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Abstract

For a graph G = (V, E), the exponential second Zagreb index is defined as ¢"?(G) = 3, c oo €** ", where d, denotes the
degree of a vertex v € V(G). This paper addresses the problems of characterizing connected graphs of fixed order having
the (i) maximum and minimum e™? with a given number of cut edges, (ii) maximum e™? with a given number of pendent
vertices, (iii) minimum e*? with a given girth, and (iv) minimum e with a given maximum degree.
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1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V(G) and edge set F(G). For each vertex v € V(G), let d,
denote its degree, which is the number of edges incident to it, and let Ng(v) = N(v) represent the set of vertices adjacent
to v. The distance between two vertices is defined as the length of the shortest path connecting them, measured by the
number of edges in that path. The diameter of a graph is the maximum distance between any pair of vertices in the graph.
The exponential version of the second Zagreb index, also known as the exponential second Zagreb index, was introduced
by Rada [11] and is defined as
e]\/IQ (G) — Z ed“ dy )

wweE(G)

In [4], Cruz and Rada posed an open problem to determine the extremal trees that maximize the exponential second
Zagreb index e2 among all trees of order n. This problem was independently resolved in several works [3,5,16]. In 2022,
Eliasi [6] determined the extremal graphs that maximize the exponential second Zagreb index ¢*2 among all unicyclic
and bicyclic graphs of order n. He further proposed a conjecture regarding the characterization of extremal graphs that
attain the maximum value of the exponential second Zagreb index among all graphs with n vertices and m edges, where
n < m < 2n — 3. Xu et al. [15] confirmed the conjecture for all graphs whose diameter is different from three, and a
complete solution was later provided in [2]. Moreover, the extremal graphs corresponding to other ranges of m were also
characterized in [2]. Some recent studies on e2 can be found [1,4,11,13, 14].

The problem of identifying extremal graphs—those that attain the maximum or minimum values of various topological
indices—within classes defined by a fixed number of vertices and either a given number of cut edges or a specified number
of pendent vertices has been extensively studied. For example, such investigations have been carried out with respect to
the first and second Zagreb indices, the reduced second Zagreb index, and the Sombor index; see [7-10, 12], respectively.

It is worth noting that the extremal graphs maximizing the first and second Zagreb indices, as well as the Sombor index,
coincide, while a slightly different graph arises in the case of the reduced second Zagreb index. In contrast, the graphs
minimizing these indices are identical across all cases. However, for the exponential second Zagreb index, the structure
of the extremal graph attaining the maximum value varies depending on whether the constraint is on the number of cut
edges or the number of pendent vertices.

In this paper, we study the problems of characterizing connected graphs of fixed order having the (i) maximum and

Mo Mo

with a given number of cut edges, (ii) maximum e"'2 with a given number of pendent vertices, (iii) minimum

Mo

minimum e

eMz with a given girth, and (iv) minimum e with a given maximum degree.
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2. Graphs with the maximum exponential second Zagreb index

In this section, we consider classes of connected n-vertex graphs with given number of pendent vertices or cut edges.
Denote GF and G the class of connected n-vertex graphs with p pendent vertices and the class of connected n-vertex
graphs with k cut edges, respectively. Let p1,po, ..., ps be non-negative integers and G(p1, ps, . . ., ps) be the obtained graph
from a complete graph K with V(K;) = {v1,v2,...,vs} by attaching p; pendent vertices to v; of K for 1 <i <s. Ifs =1
then G(p1) = S,,+1. Hence if n — p = 1 then G2 = {S,+1}. Therefore, we assume that n —p > 2. For given positive integers
nand p such that 1 <p <n —2, we set ¢ = n — p — 1 and consider a function

g(t) = elatt)(a+p—t) 4 (g—1) [QQ(Q+t) + e(l(qupft)} +tedtt (p— t)eqﬂlft’
on 0 <t<|p/2]. If g(0) = g(|p/2]) then the number e is a root of a polynomial
P(t) = tlatlp/2D(a+p/21) 4 (¢—1) (tQ(qﬂp/?J) 4 ala+t (p/21)) + |p/2] tatle/2) [p/2] gatle/2) _ gpatate) _ (¢ — 1)tq2 — ptatP,
and it contradicts that e is a transcendental number. Therefore, we have ¢(0) # g(|p/2]) for any integers p and g.

