
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 4 (2020) 1–4

Bounds on graph energy

Ivan Gutman1,∗, Mohammad Reza Oboudi2

1Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia
2Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71457-44776, Iran

(Received: 4 April 2020. Received in revised form: 21 May 2020. Accepted: 29 May 2020. Published online: 1 June 2020.)

c© 2020 the authors. This is an open access article under the CC BY (International 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a graph of order n and size m, and its eigenvalues λi , i = 1, . . . , n, be labeled so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The
energy E(G) of G is the sum of absolute values of its eigenvalues. It was recently shown that for t = 1,

2mt+ |λ1||λn|n
|λ1|+ |λn|

is a lower bound on E(G). We now establish conditions under which for t > 1, this expression is an upper bound on E(G).
We also show that for a class of r-regular graphs, E(G) ≥ 2rn/(r + 1), and determine the equality cases.
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1. Introduction

In this paper we are concerned with simple graphs, that is graphs without labeled, directed, or multiple edges, and without
self loops. Let G be such a graph of order n and size m, and let the eigenvalues of its (0, 1)-adjacency matrix be λi , i =
1, 2, . . . , n. These eigenvalues form the spectrum of the graphG, denoted by Spec(G). In what follows, the graph eigenvalues
will be labeled so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| .

Of the numerous known properties of graph spectrum [3], we recall that if m ≥ 1, then λ1 > 0, i.e., |λ1| = λ1, and that
n∑
i=1

λ2i = 2m. (1)

The energy of the graph G is defined as [7]

E = E(G) =

n∑
i=1

|λi| . (2)

The theory of graph energy is nowadays well developed [7]. In particular, numerous lower and upper bounds on E(G)

are known; some recent publications along these lines are [1, 2, 5, 6, 8–11]. In [9], one of the present authors obtained a
lower bound on E in terms of n, m, λ1, and λn, namely

E(G) ≥ 2m+ |λ1| |λn|n
|λ1|+ |λn|

. (3)

Some other lower bounds of the same type were communicated in [5].
In this paper we determine conditions under which for any t > 1, the reverse of the inequality (3) holds, namely

E(G) <
2mt+ |λ1| |λn|n
|λ1|+ |λn|

. (4)

In order to avoid trivialities, throughout this paper we assume that the graph G possesses at least one eigenvalue λi,
such that |λi| 6= |λ1| and |λi| 6= |λn|. If so, then as shown below, the inequality (4) is strict.

We prove the following two results.
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Theorem 1.1. Let t > 1 be a real number. Then the upper bound (4) holds provided

|λn| ≥
[
2t− 1− 2

√
t(t− 1)

]
|λ1| .

Theorem 1.2. The upper bound (4) holds for any λ1 and λn 6= 0, if

t =

(
|λ1|+ |λn|

)2
4|λ1| |λn|

.

2. Proofs of Theorems 1.1 and 1.2

For the sake of simplicity, instead of |λi| we shall write zi. In addition, |λn| = zn and |λ1| = z1 will be denoted by x and y,
respectively.

We start with the obvious relations

zi −
x

t
≥ t− 1

t
x and zi −

y

t
≥ −y

t
.

Based on them, we may be interested when their product satisfies(
zi −

x

t

)(
zi −

y

t

)
≥ − t− 1

t2
xy . (5)

Inequality (5) can be rewritten as
t z2i − (x+ y)zi + xy ≥ 0 (6)

from which, by summing over all i = 1, 2, . . . , n, and by taking into account relations (1) and (2), it immediately follows

2mt− (x+ y)E + xy n > 0 . (7)

Since there exists one zi different from x and y, the above inequality must be strict. From Equation (7) we get E <

(2mt+ xy n)/(x+ y), i.e., inequality (4).
In order that (6) be valid for all x ≤ zi ≤ y, its opposite, namely

t z2 − (x+ y)z + xy < 0

must not hold for any z. This will happen if D ≤ 0, where D is the discriminant

D = (x+ y)2 − 4t xy = x2 − (4t− 2)xy + y2 . (8)

Considering (8) as a polynomial in the variable x, D ≤ 0 will hold if

x1 ≤ x ≤ x2 ,

where
x1,2 =

1

2

(
4t− 2±

√
(4t− 2)2 − 4

)
y =

(
2t− 1± 2

√
t(t− 1)

)
y .

