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Abstract

For a graph G = (V,E), the exponential second Zagreb index is defined as eM2(G) =
∑

uv∈E(G) e
dudv , where dv denotes the

degree of a vertex v ∈ V (G). This paper addresses the problems of characterizing connected graphs of fixed order having
the (i) maximum and minimum eM2 with a given number of cut edges, (ii) maximum eM2 with a given number of pendent
vertices, (iii) minimum eM2 with a given girth, and (iv) minimum eM2 with a given maximum degree.
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1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V (G) and edge set E(G). For each vertex v ∈ V (G), let dv

denote its degree, which is the number of edges incident to it, and let NG(v) = N(v) represent the set of vertices adjacent
to v. The distance between two vertices is defined as the length of the shortest path connecting them, measured by the
number of edges in that path. The diameter of a graph is the maximum distance between any pair of vertices in the graph.

The exponential version of the second Zagreb index, also known as the exponential second Zagreb index, was introduced
by Rada [11] and is defined as

eM2(G) =
∑

uv∈E(G)

edudv .

In [4], Cruz and Rada posed an open problem to determine the extremal trees that maximize the exponential second
Zagreb index eM2 among all trees of order n. This problem was independently resolved in several works [3,5,16]. In 2022,
Eliasi [6] determined the extremal graphs that maximize the exponential second Zagreb index eM2 among all unicyclic
and bicyclic graphs of order n. He further proposed a conjecture regarding the characterization of extremal graphs that
attain the maximum value of the exponential second Zagreb index among all graphs with n vertices and m edges, where
n ≤ m ≤ 2n − 3. Xu et al. [15] confirmed the conjecture for all graphs whose diameter is different from three, and a
complete solution was later provided in [2]. Moreover, the extremal graphs corresponding to other ranges of m were also
characterized in [2]. Some recent studies on eM2 can be found [1,4,11,13,14].

The problem of identifying extremal graphs—those that attain the maximum or minimum values of various topological
indices—within classes defined by a fixed number of vertices and either a given number of cut edges or a specified number
of pendent vertices has been extensively studied. For example, such investigations have been carried out with respect to
the first and second Zagreb indices, the reduced second Zagreb index, and the Sombor index; see [7–10,12], respectively.

It is worth noting that the extremal graphs maximizing the first and second Zagreb indices, as well as the Sombor index,
coincide, while a slightly different graph arises in the case of the reduced second Zagreb index. In contrast, the graphs
minimizing these indices are identical across all cases. However, for the exponential second Zagreb index, the structure
of the extremal graph attaining the maximum value varies depending on whether the constraint is on the number of cut
edges or the number of pendent vertices.

In this paper, we study the problems of characterizing connected graphs of fixed order having the (i) maximum and
minimum eM2 with a given number of cut edges, (ii) maximum eM2 with a given number of pendent vertices, (iii) minimum
eM2 with a given girth, and (iv) minimum eM2 with a given maximum degree.

∗Corresponding author (horoldagva@msue.edu.mn).

www.dmlett.com
www.creativecommons.org/licenses/by/4.0/
mailto:horoldagva@msue.edu.mn


B. Horoldagva, L. Buyantogtokh, and S. Dorjsembe / Discrete Math. Lett. 16 (2025) 51–58 52

2. Graphs with the maximum exponential second Zagreb index

In this section, we consider classes of connected n-vertex graphs with given number of pendent vertices or cut edges.
Denote Gp

n and G(k)
n the class of connected n-vertex graphs with p pendent vertices and the class of connected n-vertex

graphs with k cut edges, respectively. Let p1, p2, . . . , ps be non-negative integers and G(p1, p2, . . . , ps) be the obtained graph
from a complete graph Ks with V (Ks) = {v1, v2, . . . , vs} by attaching pi pendent vertices to vi of Ks for 1 ≤ i ≤ s. If s = 1

then G(p1) ∼= Sp1+1. Hence if n− p = 1 then Gp
n = {Sp+1}. Therefore, we assume that n− p ≥ 2. For given positive integers

n and p such that 1 ≤ p ≤ n− 2, we set q = n− p− 1 and consider a function

g(t) = e(q+t)(q+p−t) + (q − 1)
[
eq(q+t) + eq(q+p−t)

]
+ teq+t + (p− t)eq+p−t,

on 0 ≤ t ≤ ⌊p/2⌋. If g(0) = g(⌊p/2⌋) then the number e is a root of a polynomial

P (t) = t(q+⌊p/2⌋)(q+⌈p/2⌉) + (q − 1)
(
tq(q+⌊p/2⌋) + tq(q+⌈p/2⌉)

)
+ ⌊p/2⌋tq+⌊p/2⌋ + ⌈p/2⌉tq+⌈p/2⌉) − qtq(q+p) − (q − 1)tq

2

− ptq+p,

and it contradicts that e is a transcendental number. Therefore, we have g(0) ̸= g(⌊p/2⌋) for any integers p and q.