Theorem 2.1. Let ¢™2(G) be maximum in G?. Then

e]\/fz(G) = max {g(o p/2J } + ( >€(n p— 1)2
Moreover, the following hold:
() if g(0) < g(|p/2]) then G = G(|p/2], |p/2],0,...,0), where 0 occurs n — p — 2 times;
(ii) if g(0) > g(|p/2]) then G = G(p,0,0,...,0), where 0 occurs n — p — 1 times.

Proof. Adding an edge in a graph, the exponential second Zagreb index of the graph is increasing. Therefore, one can
easily see that there exist non-negative integers pi, p2, ..., pn—p such that p1 +po+-- - +pp—p =pand G = G(p1,p2, . . ., Pn—p).
Denote d; =p; + n—p—1foralli=1,2,...,n — p. Then we have

CMZ(G):e]wQ(G(phan"‘vpn P Zeddj—i_zpl K

1<j

Without loss of generality, we can assume that p; > py > p3 > -+ > p,_,. If p3 > 0 then

G/ = G(pl + 1ap2ap3 - 1)p47 e 7pn—p) S gf;

and
n—p
M () = Z [e(d1+1)dj 4 elds=Dd; 4 edgd_7:| 1 elditl)ds | o(ds=D)dz | o(di+1)(ds—1)
j=4
n
+ Z edidj + (pl + 1)ed1+1 +p26d2 + (pg o 1)ed371 + Zpied
4<i<j —
Hence, we obtain
n—p
eMQ (G/ ]\42 Z [ (d1+1 i +6(d371)dj _ edld]' _ edgdj +€(d1+1)d2 +e(d371)d2 + 6(d1+1)(d371) _ edldz _ ed3d2 _ €d1d3
j=4
+(p1+ D)™ + (ps — e —pre® — pges. 1)

Now we consider a function f(z) = e(“"“)dj —e®%. Then f/(x) = d;f(z) > 0 and it follows that f(z) is increasing for z > 0.
Therefore e(@1+1)d; 4 elds—1)dj _ gdid; _ edsd; — f(d)) — f(d3 — 1) > 0 since d; > d3 — 1. From Equation (1), we have

€M2 (G/) . €M2 (G) >e(d1+1)d2 + e(dg—l)dQ + e(d1+1)(d3—1) _ €d1d2 _ eds(iz _ edlds + (pl + 1)6(11-‘1-1 4 (pS _ 1>e(i3—1 _pledl _p36d3
Sed2 . gdida _ pdida _ pdada _ pdids (p1 + 1)6d1 e 7p16d1 7p36d3 >0
since e® = eP2t"P~1 > ¢2 > 3 and e(p; + 1) > p; + p3, where n — p > 2. This contradicts the fact that ¢M2(G) attains its

maximum value. Therefore, we have ps = ps = --- = p,—p, = 0 and p; + p2 = p. If p < 3 then we easily get the required
result. Thus we assume thatp >4 and [p/2] — 1 > 1.
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Set g = n — p — 1 and recall that
g(t) = elatt)(atr—t) (¢g—1) [eQ(q+t) + eq(q"'p_t)} + tedTt  (p — t)e?PE
where 0 <t < |p/2]. Hence we have
g'(t) = (p = 20)% = 2)elTHIEH0 (g — 1)g? (900 4 HPHIT0 )y (¢ 4 2)etH - (p— ¢ 4 2)e I,
and it follows that ¢(t) is strictly convex on the interval 0 <¢ < |p/2] — 1.

Let g(x0) > ¢(0) and g(x¢) > g(|p/2] — 1) for some z¢ such that 0 < 2y < |p/2] — 1. Then by the definition of a strictly
convex function, we have

g9(xo) = 9((1 =) -0+ a(lp/2) = 1)) < (1 = )g(0) + ag(lp/2] = 1) < (1 — a)g(x0) + ag(wo) = g(x0),

where
Zo
=0 <1
@ 1

lp/2]