Thus, (4) will hold if (
2t− 1− 2

√
t(t− 1)

)
y ≤ x ≤

(
2t− 1 + 2

√
t(t− 1)

)
y .

Since for t ≥ 1, 2t−1+2
√
t(t− 1) ≥ 1, the right–hand side requirement is satisfied in a trivial manner. What only remains

is the left–hand side condition, which is just the statement of Theorem 1.1.
Solving D ≤ 0 in the variable t, from (8) we obtain

t ≥ (x+ y)2

xy

implying that inequality (4) holds for all t ≥ (x+ y)2/(xy). Evidently, the best choice of t is when it is as small as possible,
i.e., t = (x+ y)2/(xy). Theorem 1.2 follows.
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3. A bound on the energy of regular graphs

In order to state the next theorem, we need some preparations.
A matching in G is a set of edges of G without common vertices. A perfect matching is a matching in which every vertex

is incident to exactly one edge of the matching. The complete graph and the cycle of order n, are denoted by Kn and Cn,
respectively. The complete bipartite graph with part sizes p and q is denoted by Kp,q. Let r ≥ 0 be an integer and M be
a perfect matching of Kr+1,r+1. By K?

r+1 we mean the r-regular graph Kr+1,r+1 \M . The graph K?
r+1 is called the crown

graph of order 2r + 2. For example K?
1 = 2K1, K?

2 = 2K2, and K?
3 = C6.

Lemma 3.1. [3] Let H be a connected r-regular graph where r ≥ 2. Assume that

Spec(H) = {r, 1, . . . , 1︸ ︷︷ ︸
b

,−1, . . . ,−1︸ ︷︷ ︸
c

},

where b and c are some non-negative integers. Then b = 0, c = n− 1, and H ∼= Kr+1.

Lemma 3.2. [9] Let H be a connected bipartite r-regular graph where r ≥ 2. Assume that

Spec(H) = {r, 1, . . . , 1︸ ︷︷ ︸
b

,−1, . . . ,−1︸ ︷︷ ︸
c

,−r},

where b and c are some non-negative integers. Then b = c = r and H ∼= K?
r+1.

Lemma 3.3. Let a and b be positive real numbers. Let α, β, x and y be non-negative real numbers such that β ≥ y ≥
√

a
b ≥

x ≥ α. Then
a+ bxy

x+ y
≥ a+ bαβ

α+ β
, (9)

and the equality holds if and only if x = α =
√

a
b or x = β =

√
a
b or y = β =

√
a
b or x = α and y = β.

Proof. Let d be a positive real number and fd(t) = a+bdt
d+t the one-variable function on t, where t ≥ 0. So the derivative of

fd(t) with respect to t is

f ′d(t) =
bd2 − a
(d+ t)2

.

This shows that if d >
√

a
b , then fd(t) is strictly increasing on the interval [0,∞) and if d <

√
a
b , then fd(t) is strictly

decreasing on the interval [0,∞). If d =
√

a
b , then for every t ≥ 0, fd(t) = a

d =
√
ab.

Since y ≤ β and fx(t) is strictly decreasing on the interval [0,∞) (if x <
√

a
b ),

fx(y) ≥ fx(β) (if β > y and x 6=
√
a

b
then fx(y) > fx(β)) . (10)

On the other hand, since x ≥ α and fβ(t) is strictly increasing on the interval [0,∞) (if β >
√

a
b ),

fβ(x) ≥ fβ(α) (if x > α and β 6=
√
a

b
then fβ(x) > fβ(α)) . (11)

Since fx(β) = fβ(x), the Eqs. (10) and (11) show that fx(y) ≥ fβ(α). In other words, we obtain the inequality (9).
Now we consider the equality. Assume that a+bxy

x+y = a+bαβ
α+β . So fx(y) = fβ(α). Hence by (10) and (11) we find that

fx(y) = fx(β) and fβ(x) = fβ(α). Using (10) and (11) one can easily obtain the result.