Theorem 2.1. Let eM2(G) be maximum in Gp
n. Then

eM2(G) = max
{
g(0), g(⌊p/2⌋)

}
+

(
q

2

)
e(n−p−1)2 .

Moreover, the following hold:

(i) if g(0) < g(⌊p/2⌋) then G ∼= G(⌈p/2⌉, ⌊p/2⌋, 0, . . . , 0), where 0 occurs n− p− 2 times;

(ii) if g(0) > g(⌊p/2⌋) then G ∼= G(p, 0, 0, . . . , 0), where 0 occurs n− p− 1 times.

Proof. Adding an edge in a graph, the exponential second Zagreb index of the graph is increasing. Therefore, one can
easily see that there exist non-negative integers p1, p2, . . . , pn−p such that p1+p2+· · ·+pn−p = p and G ∼= G(p1, p2, . . . , pn−p).
Denote di = pi + n− p− 1 for all i = 1, 2, . . . , n− p. Then we have

eM2(G) = eM2(G(p1, p2, . . . , pn−p)) =
∑
i<j

edidj +

n−k∑
i=1

pie
di .

Without loss of generality, we can assume that p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn−p. If p3 > 0 then

G′ = G(p1 + 1, p2, p3 − 1, p4, . . . , pn−p) ∈ Gp
n

and

eM2(G′) =

n−p∑
j=4

[
e(d1+1)dj + e(d3−1)dj + ed2dj

]
+ e(d1+1)d2 + e(d3−1)d2 + e(d1+1)(d3−1)

+
∑

4≤i<j

edidj + (p1 + 1)ed1+1 + p2e
d2 + (p3 − 1)ed3−1 +

n−k∑
i=4

pie
di .

Hence, we obtain

eM2(G′)− eM2(G) =

n−p∑
j=4

[
e(d1+1)dj + e(d3−1)dj − ed1dj − ed3dj

]
+ e(d1+1)d2 + e(d3−1)d2 + e(d1+1)(d3−1) − ed1d2 − ed3d2 − ed1d3

+ (p1 + 1)ed1+1 + (p3 − 1)ed3−1 − p1e
d1 − p3e

d3 . (1)

Now we consider a function f(x) = e(x+1)dj − exdj . Then f ′(x) = djf(x) > 0 and it follows that f(x) is increasing for x ≥ 0.
Therefore e(d1+1)dj + e(d3−1)dj − ed1dj − ed3dj = f(d1)− f(d3 − 1) > 0 since d1 > d3 − 1. From Equation (1), we have

eM2(G′)− eM2(G) >e(d1+1)d2 + e(d3−1)d2 + e(d1+1)(d3−1) − ed1d2 − ed3d2 − ed1d3 + (p1 + 1)ed1+1 + (p3 − 1)ed3−1 − p1e
d1 − p3e

d3

>ed2 · ed1d2 − ed1d2 − ed3d2 − ed1d3 + (p1 + 1)ed1 · e− p1e
d1 − p3e

d3 > 0

since ed2 = ep2+n−p−1 ≥ e2 > 3 and e(p1 + 1) > p1 + p3, where n − p ≥ 2. This contradicts the fact that eM2(G) attains its
maximum value. Therefore, we have p3 = p4 = · · · = pn−p = 0 and p1 + p2 = p. If p ≤ 3 then we easily get the required
result. Thus we assume that p ≥ 4 and ⌊p/2⌋ − 1 ≥ 1.
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Set q = n− p− 1 and recall that

g(t) = e(q+t)(q+p−t) + (q − 1)
[
eq(q+t) + eq(q+p−t)

]
+ teq+t + (p− t)eq+p−t,

where 0 ≤ t ≤ ⌊p/2⌋. Hence we have

g′′(t) = ((p− 2t)2 − 2)e(q+t)(p+q−t) + (q − 1)q2
(
eq(q+t) + eq(p+q−t)

)
+ (t+ 2)eq+t + (p− t+ 2)ep+q−t,

and it follows that g(t) is strictly convex on the interval 0 ≤ t ≤ ⌊p/2⌋ − 1.

