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Abstract
Let G be a plane graph. A cozonal labeling of G is a face labeling using the labels {1, 2} such that for each vertex v, the
labels of regions having v on their boundary sum to 0 (mod 3). Cozonal labelings in connected graphs with maximum degree
three have been characterized. In this paper, we define a nonconsecutive walk as one where no two consecutive edges along
the walk are on the boundary of the same region, and where every internal vertex of the walk is incident with exactly four
regions. By considering these walks, cozonal labelings of graphs with maximum degree four are characterized.
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1. Introduction

A graph is planar if it can be drawn in the plane (or on the sphere) in such a way that no two edges cross. Any such
embedding is called a plane graph. Let G be a plane graph with vertex, edge and region sets V (G), E(G) and F (G),
respectively. Motivated by an interest in the Four-Color Theorem, the Australian physicist Cooroo Egan devised (in
2014) a vertex labeling of plane graphs known as a zonal labeling [5]. A zonal labeling of a plane graph G is a labeling
ℓ : V (G) → {1, 2} such that for every region R ∈ F (G) with boundary BR,∑

v∈V (BR)

ℓ(v) = 0 (mod 3).

If G has a zonal labeling, we say that G is zonal. Furthermore, a planar graph is zonal if at least one of its embeddings
admits a zonal labeling. While the original motivation for zonal labelings is deeply rooted in the Four-Color Theorem, there
are many interesting results on zonal labelings that are not directly connected to this famous theorem [1,4,6].

In this paper, we study a related labeling known as a cozonal labeling. Given a vertex v, let Xv be the set of regions
having v on their boundary. A cozonal labeling of a plane graph G is a labeling ℓ : F (G) → {1, 2} such that for all v ∈ V (G),∑

R∈Xv

ℓ∗(R) = 0 (mod 3).

We call the value
∑

R∈Xv
ℓ(R) the label of v, and denote this by ℓ(v). We say G is cozonal if G has a cozonal labeling.

Furthermore, a planar graph is cozonal if at least one of its embeddings admits a cozonal labeling. Cozonal labelings were
introduced in [2] to provide a new perspective on zonal labelings. In [3], it is proven that a plane graph G is zonal if and
only if its dual G∗ is cozonal. In [3], the cozonal plane graphs of maximum degree 3 were characterized. Here, we extend
this result to cozonal plane graphs of maximum degree 4.

2. Terminology and Previous Results

Many of our results are based on connectivity and regularity. A cut vertex is a vertex whose deletion disconnects a component
of a graph. As the graphs here may be multigraphs containing parallel edges and loops, we should note that a vertex
incident with a loop is considered a cut vertex (unless that vertex and loop make up the entire component). A connected
graph with at least three vertices and without a cut vertex is 2-connected. A bridge is an edge whose deletion disconnects a
component of a graph. Lastly, a graph is k-regular if every vertex has degree k. For further terminology not defined here,
see [7].
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Our proofs utilize several previous results from [3], which we restate below. We use deg∗(v) to denote the number of
regions having v on their boundary and ∆(G) to denote the maximum degree of a vertex in G.

Proposition 2.1. Let G be a nonempty connected plane graph. Then for v ∈ V (G),

1. deg∗(v) ≤ deg(v).

2. v is a cut vertex if and only if deg∗(v) < deg(v).

Theorem 2.1. Let G be a plane graph with set B of bridges. Then, G is cozonal if and only if each component of G−B is
cozonal.

Next, the plane graphs with maximum degree 3 are characterized in [3].

Theorem 2.2. Let G be a connected graph with ∆(G) ≤ 3. Then, G is cozonal if and only if one of the following is true:

• G is a cycle Cn, with n ≥ 1.

• The graph formed by deleting every bridge of G is 2-regular.

• G is a cubic map (that is, a bridgeless 3-regular plane graph).

In the 2-connected case, this is summarized as follows:

Corollary 2.1. Let G be a 2-connected plane graph with ∆(G) ≤ 3. Then, G is cozonal if and only if G is regular.

We now proceed to extend these results to a characterization of cozonal plane graphs with maximum degree 4. This
analysis uses the following result from [3], which is a dualization of a result in [4].

Theorem 2.3. If G is a 2-connected Eulerian plane graph, then G is cozonal.

This has two immediate corollaries:

Corollary 2.2. If G is a 2-connected 4-regular plane graph, then G is cozonal.

Corollary 2.3. Let G be a 2-connected plane graph with ∆(G) = 4. If G has no vertices of degree 3, then G is cozonal.

Thus, the main obstacle to cozonality in 2-connected plane graphs with ∆(G) = 4 lies in the vertices of degree 3. We give
a generalization which allows us to characterize cozonal bridgeless plane graphs with ∆(G) = 4.