From this, we conclude that G is isomorphic to one of the following three graphs:
G(p,0,...,0), G([p/2]+1,|p/2] —1,0,...,0), G([p/2],|p/2],0,...,0).
N—— N—— ——
n—p—1 n—p—2 n—p—2
It remains to show that
M (G([p/2] + 1, [p/2] —1,0,...,0)) < M2(G([p/2], |p/2],0,...,0)).
S—— S——
n—p—2 n—p—2
It is equivalent to g(|p/2| — 1) < g(|p/2]). Set a = |p/2|. Then
g(a) —gla—1) —elata)(gtp—a) _ (q+a-1)(g+p—atl) +(qg—1) [eq(q+a) _ ed(g+a—1) + edlatp—a) _ ,q(g+p—a+l)
+ et — (a— 1)eq+a—1 +(p— a)eq+p—a —(p—a+ 1)eq+p—a+1
>€(q+a71)(q+pfa+1)(ep72a+1 —1)—(¢— 1)eq(q+pfa+1) —(p—a+ 1)eq+pfa+1
>elata=Datp—atl) (o _ 1) _ (g —1)e?@FP=0F) _ () _ g 4 1)eatPmat!
—edtp—atl [e(q+a—2)(q+p—a+1)(e —1)—(¢— 1)e(q—1)(q+p—a+1) —(p—a+ 1)}
>e(q+a72)(q+pfa+1)(e —1)—(q— 1)e(q71)(q+pfa+l) —(p—a+1)
Sedlatp—atl) _ (q— 1)e(<1—1)(q+p—a+1) —(p—a+1)
—ela—1D(a+p—a+1) [6q+pfa+1 ~(g-1)]-p+a-1

>et™Pm0tl (g —1)—pt+a—-1>14+(g+p—a+1)—(¢g—1)—p+a—1>0
since p — 2a > 0, edtP—otl 5 1 ele=Dlatp—atl) > 1 and 9P+ > 14 (g+p—a+1). O

Proposition 2.1. Let G be a graph of order n with m edges and k cut edges. If e2(G) is maximum in the class of graphs
of order n with m edges and k cut edges. Then the number of non-pendent cut edges in G is at most one.

U
G G’

Figure 2.1: The graphs G’ and G considered in Proposition 2.1.

Proof. Suppose that there are non-pendent cut edges uv and wy in G. Without loss of generality, we can assume that
dg(u)dg(v) < dg(w)dg(y) and the distance from u to y is greater than the distance from u to w. Clearly, the degrees of
vertices u, v, w and y are greater than 1. For convenience, denote d¢(u) = a+1, dg(v) = b+1and Ng(u) = {v,u1, ua, ..., uq}.
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Now we consider another graph G’, obtained from G, such that
G =G — {uv,uuy, uug, . .. ,utiy } + {vur, vug, . .., vu, } + uy

(see Figure 2.1). Then we have d¢/(v) = a+ b, dg'(u) =1, dg(y) = dg(y) + 1 and dg/(2) = dg(z) for all z € V(G) \ {u,v,y}.
Also, it is easy to see that G’ belongs to the class of graphs of order n with m edges and k cut edges. Therefore, by the
definition of e™2, we have

a

M2 (G/) _ M2 (G) :Ze(aer)dG(ui) + Z e(a+b)dG(z) + z e(dG(y)+1)dG(Z) + edG(w)(dG(y)+1) + edG(y)JFl

i=1 2€Ng (v)\{u} 2€NG(y)\{w}
_ Z elatDda(u) _ Z eb+da(2) _ Z edeW)da(z) _ gda(w)da(y) _ gda(u)da(v)
i=1 zENG (v)\{u} 2ENG (y)\{w}

< eda (W) pdo(w)da(y) _ pda(w)de(y) _ pde(wda®) -

sincea+b>a+1,a+b>b+1,e® > 2and dg(w)dg(y) > da(u)de(v). This contradicts the fact that 2 (@) is maximal
in the class of graphs of order n with m edges and & cut edges. This completes the proof. O

A tree with exactly two non-pendent vertices is called a double star. If the degrees of non-pendent vertices are a and b
then the double star is denoted by S, ;, where a > b > 2. When b = 1, we define S, ; to be the same as the star S, ;. From
the above proposition, the following two corollaries follow immediately.

Corollary 2.1. Let G be a graph of order n with k cut edges. If e™2(G) is maximum in gff), then the number of non-pendent
cut edges of G is at most one.