Let g(x0) ≥ g(0) and g(x0) ≥ g(⌊p/2⌋ − 1) for some x0 such that 0 < x0 < ⌊p/2⌋ − 1. Then by the definition of a strictly
convex function, we have

g(x0) = g((1− α) · 0 + α(⌊p/2⌋ − 1)) < (1− α)g(0) + αg(⌊p/2⌋ − 1) ≤ (1− α)g(x0) + αg(x0) = g(x0),

where
α =

x0

⌊p/2⌋ − 1
< 1.

From this, we conclude that G is isomorphic to one of the following three graphs:

G(p, 0, . . . , 0︸ ︷︷ ︸
n−p−1

), G(⌈p/2⌉+ 1, ⌊p/2⌋ − 1, 0, . . . , 0︸ ︷︷ ︸
n−p−2

), G(⌈p/2⌉, ⌊p/2⌋, 0, . . . , 0︸ ︷︷ ︸
n−p−2

).

It remains to show that

eM2(G(⌈p/2⌉+ 1, ⌊p/2⌋ − 1, 0, . . . , 0︸ ︷︷ ︸
n−p−2

)) < eM2(G(⌈p/2⌉, ⌊p/2⌋, 0, . . . , 0︸ ︷︷ ︸
n−p−2

)).

It is equivalent to g(⌊p/2⌋ − 1) < g(⌊p/2⌋). Set a = ⌊p/2⌋. Then

g(a)− g(a− 1) =e(q+a)(q+p−a) − e(q+a−1)(q+p−a+1) + (q − 1)
[
eq(q+a) − eq(q+a−1) + eq(q+p−a) − eq(q+p−a+1)

]
+ aeq+a − (a− 1)eq+a−1 + (p− a)eq+p−a − (p− a+ 1)eq+p−a+1

>e(q+a−1)(q+p−a+1)(ep−2a+1 − 1)− (q − 1)eq(q+p−a+1) − (p− a+ 1)eq+p−a+1

≥e(q+a−1)(q+p−a+1)(e− 1)− (q − 1)eq(q+p−a+1) − (p− a+ 1)eq+p−a+1

=eq+p−a+1
[
e(q+a−2)(q+p−a+1)(e− 1)− (q − 1)e(q−1)(q+p−a+1) − (p− a+ 1)

]
>e(q+a−2)(q+p−a+1)(e− 1)− (q − 1)e(q−1)(q+p−a+1) − (p− a+ 1)

>eq(q+p−a+1) − (q − 1)e(q−1)(q+p−a+1) − (p− a+ 1)

=e(q−1)(q+p−a+1)
[
eq+p−a+1 − (q − 1)

]
− p+ a− 1

≥eq+p−a+1 − (q − 1)− p+ a− 1 > 1 + (q + p− a+ 1)− (q − 1)− p+ a− 1 > 0

since p− 2a ≥ 0, eq+p−a+1 > 1, e(q−1)(q+p−a+1) ≥ 1 and eq+p−a+1 > 1 + (q + p− a+ 1).

Proposition 2.1. Let G be a graph of order n with m edges and k cut edges. If eM2(G) is maximum in the class of graphs
of order n with m edges and k cut edges. Then the number of non-pendent cut edges in G is at most one.

u1

ua

u v w y

u1

ua

v w y

u

G G′

Figure 2.1: The graphs G′ and G considered in Proposition 2.1.

Proof. Suppose that there are non-pendent cut edges uv and wy in G. Without loss of generality, we can assume that
dG(u)dG(v) ≤ dG(w)dG(y) and the distance from u to y is greater than the distance from u to w. Clearly, the degrees of
vertices u, v, w and y are greater than 1. For convenience, denote dG(u) = a+1, dG(v) = b+1 and NG(u) = {v, u1, u2, . . . , ua}.
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Now we consider another graph G′, obtained from G, such that

