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Abstract

Let G be a simple connected graph of order n > 9. Let ¢ be the second largest signless Laplacian eigenvalue of G and A\; be
the index of G. Cvetkovi¢ et al. [Publ. Inst. Math. (Beograd) 81(95) (2007) 11-27] conjectured that 1 — vn — 1 < g2 — A1 <
n — 2 —+/2n — 4, where the left equality holds if and only if G is the star K ,_1, and the right equality holds if and only if G
is the complete bipartite graph K>, ,,—2. Das [Linear Algebra Appl. 435 (2011) 2420-2424] proved that 1 —vn —1 < g2 — M\
and characterized the graphs attaining the equality. In this note, we prove that the inequality g2 — A1 <n—2—2n—4
holds for a certain class of graphs.
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V = {v1, v2,...,v,} and edge set E = E(G). Also let d(v;) be the degree of
vertex v; fori =1,2...,n. If vertices v; and v; are adjacent, we denote that by v;v; € E(G). The adjacency matrix A(G) of G
is defined by its entries a,; = 1 if v;v; € E(G) and 0 otherwise. Let A\{(G) > A2(G) > --- > A, (G) denote the eigenvalues of
A(G). Let D(G) be the diagonal matrix of vertex degrees. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G).
Let ¢1(G) > q2(G) > -+ > ¢, (G) denote the eigenvalues of Q(G).

Let G1 = (V1, F1) and Gy = (Vs, Es) be given graphs and V; NV, # (). The union G; U G5 of graphs G; and G is the
graph with vertex set V; UV, and edge set E; U Es. The join G; 57 G4 of graphs G; and G5, is the graph obtained from G; UG»
by joining each vertex of G; to each vertex of GG5. A bipartite graph G is a graph whose vertex set can be partitioned into
two independent sets, and if both of these independent sets have the same cardinality then G is called a balanced bipartite
graph. As usual, K,, and K, ,_; denote respectively the complete graph and complete bipartite graph with n vertices. In
2007, Cvetkovi¢ et al. [2] gave the following conjecture involving the second largest signless Laplacian eigenvalue ¢ and
the index \; of graph G (see also [1]).

Conjecture 1.1. Let G be a connected graph of order n > 9. Then
l—-vn—-1<gp-XAM<n—2—+v2n—4 1)

with equality if and only if G is the star K, ,_1 for the lower bound, and if and only if G is the complete bipartite graph
K,_22 for upper bound.

In [4], Das proved that the lower bound of Conjecture 1.1 is true and characterized the corresponding extremal graphs.
In this note, we prove that the upper bound holds for a certain class of graphs.

2. Main results

First we shall list some previously known results that will be needed in the main result.

Lemma 2.1. [5]Let G be a graph with vertex set V = {vy,vs,...,v,}. If G has k—1 duplicate pairs (v;,viy1),i =1,2,... k=1,
then G has at least k — 1 signless Laplacian eigenvalues equal to the cardinality of the neighbor set. Also the corresponding
k — 1 eigenvectors are

(1,-1,0,...,00T,(1,0,-1,0,...,07,...,(1,0,...,-1,0,...,0)T.

—~—

—— —————
2 3 k

*Corresponding author (horoldagva@msue.edu.mn)



E. Azjargal, D. Adiyanyam and B. Horoldagva / Discrete Math. Lett. 4 (2020) 23—26 24

Lemma 2.2. [3]IfG'isagraph obtained from a graph G by deleting any edge then A1 (G') < A\1(G). Moreover, this inequality
is strict when G is connected.

Lemma 2.3. [7] Let G be a graph of order n > 2. Then ¢»(G) < n — 2.

Lemma 2.4. [6] Let G be a graph of order n and let H be a subgraph of G obtained by deleting an edge in G. Then
1(G) > qi(H) > ¢2(G) > @2(H) > q3(G) > -+ > qn—1(H) > qu(G) > gn(H)

where q;(G) is the i-th largest signless Laplacian eigenvalue of G and q;(H) is the i-th largest signless Laplacian eigenvalue
of H.

Let m and p be integers. For simplicity of notation, we write pK,, instead of K, U---U K,,.
—_————

p

Lemma 2.5. Let m and n be two integers and H be a graph nK, or K,,. Then
q2(H 7 2K,,) = n+2m — 2.

Proof. First, let H = nK;. As the consequence of Lemma 2.1 we conclude that the signless Laplacian eigenvalues of
nK, v 2K, are
{n+m-2n+m—2,....,n4+m—2,2m,2m,...,2m} (2)

2m—2 n—1

and the remaining three eigenvalues satisfy the following system:

gr1 = (n+ 2m — 2)x1 + nxs
gre = (n+ 2m — 2)x2 + nxs

qr3 = mx1 + mxy + 2mxs

where (21,...,21,29,...,72,23,...,73)7 is the eigenvector corresponding to eigenvalue q.
—_———— —— ——

m m n
Thus, the remaining three eigenvalues are

n+4m—2+/(n—2)%+8mn

5 , n+2m — 2. 3)

From (2) and (3), we get
@(nK1 7 2K,,) =n+2m — 2.

Now, let H = K,,. As the consequence of Lemma 2.1 we conclude that the signless Laplacian eigenvalues of K,, v 2K, are

{n+m-2n4+m—-2,....n4+m—-—2n+2m—-2n+2m—2,...,n+2m — 2} (4)

2m—2 n—1

and the remaining three eigenvalues satisfy the following system:

gr1 = (n+ 2m — 2)x1 + nxs
qre = (n 4+ 2m — 2)x2 + nxs
qrs = mx1 + mxo + (2n + 2m — 2)x3

where (21,...,21,29,...,72,23,...,73)7 is the eigenvector corresponding to eigenvalue q.
—_———— ——— ———

m m n
Thus, the remaining three eigenvalues are

3n+4m —2++vn?+8mn

5 n+2m — 2. (5)

From (4) and (5), we get
q2(Kn v 2K7n) =n-++ 2m — 2.