3. Nonconsecutive Walks

Let G be a bridgeless plane graph. A nonconsecutive walk W is a walk in G where no two consecutive edges along the walk
are on the boundary of the same region, and for every internal vertex v ∈ W (that is, any vertex other than those on the
ends of the walk), deg∗G(v) = 4. When ∆(G) = 4, this means that for every internal vertex v ∈ W , v is a non-cut vertex of
degree 4. While we will primarily focus on the case where ∆(G) = 4, these walks can still give some insight on graphs with
higher maximum degrees, and therefore we will keep our definition appropriately general.

Nonconsecutive walks beginning with a vertex incident with exactly 3 regions are of particular interest. If ∆(G) = 4,

then this includes all vertices of degree 3 (which are necessarily non-cut vertices, since G is bridgeless) and all cut vertices
of degree 4.

We begin in Figure 3.1 with an example of a 2-connected graph G1 and two nonconsecutive walks beginning and ending
with vertices of degree 3. We will see that the intersecting nature of these walks is sufficient to justify that G1 is not cozonal.

Next, we consider an example of a graph G2 having a cut vertex of degree 4, with a nonconsecutive walk beginning and
ending at that vertex. The only other nonconsecutive walk starting and ending at a vertex u with deg∗(u) = 3 is symmetric
to the one shown. These walks do not contain any of the features that contradict cozonality, so G2 is cozonal. A cozonal
labeling is presented along with the nonconsecutive walk in in Figure 3.2.

We now establish several properties of certain nonconsecutive walks belonging to a cozonal bridgeless plane graph. The
first property provides motivation for all the other properties we devise.

Proposition 3.1. Let G be a cozonal bridgeless plane graph, ℓ be a cozonal labeling of G, and W be a nonconsecutive walk
beginning with a vertex v with deg∗(v) = 3. Then each edge of W is incident with two regions of the same label under ℓ, and
these labels alternate along W .
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Figure 3.1: A 2-connected graph G1 with two nonconsecutive walks beginning at vertices of degree three that cross at
internal vertices.

Figure 3.2: A connected graph G2 with a nonconsecutive walk beginning and ending at the cut vertex of degree four, along
with a cozonal labeling.

Proof. First, note that all regions incident with v have the same label. Therefore, the two regions incident with any edge
incident with v have the same label.

Now, assume that edges e1 through ek of W have the property that each edge is incident with two regions of the same
label, and these labels alternate. Suppose the regions incident with ek each have label a. Consider ek+1. Edges ek and
ek+1 are joined by a vertex vk+1, which must have deg∗(vk+1) = 4. Since ek, ek+1 are not on the boundary of any shared
regions, we see that two of the regions incident with vk+1 are those incident with ek, and the other two are incident with
ek+1. Denote these four regions by R0, R1, R2, R3, with ek incident with R0, R1 and ek+1 incident with R2, R3. The label of
vk+1 is equal to

∑3
i=0 ℓ(Ri) = 2a+ ℓ(R2) + ℓ(R3). The only way this sum can be 0 in Z3 is if ℓ(R2) = ℓ(R3) = 2a. Therefore,

we see that the labels incident with an edge alternate.

This strong pattern in nonconsecutive walks beginning with a vertex v with deg∗(v) = 3 leads to the following properties.

Proposition 3.2. Let G be a cozonal bridgeless plane graph, W be the set of all nonconsecutive walks in G containing a
vertex incident with exactly three regions, EW be the set of all edges belonging to some walk in W, and u ∈ V (G) be a non-cut
vertex of degree 4. Then, exactly zero or two edges incident with u belong to EW .

Proof. Let G have a cozonal labeling ℓ. By Proposition 3, for all W ∈ W, each edge of W is incident with two regions of the
same label. Therefore, each edge in EW is incident with two regions having the same label. Let u be a non-cut vertex with
deg(u) = 4 incident with four regions R0, R1, R2, R3. If three edges incident with u belong to EW , then by transitivity the
four regions incident with u have the same label, and ℓ(u) = 4ℓ(R0) ̸= 0. This contradicts the cozonality of G, and therefore
at most two edges incident with u belong to EW .

To show that we cannot have exactly one edge, suppose there is a non-cut vertex u having deg(u) = 4 and exactly one
edge e incident with u belongs to EW . Then there is some nonconsecutive walk W ∈ W ending in u, and thus whose last
edge is e. However, this walk W can be extended to a walk W ′ by adding the edge e′ incident with u that is not consecutive
to e (that is, the edge which is not on the boundary of any shared regions with e), and thus both e and e′ belong to EW .
Therefore, we cannot have exactly one edge incident with u that belongs to EW .
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Note that we are restricted specifically to non-cut vertices of degree 4, and not general vertices incident with exactly four
regions. The situation for vertices incident with exactly four regions is more complex and requires different techniques to
analyze.