G′ = G− {uv, uu1, uu2, . . . , uua}+ {vu1, vu2, . . . , vua}+ uy

(see Figure 2.1). Then we have dG′(v) = a+ b, dG′(u) = 1, dG′(y) = dG(y) + 1 and dG′(z) = dG(z) for all z ∈ V (G) \ {u, v, y}.
Also, it is easy to see that G′ belongs to the class of graphs of order n with m edges and k cut edges. Therefore, by the
definition of eM2 , we have

eM2(G′)− eM2(G) =

a∑
i=1

e(a+b)dG(ui) +
∑

z∈NG(v)\{u}

e(a+b)dG(z) +
∑

z∈NG(y)\{w}

e(dG(y)+1)dG(z) + edG(w)(dG(y)+1) + edG(y)+1

−
a∑

i=1

e(a+1)dG(ui) −
∑

z∈NG(v)\{u}

e(b+1)dG(z) −
∑

z∈NG(y)\{w}

edG(y)dG(z) − edG(w)dG(y) − edG(u)dG(v)

>edG(w)edG(w)dG(y) − edG(w)dG(y) − edG(u)dG(v) > 0

since a+ b ≥ a+1, a+ b ≥ b+1, edG(w) > 2 and dG(w)dG(y) ≥ dG(u)dG(v). This contradicts the fact that eM2(G) is maximal
in the class of graphs of order n with m edges and k cut edges. This completes the proof.

A tree with exactly two non-pendent vertices is called a double star. If the degrees of non-pendent vertices are a and b

then the double star is denoted by Sa,b, where a ≥ b ≥ 2. When b = 1, we define Sa,1 to be the same as the star Sa+1. From
the above proposition, the following two corollaries follow immediately.

Corollary 2.1. Let G be a graph of order n with k cut edges. If eM2(G) is maximum in G(k)
n , then the number of non-pendent

cut edges of G is at most one.

Corollary 2.2. [15, 16] Let T be a tree of order n that maximizes eM2 . Then T is isomorphic to the balanced double star
S⌈n/2⌉,⌊n/2⌋.

Proof. The number of non-pendent cut edges in T is at most one by Proposition 2.1. Hence, there are at least n−2 pendent
edges in T . Therefore, we have T ∼= Sa,b, where a+ b = n and a ≥ b ≥ 1.

Let a− b ≥ 2. Then ab ≤ (n2 − 4)/4. From the definition of eM2 , we have

eM2(T ) = eab + (a− 1)ea + (b− 1)eb = eb(n−b) + (n− b− 1)en−b + (b− 1)eb.

Now we consider a function f(t) = et(n−t) + (n− t− 1)en−t + (t− 1)et on 2 ≤ t ≤ ⌊n/2⌋. Then

f ′(t) =(n− 2t)et(n−t) − (n− t)en−t + tet = (n− t)en−t

(
n− 2t

n− t
e(t−1)(n−t) − 1

)
+ tet

≥(n− t)en−t

(
n− 2t

n− t
en−2 − 1

)
+ tet > (n− t)en−t

(
(n− 2t)(n− 1)

n− t
− 1

)
+ tet

=en−t(n2 − 2nt− 2n+ 3t) + tet > n2 − 2nt− 2n+ 3t+ t(1 + t) = (n− 2t)(n− 2) + t2 > 0

since n ≥ 2t ≥ 4 and eα > 1 + α. Hence, f(t) is increasing on 2 ≤ t ≤ ⌊n/2⌋ and we get

eM2(T ) = eb(n−b) + (n− b− 1)en−b + (b− 1)eb = f(b) ≤ f(⌊n/2⌋) = eM2(S⌈n/2⌉,⌊n/2⌋).

This completes the proof.

If k = n − 1 then all graphs in G(k)
n are trees of order n, and the extremal trees maximizing eM2 were determined in

the previous corollary. Additionally, the extremal graphs with maximum eM2 in G(k)
n are easily characterized for k = 0 and

k = 1. Therefore, we may assume that 2 ≤ k ≤ n− 3. Consequently, it follows that n ≥ 5.

Theorem 2.2. Let eM2(G) be maximum in G(k)
n .

(i) If g(0) < g(⌊k/2⌋) then G ∼= G(⌈k/2⌉, ⌊k/2⌋, 0, . . . , 0), where 0 occurs n− k − 2 times.

(ii) If g(0) > g(⌊k/2⌋) then G ∼= G(k, 0, 0, . . . , 0), where 0 occurs n− k − 1 times.
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q1

q2

r1

r2

rj

rb
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Figure 2.2: The graph G(q1, q2, . . . , qa) ∪G(r1, r2, . . . , rb) + {uv}.