This completes the proof. O

Lemma 2.6. Let G be a graph of order n > 2. If the complement of G has a balanced bipartite component then ¢»(G) = n—2.
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Proof. Let (X,Y) with | X| = |Y| = m be the balanced bipartite component in the complement of G. If there is an edge zy
in G such that z € X and y € Y, then we delete this edge and the obtained graph is denoted by G;. Then by Lemma 2.4,
we have

72(G) > q2(G1). (6)

Repeating this procedure sufficient number of times, we arrive at a graph H v/ 2K,,, where H is a graph of order n — 2m.
Therefore, we have
qQ(G) Z QQ(Gl) Z tee Z Q2(H V 2Km) (7)

by using Lemma 2.4.
If E(H) # 0, we obtain a graph H; from H by deleting an edge. Then by Lemma 2.4

q2(H \V4 2Km) 2 q2(H1 \V4 2Km)-
Repeating this procedure sufficient number of times, we arrive at a graph (n — 2m)K; 7 2K,,,. Then we have
@(H 7 2K) > qa(Hy 7 2K ) > -+ > qa((n — 2m) Ky vV 2K,) =n — 2 (3

by Lemma 2.4 and Lemma 2.5. From (7) and (8), we get

¢=2(G) >n—2.
On the other hand, we have ¢2(G) < n — 2, by Lemma 2.3. Hence we get the required result. O
Lemma 2.7. Consider the inequality
V(e —1)2+8z(n—22)>2V/2n—44+1—2 9)

where n is an integer and x is a real number.

(i) Let n > 10. If x € [1, %), then (9) holds with the equality if and only if x = 1.

(it) Let 2 < n < 9. If x € [1, 251], then (9) holds with the equality if and only if v =1 orn =4,z = 3/2.

Proof. Denote f(n,x) = 42% — (2n + v2n — 4)x + ((2n — 4) + 2n — 4).

(i) Let 10 < n < 34. Then it is clear that 2/2n —4+1 > 2. Hence 2v/2n —4+ 1 — 2 > 0 for z € [1,%). If we square the

both sides of (9) then we get
f(n,2) <0 (10)

forz € [1,%). Now, it is sufficient to prove that the inequality (10) holds. Then, we have f(n,1) = 0 and f (n,%) =

2n—4)(4—+2n —4
(2n — 4)( n—4) < 0 for n > 10. Since f(n,x) is the quadratic function for z, we get the required inequality.

4
Now, let n > 34. Then, 2¢/2n — 4+1 < 5. If 2/2n — 441 < 2 < § then clearly (9) holds. Otherwise 1 <z < 2v/2n —4+1.
Then we get the inequality (10) by squaring the both sides of (9). Hence, we get

f(n,z) <0, z€[1,2V2n—4+1]
because f(n,1) =0and f (n,2v2n —4+ 1) =2v2n —4- (55 — (2¢/2n — 4 - 7)?) < 0 for n > 34.
From the above, one can easily seen that the equality in (9) holds if and only if z = 1.

(ii) Since 2 < n < 9, we have 2/2n —4+1— 2 > 0 for 2 € [1,2;1]. Then we get the inequality (10) by squaring the both
sides of (9). Similarly as the above argument, we also get

fln,z) <0, =ze€ [1,71;1]

because f(n,1) =0and f (n, %5*) = (n—3)(2; 2n—4) <0for2<n<o.

From the above we obtain the equality in (9) if and only if x = 1 or n = 4,z = 1.5. This completes the proof. O

Theorem 2.1. Let G be a graph of order n > 2. If the complement of G has a balanced bipartite component then the upper
bound in (1) holds for the graph G.
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Proof. Let (X,Y) with |X| = |Y| = m be the balanced bipartite component in the complement of G. If there is an edge
zy in G such that z € X and y € Y, then we delete this edge and the obtained graph is denoted by G’. Then, clearly the
complement of G’ also contains a balanced bipartite component. Hence ¢2(G) = ¢2(G’) = n — 2 by Lemma 2.6 and

32(G) = M(G) < g2(G") — M (G")
by Lemma 2.2. Using similar argument as in the proof of Lemma 2.6, we get

On the other hand, it is easy to see that the eigenvalues of adjacency matrix of ((n — 2m)K; v 2K,, are

m—1%++/(m—1)2+8m(n —2m)

,m—1,0,0,...,0,—1,—1,...,—1
2 —_———— —— —
n—2m-—1 2m—2

Therefore, we have

m— 14 /(m —1)2 + 8m(n — 2m)

g2((n—2m)K, v 2K,) — M ((n —2m)K; v 2K,,) =n— 2 —

2 b
by using Lemma 2.5. Now, we prove that
—1 —1)2+8 -2
h_g_ M ++/(m —1)2 4+ 8m(n m)gn—Q—\/m. (12)

2

If n > 10, then by Lemma 2.7 (i), the inequality (12) holds with equality if and only if m = 1. If 2 < n < 9, then by
Lemma 2.7 (ii) the inequality (12) also holds with equality if and only if m = 1. From (11) and (12), we obtain

32(G) —M(G)<n—2—+2n—4

with equality if and only if G is isomorphic to K,,_s 5. This completes the proof. O
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