Proposition 3.3. Let G be a cozonal bridgeless plane graph, W be the set of all nonconsecutive walks in G containing
a vertex incident with exactly three regions, EW be the set of all edges belonging to some walk in W, and u ∈ V (G) with
deg(u) = 2. Then, u is not incident with any edges of EW .

Proof. Let G have a cozonal labeling ℓ and assume to the contrary that some walk W ∈ W contains an edge e incident with
a vertex v of degree 2. Then, e is incident with two regions having the same label. These are the only two regions incident
with v and therefore, ℓ(v) ̸= 0. This contradicts the cozonality of G. Thus, W has no vertex of degree 2.

We have shown two properties of nonconsecutive walks in cozonal bridgeless plane graphs. In fact, these properties
characterize all bridgeless cozonal plane graphs with maximum degree 4.

4. Cozonal Bridgeless Plane Graphs G with ∆(G) = 4

To simplify the forthcoming proof, we first prove a lemma involving labelings of plane graphs with ∆(G) = 4 in which all
components are Eulerian. This labeling will not be a strictly cozonal labeling, but it will be very similar to one.

Lemma 4.1. Let G be a plane graph with ∆(G) ≤ 4 such that each component is Eulerian with no isolated vertices. Then, G
has a labeling ℓ : F (G) → {1, 2} such that for all v ∈ V (G),

• each edge incident with v is on the boundary of two regions having different labels, and

• if v is not a cut vertex of a component of G, then ℓ(v) =
∑

R∈Xv
ℓ(R) = 0 (mod 3).

Proof. The first condition is equivalent to saying that ℓ is a region 2-coloring of G. Since each component of G is Eulerian,
the dual of each component is bipartite, and therefore each component of G has a 2-coloring of its regions. As each component
of G is region 2-colorable, a straightforward induction argument (on the number of components) shows that G is region
2-colorable. Now, let ℓ : V (G) → {1, 2} be a region 2-coloring of G. This meets the first condition of the labeling.

To see that this also meets the second condition, note that if v is not a cut vertex, it is incident with an even number of
regions equal to its degree. Furthermore, the region labels alternate about v. Thus, deg(v)/2 regions have the label 1 and
deg(v)/2 regions have the label 2, and thus ℓ(v) = deg(v)/2 + 2(deg(v)/2) = 3(deg(v)/2) = 0. We have shown that for each
vertex v that is not a cut vertex of a component, ℓ(v) = 0 and both conditions on our labeling have been met.

We are now ready to prove our primary result on bridgeless plane graphs with ∆(G) = 4.

Theorem 4.1. Let G be a bridgeless plane graph with ∆(G) = 4, W be the set of all nonconsecutive walks in G containing a
vertex incident with exactly three regions, and EW consist of all edges belonging to a walk in W. Then, G is cozonal if and
only if every non-cut vertex v with deg(v) = 4 is incident with exactly zero or two edges of EW and no vertex w with deg(w) = 2

is incident with an edge of EW .

Proof. First, let every non-cut vertex v with deg(v) = 4 be incident with exactly 0 or 2 edges of EW and no vertex w with
deg(w) = 2 be incident with an edge of EW . Form G′ by deleting all vertices incident with exactly 3 regions and all edges in
EW . Observe that each vertex in G′ was either a vertex of degree 4 in G that had 0 or 2 incident edges removed, or otherwise
was a vertex of degree 2 in G that had no incident edges removed. Therefore, each component of G′ is Eulerian. Construct
the labeling ℓ′ : F (G′) → {1, 2} from Lemma 4.1. This labeling has the following two properties: For all x′ ∈ V (G′), each
edge incident with x′ is on the boundary of regions having different labels, and if x′ is not a cut vertex of a component of
G′, then ℓ′(x′) = 0. Form ℓ : F (G) → {1, 2}, where ℓ(R) is given by ℓ′(R′) for the unique region of G′ where R ⊂ R′. We now
examine the induced label of a vertex x ∈ V (G).

Case 1: deg∗(x) = deg(x) = 2: Then, x does not belong to a nonconsecutive walk, the edges incident with x in G are
the same as those in G′, and the sum of labels of regions incident with x under ℓ is the same as that under ℓ′. Since x

is not of degree 4 and therefore not a cut vertex of G′, this sum is 0.

Case 2: deg∗(x) = 3: Then, x is interior to a region R′ ∈ F (G′). Therefore, all regions incident with x in G are also
interior to R′, and thus all have the same label. Therefore, the sum of these region labels is 0.
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Case 3: deg∗(x) = 4: There are three subcases here.