Proof. If all cut edges in G are pendent, then G ∈ Gk
n, and by Theorem 2.1, we obtain the required result. From Corollary

2.1, it follows that there is at most one non-pendent cut edge in G. Suppose there is exactly one non-pendent cut edge in
G. Then one can easily see that

G ∼= G(q1, q2, . . . , qa) ∪G(r1, r2, . . . , rb) + {uv},

where u is the vertex in G(q1, q2, . . . , qa) with respect to q1, v is the vertex in G(r1, r2, . . . , rb) with respect to r1,

a∑
i=1

qi +

b∑
j=1

rj = k − 1,

a ≥ 1, b ≥ 1 and a + b = n − k + 1 (see Figure 2.2). Since uv is the non-pendent cut edge in G, we have dG(u) ≥ 2 and
dG(v) ≥ 2.

Claim: max
xy∈E(G)

{dG(x)dG(y)} = dG(v)dG(u).

Proof of claim. Let wz be an edge in G such that dG(u)dG(v) < dG(w)dG(z). Without loss of generality, we assume that
wz ∈ E(G(q1, q2, . . . , qa)) and dG(w) ≥ 2 since 4 ≤ dG(u)dG(v) < dG(w)dG(z). Now we consider a graph

G1 = G− {vvi | vi ∈ NG(v) \ {u}}+ {wvi | vi ∈ NG(v) \ {u}}.

Then dG1
(w) = dG(w) + dG(v) − 1 ≥ dG(w) + 1, dG1

(v) = 1 and dG1
(x) = dG(x) for all x ∈ V (G) \ {w, v}. Also, we have

G1 ∈ G(k)
n . From the definition of eM2 , we obtain

eM2(G1)− eM2(G) =
∑

x∈NG(v)\{u}

e(dG(w)+dG(v)−1)dG(x) + edG(u) +
∑

x∈NG(w)\{z}

e(dG(w)+dG(v)−1)dG(x) + e(dG(w)+dG(v)−1)dG(z)

−
∑

x∈NG(v)\{u}

edG(v)dG(x) − edG(u)dG(v) −
∑

x∈NG(w)\{z}

edG(w)dG(x) − edG(w)dG(z)

>e(dG(w)+1)dG(z) − edG(u)dG(v) − edG(w)dG(z)

=edG(z) · edG(w)dG(z) − edG(u)dG(v) − edG(w)dG(z)

>2edG(w)dG(z) − edG(u)dG(v) − edG(w)dG(z) > 0

since dG(w) + dG(v) − 1 > dG(v), edG(u) > 0, dG(w) + dG(v) − 1 > dG(w) + 1 > dG(w) and edG(z) > 2. This contradicts the
fact that eM2(G) is maximum in G(k)

n . The proof of the claim is finished.

55



B. Horoldagva, L. Buyantogtokh, and S. Dorjsembe / Discrete Math. Lett. 16 (2025) 51–58 56

We note that

dG(u)dG(v) = (a+ q1)(b+ r1) ≤
(a+ b+ q1 + r1)

2

4
≤ (n− k + 1 + k − 1)2

4
=

n2

4
.

From the claim and the above inequality, we have

eM2(G) =
∑

xy∈E(G)

edG(x)dG(y) ≤
∑

xy∈E(G)

edG(u)dG(v) =

((
a

2

)
+

(
b

2

)
+ k

)
edG(u)dG(v)

≤a2 + b2 − (a+ b) + 2k

2
· en

2/4 ≤ a2 + b2 − (a+ b) + 2(a− 1)(b− 1) + 2k

2
· en

2/4

=
(a+ b− 1)2 − (a+ b− 1) + 2k

2
· en

2/4 =
(n− k)2 − n+ 3k

2
· en

2/4. (2)

Now we prove that

(n− k)2 − n+ 3k ≤ 4

[
(n− 1)2 − (n− 1)k +

k2 − 1

4
− n2

4

]
. (3)