Corollary 2.2. [15,16] Let T be a tree of order n that maximizes e™2. Then T is isomorphic to the balanced double star

Stn/21,1n/2)-

Proof. The number of non-pendent cut edges in 7" is at most one by Proposition 2.1. Hence, there are at least n — 2 pendent
edges in 7. Therefore, we have T'= S, ;,, where a +b=nand a > b > 1.
Let a — b > 2. Then ab < (n? — 4)/4. From the definition of ¢2, we have

eM2(T) = e + (a—1)e® + (b—1)e® = "™ 4 (n—b—1)e" " + (b — 1)e’.
Now we consider a function f(t) = e/t 4 (n —t —1)e" ¢ + (t — 1)e* on 2 < t < |n/2]. Then
Iy t(n—t) n—t t_ net (P =2t 1)(n—1) t
() =(n—2t)e —(n—t)e" " +te' =(n—te ¢ —1)+te

en=? 1) +tet > (n—t)ent ((" —2#)(n 1)

— 1) + te!

="t (n? —2nt —2n +3t) +te! >n? —2nt —2n + 3t +t(1+1t) = (n—2t)(n—2) +1t> >0

n—t

since n > 2t > 4 and e“ > 1 4+ «. Hence, f(¢) is increasing on 2 < ¢t < |n/2| and we get
eM(T) = 0 4 (n— b= 1)e" "+ (b= 1)e” = f(b) < f([n/2]) = € (St/21,(ns2))-
This completes the proof. O

If £k = n — 1 then all graphs in g,(f) are trees of order n, and the extremal trees maximizing ¢ were determined in
the previous corollary. Additionally, the extremal graphs with maximum e’ in gﬁf“) are easily characterized for £ = 0 and
k = 1. Therefore, we may assume that 2 < k < n — 3. Consequently, it follows that n > 5.

Theorem 2.2. Let ¢*2(G) be maximum in G\,
(1) If g(0) < g(|k/2]) then G = G([k/2], |k/2],0,...,0), where 0 occurs n — k — 2 times.

(ii) If g(0) > g(|k/2]) then G = G(k,0,0,...,0), where 0 occurs n — k — 1 times.



B. Horoldagva, L. Buyantogtokh, and S. Dorjsembe / Discrete Math. Lett. 16 (2025) 51-58 55

Figure 2.2: The graph G(q1,q2,...,q.) UG(r1,72,...,7) + {uv}.

Proof. If all cut edges in G are pendent, then G € G*, and by Theorem 2.1, we obtain the required result. From Corollary
2.1, it follows that there is at most one non-pendent cut edge in GG. Suppose there is exactly one non-pendent cut edge in
G. Then one can easily see that

G2G(q1,q2,-,qa) UG(ry,ray ... 1) + {uv},

where u is the vertex in G(q1, ¢2, - - ., ¢.) With respect to ¢1, v is the vertex in G(rq,ro,...,rp) With respect to rq,

a b
i=1 j=1
a>1,b>1land a+b=n—k+ 1 (see Figure 2.2). Since uv is the non-pendent cut edge in G, we have dg(u) > 2 and
da(v) > 2.

Claim: max ){dg(:c)dg(y)} =dg((v)dg(u).

zy€E(G

Proof of claim. Let wz be an edge in G such that dg(u)dg(v) < dg(w)dg(z). Without loss of generality, we assume that
wz € E(G(q1,q2,---,¢2)) and dg(w) > 2 since 4 < dg(u)dg(v) < dg(w)dg(z). Now we consider a graph

G1 =G —{vv; | v; € Ng(v) \ {u}} + {wv; | v; € Ng(v) \ {u}}.

Then dg, (w) = dg(w) + dg(v) — 1 > dg(w) + 1, dg, (v) = 1 and dg, (z) = dg(z) for all z € V(G) \ {w,v}. Also, we have
G, € G, From the definition of ¢z, we obtain

61\12 (Gl) _ eM2 (G) _ Z e(dc(’w)-‘rdc(’u)—l)dc(x) + edc(u) + Z e(dc(’w)-‘rdc(’u)—l)dc(x) + e(dc(w)+dg(’u)—1)dc(z)
ENG () {u} reNa(@)\ {2}
Sy el gdotde) _ 3 dolwiole) _ gda(nida(:)
2€Ng(v)\{u} z€Ng(w)\{z}

selda(W)+1)da(2) _ pda(w)de(v) _ gda(w)da(z)
—e96(2) | pda(w)da(2) _ pda(u)de(v) _ yda(w)da(2)

S9edc(w)de(2) _ pda(u)da(v) _ pda(w)da(z) -

since dg(w) + dg(v) — 1 > dg(v), ™ > 0, dg(w) + dg(v) — 1 > dg(w) + 1 > dg(w) and e?¢(*) > 2. This contradicts the
fact that e2(G) is maximum in G\¥) The proof of the claim is finished.
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We note that

(a+b+q +71)? - (n—k+1+k-1)°> n?

