therefore u−t+1 6∈ S. Notice
that z ∈ S. Then Claim 2 implies that zu−t+1 ∈ E, contradicting to the fact that T is independent.

So, the proof of Theorem 1.2 is completed.
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[1] D. Amar, I. Fournier, A. Germa, R. Häggkvist, Covering of vertices of a simple graph with given connectivity and stability number, Ann. Discrete

Math. 20 (1984) 43–45.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier, New York (1976).
[3] D. Gernert, Inequalities between the domination number and the chromatic number of a graph, Discrete Math. 76 (1989) 151–153.
[4] R. Li, Domination number and Hamiltonicity of graphs, J. Combin. Math. Combin. Comput., Accepted.

30


	Introduction
	The lemmas
	Proof of Theorem 1.2