It is equivalent to the following inequality

k(2n− 1) ≤ (n− 3)(2n− 1),

and it holds for k ≤ n− 3. From (2) and (3), we obtain

eM2(G) ≤ (n− k)2 − n+ 3k

2
· en2

4

≤2

[
(n− 1)2 − (n− 1)k +

k2 − 1

4
− n2

4

]
· en2

4

≤e(n−1)2−(n−1)k+ k2−1
4 −n2

4 · en2

4 = e(n−1)2−(n−1)k+ k2−1
4

≤e(n−1)2−(n−1)k+⌊ k
2 ⌋⌈

k
2 ⌉ = e(n−⌊ k

2 ⌋−1)(n−⌈ k
2 ⌉−1) < eM2

(
G(⌈k/2⌉, ⌊k/2⌋, 0, . . . , 0︸ ︷︷ ︸

n−k−2

)
)
,

since 2x < ex for all positive integer x. This is a contradiction to the fact that eM2(G) is maximum in G(k)
n , because

G(⌈k/2⌉, ⌊k/2⌋, 0, . . . , 0︸ ︷︷ ︸
n−k−2

) ∈ G(k)
n . Hence, all cut edges in G are pendent, and the result follows directly from Theorem 2.1.

3. Graphs with the minimum exponential second Zagreb index

In this section, we study non-star graphs and determine the ones that attain the minimum exponential second Zagreb
index.

z

y1

y2

ys
u x1 xk−1 xk

G

z

y1

y2

ys
u x1 xk−1 xk

G′

Figure 3.1: The transformation in Lemma 3.1.

Lemma 3.1. Let ux1 · · ·xk be a pendent path in a connected graph G and z be a neighbor vertex of u such that dG(z) < 3

and z ̸= x1. If G′ = G− uz + zxk then eM2(G) > eM2(G′) (see Figure 3.1).

Proof. Clearly dG(v) = dG′(v) for all v ∈ V (G) such that v ̸= u and v ̸= xk. Let NG(u) = {y1, y2, . . . , ys, x1, z}. Then
dG(u) = s+ 2 ≥ 3, dG(xk) = 1, dG′(u) = s+ 1 and dG′(xk) = 2.
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Case (i). Let k = 1. Then there is a vertex yj such that dG(yj) ≥ 2 since G is different from the star. Hence, we have

eM2(G)− eM2(G′) =

s∑
i=1

e(s+2)dG(yi) −
s∑

i=1

e(s+1)dG(yi) + es+2 − e(s+1)·2 + e(s+2)dG(z) − e2dG(z)

≥ e(s+2)dG(yj) − e(s+1)dG(yj) − e(s+1)·2 > 0

since s ≥ 1 and dG(yj) ≥ 2.
Case (ii). Let k ≥ 2. Then, we obtain

eM2(G)− eM2(G′) =

s∑
i=1

e(s+2)dG(yi) −
s∑

i=1

e(s+1)dG(yi) + e(s+2)·2 − e(s+1)·2 + e(s+2)dG(z) − e2dG(z) + e2·1 − e2·2

> e2s+2(e2 − 1) + e3dG(z) − e4 + e2 − e4

> 3e2s+2 + e3dG(z) − e4 + e2 − e4

> 3e4 + e3dG(z) − e4 + e2 − e4 > 0

since s ≥ 1 and dG(z) < 3.

Lemma 3.2. Let P and Q be two pendent paths with origins u and v in graph G, respectively. Let x be a neighbor vertex of
u on P and y be the pendent vertex on Q. If dG(u) ≥ dG(v) and G′ = G− ux+ xy then eM2(G) > eM2(G′).

Proof. If u = v then we easily get the required result by Lemma 3.1. Hence, suppose that u ̸= v. Let NG(u) =

{x, u1, u2, . . . , us} and NG(y) = {y1}. Then dG(u) = s + 1 ≥ 3 because u is the origin of P . Clearly dG(w) = dG′(w) for
all w ∈ V (G) such that w ̸= u and w ̸= y. Also, we may assume that dG(ui) ≥ 2 for all i = 1, 2, . . . , s. Because, if dG(ui) = 1

then P and uui are two pendent paths with origin u. Therefore, we obtain

eM2(G)− eM2(G′) =

s∑
i=1

e(s+1)dG(ui) + e(s+1)dG(x) + edG(y1)·1 −
s∑

i=1

esdG(ui) − e2dG(x) − edG(y1)·2

>

s∑
i=1

esdG(ui)
(
edG(ui) − 1

)
− e2dG(y1)

>se2s · 6− e2dG(v) ≥ 12e2s − e2dG(v)

>e2s+2 − e2dG(v) = e2dG(u) − e2dG(v) ≥ 0,

since e(s+1)dG(x) > e2dG(x), edG(y1) > 0, dG(ui) ≥ 2 (i = 1, 2, . . . , s) and 6s ≥ 12 > e2.