4 4 4

dg(u)dg(v) = (a+q1)(b+r1) <

From the claim and the above inequality, we have

, b
Mz _ E : da(z)da(y) <« E da(u)da(v) _ a da(u)de(v)
e"2(@G) e e <(2> + (2> + k) e

zy€E(QG) zy€E(G)
LAV (a4 D)+ 2k gy 00— (a4 D) +2a-1)(0-1)+ 2% e
< D) - 2
_(a+b-1)*— (;er* D42k e _ (nik)22in+3k e, @
Now we prove that
-1 n?

(n—k)?*=n+3k<4|{(n—1>*=(n—-1Dk+ —1. 3)

4 4

It is equivalent to the following inequality
E(2n—1) < (n—-3)(2n—1),

and it holds for £ < n — 3. From (2) and (3), we obtain

n—k?-n+3k a2
2 e 4

M2 (@) < (

kE2—1 n? n2
e B

2 .2 2 2_
Se(n—l)z—(n—l)k—&-k 7 1_T L't = e(n—l)z—(n—l)k+%

<2((n—1)7%—(n—-1)k+

<=1’ =(n=Dk+ 131151 — o(n=L5]-D(n=T51-1) o oM (G([k/2], [k/2],0,...,0)),
——

n—k—2

since 2z < e” for all positive integer z. This is a contradiction to the fact that ¢2(G) is maximum in Q§,,k), because
G([k/2],|k/2],0,...,0) € G Hence, all cut edges in G are pendent, and the result follows directly from Theorem 2.1. [
—

n—k—2

3. Graphs with the minimum exponential second Zagreb index

In this section, we study non-star graphs and determine the ones that attain the minimum exponential second Zagreb
index.

Figure 3.1: The transformation in Lemma 3.1.

Lemma 3.1. Let ux; - - -z be a pendent path in a connected graph G and z be a neighbor vertex of u such that dg(z) < 3
and z # r1. If G’ = G — uz + zx), then eM2(G) > eM2(G’) (see Figure 3.1).

Proof. Clearly dg(v) = dg/(v) for all v € V(G) such that v # v and v # zi. Let Ng(u) = {y1,¥2,...,Ys,x1,2}. Then
do(u) =s+22>3,dg(xx) =1,dg(u) = s+ 1 and dg (z1) = 2.
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Case (i). Let &k = 1. Then there is a vertex y; such that dc(y;) > 2 since G is different from the star. Hence, we have

S S
M2 (@) — M2 (G = Z e(s+2)da(vi) _ Z et Dde(yi) 4 o542 _ o(s+1):2 4 (s4+2)da(2) _ ,2dc(2)
=1 =1
> e(512)da(y)) _ o(stda(y;) _ o(s+1)2 5

since s > 1 and d¢(y;) > 2.
Case (ii). Let k¥ > 2. Then, we obtain

eMQ (G) _ e]\/IQ (G/) — Ze(s+2)dc(yi) _ Ze(s+l)dc(yi) + e(s+2)-2 _ e(s+1).2 + e(s+2)dc(z) _ eQdc(z) + 82-1 _ 62-2
i=1 =1
S 222 1) 4 3902 _ gt 4 o2 _ o
S 36252 1 3da(2) _ g4 4 2 o4

3dg(z)

> 3¢t t e —et e —et>0

since s > 1 and dg(z) < 3. O

Lemma 3.2. Let P and Q be two pendent paths with origins u and v in graph G, respectively. Let x be a neighbor vertex of
uon P and y be the pendent vertex on Q. If dg(u) > dg(v) and G’ = G — uz + xy then e2(G) > eM2(G").