Subcase 3.1: x is incident with 2 edges of EW : In this case, the two edges e, e′ ∈ EW incident with x belong to some
walk W and are interior to regions of G′. Therefore, degG′(x) = 2, and since e and e′ are not on the boundary of the
same region in G, they are interior to different regions of G′. This is illustrated in Figure 4.1. Since each edge in
G′ is incident with two regions having different labels under ℓ′, the two regions incident with x in G′ have labels 1

and 2 respectively under ℓ′. Thus in the labeling ℓ of G, v is incident with two consecutive regions labeled 1 and two
consecutive regions labeled 2, which sums to 0.

Figure 4.1: Edges incident with x belonging to EW are interior to different regions of G′.

Subcase 3.2: x is incident with no edges of EW and is not a cut vertex of G′: As in Case 1, the edges incident with x in
G are the same as those in G′, and the sum of labels of regions incident with x under ℓ is the same as that under ℓ′,

which is 0.

Subcase 3.3: x is incident with no edges of EW and is a cut vertex of G′: Again, the edges incident with x in G are
the same as those in G′. So, the labels of regions incident with x under ℓ are the same as those under ℓ′, with the
exception that x is incident with four distinct regions instead of three. We noted previously that each edge incident
with x is incident with regions having different labels. Therefore, the regions incident with x under ℓ′ in G′ alternate
in label 1, 2, 1, 2. Since these regions are each distinct in G, ℓ(x) = 0.

Therefore, the sum of regions incident with each vertex in V (G) is 0 and ℓ is a cozonal labeling of G.
Next, assume that G has a cozonal labeling ℓ. By Proposition 3.2, every non-cut vertex v with deg(v) = 4 is incident with

exactly zero or two edges of EW . By Proposition 3.3, no vertex w with deg(w) = 2 is incident with any edge of EW .

While the properties used to characterize the bridgeless plane graphs with ∆(G) = 4 may seem obscure, they are purely
structural and do not rely on a labeling of G. In addition, this means that it is relatively simple to show that a bridgeless
plane graph with ∆(G) = 4 is not cozonal, as this only requires finding EW and verifying that some vertex contradicts
Propositions 3.2 or 3.3. If the graph has bridges, we can reduce to the bridgeless case using Theorem 2.1.

As an additional note, one may observe that the conditions in Theorem 4.1 generalize to conditions for all connected
bridgeless plane graphs with ∆(G) ≤ 4. If ∆(G) = 2, then W is empty and the result holds trivially. If ∆(G) = 3, then EW

consists of all edges incident with a vertex of degree 3, and the conditions simplify to requiring that no vertex of degree 3 is
adjacent to a vertex of degree 2. By connectivity, this then implies that G must be 3-regular.

5. Concluding Remarks

In [3], there was a brief discussion on the concept of absolute cozonality, a dualization of absolute zonality. A planar graph
G is absolutely cozonal if every planar embedding of G is cozonal. It was noted in [3] that the characterization for cozonal
graphs with maximum degree 3 did not depend on the embedding. Thus for any planar graph G with ∆(G) ≤ 3, G is
absolutely cozonal if and only if at least one embedding of G is cozonal. This is not the case for ∆(G) = 4, as exhibited by
the two planar embeddings of the planar graph G in Figure 5.1. In fact, one can see that in the embedding G2, every single
edge belongs to some nonconsecutive walk containing a vertex v with deg∗(v) = 3. A graph G where at least one embedding
is cozonal and one is not is called conditionally cozonal, following the terminology for zonal graphs described in [4]. This
leads to a natural question:
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Figure 5.1: Two embeddings G1, G2, one of which is cozonal, and one of which is not.

Problem 5.1. Which planar graphs with ∆(G) = 4 are conditionally cozonal?

Note that different embeddings of a planar graph may have duals whose underlying graphs are not isomorphic. For
instance, the plane graph G2 in Figure 5.1 has a region having 8 edges on its boundary, while G1 has no such region.
Therefore, the dual of G2 has a vertex of degree 8, while the dual of G1 does not. Thus, the underlying graphs of these
duals are not isomorphic. Furthermore, the fact that the underlying graph G of G1 and G2 is conditionally cozonal does not
necessarily tell us whether the underlying graphs of either dual are conditionally zonal. Therefore, we see that the study of
absolute zonality and absolute cozonality are in fact substantially different questions. This leads to the following question:

Problem 5.2. Is there a plane graph H with plane dual H∗ such that the underlying graph G of H is absolutely zonal, but
the underlying graph G′ of H∗ is only conditionally cozonal (or vice versa)?

Lastly, while the tools here can be extended to graphs with higher maximum degree, the general results are much less
elegant in this new setting. Still, examining nonconsecutive walks can show how certain region labels force the labeling of
other regions, especially when the walk begins with a vertex v with deg∗(v) = 3. This would be especially useful when there
are a small number of vertices of high degree.
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