A star-like tree is a tree with exactly one vertex of degree greater than 2. In [4], it was proved that eM2(T ) > eM2(Pn)

for any tree T of order n different from Pn.

Theorem 3.1. Let G be a connected graph of order n with maximum degree ∆, 3 ≤ ∆ ≤ n− 2. Then

eM2(G) ≥ e2∆ + (∆− 1)e∆ + (n−∆− 2)e4 + e2

with equality holding if and only if G is isomorphic to a star-like tree with maximum degree ∆ in which exactly one neighbor
of maximum degree vertex has degree two.

Proof. Let G be a graph with minimum eM2(G) in the class of graphs with order n with maximum degree ∆. Also let w

be a maximum degree vertex in G. If there is a non-cut edge xy in G that is not incident to w, then eM2(G) > eM2(G− xy)

and it follows that G is a tree. If there is a pendent path with origin u ̸= w, then we easily get a contradiction by Lemma
3.2. Hence G is a star-like tree of order n with maximum degree ∆. Let s be the number of pendent vertices adjacent to w.
Since ∆ ≤ n− 2, we have s ≤ ∆− 1. Then

eM2(G) = (∆− s)e2∆ + se∆ + (n− 1− 2∆ + s)e4 + (∆− s)e2

= s(e∆ + e4 − e2∆ − e2) + ∆e2∆ + (n− 1− 2∆)e4 +∆e2

≥ (∆− 1)(e∆ + e4 − e2∆ − e2) + ∆e2∆ + (n− 1− 2∆)e4 +∆e2

= e2∆ + (∆− 1)e∆ + (n−∆− 2)e4 + e2

since e∆ + e4 − e2∆ − e2 < e∆ + e4 − e∆+2 < e∆ + e4 − 2e∆+1 < 0. The equality holds if and only if G is a star-like tree and
s = ∆− 1.
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Theorem 3.2. If eM2(G) is minimum in the class of cyclic graphs of order n with girth g, such that g ≤ n − 1, then G is
isomorphic to the unicyclic graph that has exactly one pendent path of length n− g.

Proof. Let C be a cycle of length g in G. If there is a non-cut edge xy /∈ C then eM2(G) > eM2(G−xy) and it contradicts the
fact that eM2(G) is minimum. Hence we have G is unicyclic. Also, there is exactly one pendent path in G by Lemmà 3.2.

Let G(k+)
n be the class of cyclic graphs of order n with at least k, k ≤ n− 3 cut edges. Then clearly, G(k)

n ⊆ G(k+)
n . Let Ug

n

be the unicyclic graph of order n with girth g and exactly one pendent path of length n− g.

Theorem 3.3. Let eM2(G) be minimum in G(k+)
n .

(i) If k = 0 then G ∼= Cn.

(i) If k = 1 then G ∼= Un−1
n .

(ii) If k ≥ 2 then G ∈ {Ug
n | 3 ≤ g ≤ n− k}.

Proof. Let g be the girth of G and C be a cycle of length g in G. Then 3 ≤ g ≤ n− k since G ∈ G(k+)
n . If there is a non-cut

edge xy /∈ C then eM2(G) > eM2(G − xy) and it contradicts the fact that eM2(G) is minimum. Hence G is unicyclic with
girth g. Also, there is exactly one pendent path in G by Lemma 3.2. Therefore, we have G ∈ {Ug

n | 3 ≤ g ≤ n− k}. If k = 0

then Cn ∈ {Ug
n | 3 ≤ g ≤ n− k}. If k = 1 then Un−1

n ∈ {Ug
n | 3 ≤ g ≤ n− k}. Also, we have

eM2(Cn) < eM2(Un−1
n ) < eM2(Un−2

n ) = eM2(Un−4
n ) = · · · = eM2(U3

n).

Hence, we obtain the required conclusions.

Theorem 3.4. Let G ∈ G(k)
n . If eM2(G) is minimum in G(k)

n , then G ∼= Ug
n.

Proof. Since G(k)
n ⊆ G(k+)

n and G(k)
n ∩ {Ug

n | 3 ≤ g ≤ n− k} = {Ug
n}, the required conclusion follows from Theorem 3.3.
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