Proof. If u = v then we easily get the required result by Lemma 3.1. Hence, suppose that v« # v. Let Ng(u) =
{z,u1,ug,...,us} and Ng(y) = {y1}. Then dg(u) = s+ 1 > 3 because v is the origin of P. Clearly dg(w) = dg(w) for
all w € V(G) such that w # u and w # y. Also, we may assume that dg(u;) > 2forall i =1,2,...,s. Because, if dg(u;) =1
then P and uu; are two pendent paths with origin u. Therefore, we obtain

eM2 (G) _ 6M2 (G/) :Ze(s—&-l)dc(ui) + e(s—&-l)dc(m) + edc(y1)~1 _ Zesdc(ui) _ eQdc(x) _ edc(yl).Q

i=1 =1
> Z esda(ui) (edc(ui) _ 1) _ ¢2da(y1)
i=1

>8€28 .6 — 62(1@(1)) > 12623 _ eQdc(v)

>628+2 _ e2dc(’u) — €2dG(u) _ eQdG(’U) Z 07

since e(stDda (@) > ¢2dc(@) eda(W1) > 0 dg(u;) >2 G =1,2,...,s) and 65 > 12 > €. O

A star-like tree is a tree with exactly one vertex of degree greater than 2. In [4], it was proved that eM2(T) > M2 (P,)
for any tree T of order n different from P,,.

Theorem 3.1. Let G be a connected graph of order n with maximum degree A, 3 < A <n — 2. Then
M (G)> e+ (A—1)e” + (n—A—2)et + €2

with equality holding if and only if G is isomorphic to a star-like tree with maximum degree A in which exactly one neighbor
of maximum degree vertex has degree two.

Proof. Let G be a graph with minimum "2 (G) in the class of graphs with order n with maximum degree A. Also let w
be a maximum degree vertex in G. If there is a non-cut edge zy in G that is not incident to w, then ™2 (G) > M2 (G — zy)
and it follows that G is a tree. If there is a pendent path with origin u # w, then we easily get a contradiction by Lemma
3.2. Hence G is a star-like tree of order n with maximum degree A. Let s be the number of pendent vertices adjacent to w.
Since A < n — 2, we have s < A — 1. Then

eM2(G) = (A — 5)e*® +5e + (n—1—2A +s)et + (A — s5)e?

s(e® +et — e —e?) 4 Ae®® + (n—1-2A)e* + Aé?
(A—1)(e® +e* —e*® — ) + Ae®® 4+ (n—1—2A)e* + Ae?
2+ (A —1)e? + (n— A —2)e + ¢

Y

since e® + et — 22 —e2 < e® et — 22 < e® et — 2e21! < 0. The equality holds if and only if G is a star-like tree and
s=A—-1. O
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Theorem 3.2. If ¢"2(G) is minimum in the class of cyclic graphs of order n with girth g, such that g < n — 1, then G is
isomorphic to the unicyclic graph that has exactly one pendent path of length n — g.

Proof. Let C be a cycle of length g in G. If there is a non-cut edge zy ¢ C then eM2(G) > M2 (G — xy) and it contradicts the
fact that ¢M2(@) is minimum. Hence we have G is unicyclic. Also, there is exactly one pendent path in G by Lemma 3.2. [

Let Q,(ZH) be the class of cyclic graphs of order n with at least k, £ < n — 3 cut edges. Then clearly, g,(l’“) - g,S’“”. Let U¢
be the unicyclic graph of order n with girth g and exactly one pendent path of length n — g.

Theorem 3.3. Let ¢z (G) be minimum in G,
1) If k =0 then G = C,,.
(i) If k =1then G = UM,
(ii) If k> 2then Ge{UJ |3<g<n-—k}

Proof. Let g be the girth of G and C be a cycle of length g in G. Then 3 < g <n — k since G € G ). If there is a non-cut
edge zy ¢ C then e™2(G) > ¢™2(G — zy) and it contradicts the fact that ¢2(G) is minimum. Hence G is unicyclic with
girth g. Also, there is exactly one pendent path in G by Lemma 3.2. Therefore, we have G € {Uf |3 <g<n—k}. Ifk=0
then C, € {U?|3<g<n—k}.Ifk=1thenU" ! € {UJ |3 < g <n— k}. Also, we have

M2 (Cn) < M(URTY) < M (URTE) = MUY = - = MR (UR).
Hence, we obtain the required conclusions. O
Theorem 3.4. Let G € G{). If eM2(G) is minimum in G, then G = U¥.

Proof. Since G\ C ¥ and g{¥ n {Ug13<g<n-—k}={U2}, the required conclusion follows from Theorem 3.3. O
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