Theorem 3.1. Let G be an r-regular graph of order n where r > 0. Suppose that G has no eigenvalue in the interval (−1, 1).
Then

E(G) ≥ 2rn

r + 1
. (12)

Equality holds if and only if every connected component of G is the complete graph Kr+1 or the crown graph K?
r+1.

Proof. For an r-regular graph, λ1 = r [3]. Since G has no eigenvalue in the interval (−1, 1), |λn| ≥ 1. As well known [3],
for any (n,m)-graph,

|λn| ≤
√

2m

n
≤ |λ1| . (13)

Let α = 1, β = r, a = 2m = nr, b = n, x = |λn| and y = |λ1|. By (13) we get

β ≥ y ≥
√
a

b
≥ x ≥ α .
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By applying Lemma 3.3 and bearing in mind Equation (3), we find that

E(G) ≥ a+ bxy

x+ y
≥ a+ bαβ

α+ β
, (14)

which bearing in mind the definitions of α, β, a, b, implies the bound (12).
Now we investigate the equality of Equation (12). We note that for every disjoint graphs G1 and G2, E(G1 ∪ G2) =

E(G1) + E(G2). Since E(Kr+1) = 2r and E(K?
r+1) = 4r, it is easy to check that if G = pKr+1 ∪ q K?

r+1, where p and q

are non-negative integers, then the equality holds. Hence it remains to consider the converse. Thus assume that G is an
r-regular graph of order n such that G has no eigenvalue in the interval (−1, 1), and E(G) = 2rn/(r + 1). Using Equation
(14) we obtain

E(G) =
a+ bxy

x+ y
and

a+ bxy

x+ y
=
a+ bαβ

α+ β
. (15)

In [9] it was shown that if (3) is equality, then there exists s ∈ {1, . . . , n} such that |λ1| = · · · = |λs| and |λs+1| = · · · = |λn|
(we note that |λ1| = r). On the other hand, by Lemma 3.3, |λ1| =

√
a
b or |λn| =

√
a
b or |λn| = 1. If |λ1| =

√
a
b or |λn| =

√
a
b ,

then we obtain that |λ1| = · · · = |λn|. By combining these conditions, we find that there are two possible cases:

(I) |λ1| = · · · = |λn| = r. Hence every eigenvalue of G is r or −r. By Equation (1), we conclude that nr2 = nr. Thus r = 1,
i.e., every connected component of G is K2.

(II) |λ1| = · · · = |λs| = r and |λs+1| = · · · = |λn| = 1. Then every eigenvalue of G is either r or −r or 1 or −1. If r = 1, then
every connected component of G is K2. Therefore, assume that r ≥ 2. Let H be a connected component of G. Since H
is r-regular, r is the largest eigenvalue of H and its multiplicity is one. Suppose first that H is bipartite. Then −r is
also one of the eigenvalues ofH with multiplicity one. Then the spectrum ofH consists of one r, one −r and the other
elements are 1 and −1. By Lemma 3.2, H ∼= K?

r+1. Assume now that H is not bipartite. Then −r is not an eigenvalue
of H [3]. Therefore the spectrum of H consist of one r and the other elements are 1 or −1. By Lemma 3.1, H ∼= Kr+1.

The proof of Theorem 3.1 is complete.

Remark 3.1. In [4] it was shown that for all r-regular graphs, r > 0, E(G) ≥ n. If r ≥ 3, then 2r
r+1 ≥ 1.5. Thus, by Theorem

3.1 we improve this result for a certain family of r-regular graphs.

We conclude this paper by two examples. The cycle C6 is the crown graph K?
3 and Spec(C6) = {2, 1, 1,−1,−1,−2}. Thus

E(C6) = 8 which is an equality case in Theorem 3.1. For the Petersen graph P , Spec(P ) = {3, 1, 1, 1, 1, 1,−2,−2,−2,−2}.
Thus E(P ) = 16 whereas the lower bound of Theorem 3.1 is 15.
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