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Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, Spain

(Received: 30 April 2025. Received in revised form: 18 July 2025. Accepted: 3 September 2025. Published online: 17 September 2025.)

© 2025 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract
In this paper, we prove that examining all the Reduced Ordered Binary Decision Diagrams (ROBDDs) of a Boolean monotone
function is not enough to determine the evasiveness of the function. Working in the framework of simplicial topology, we
introduce the notion of ordered non evasive simplicial complex, corresponding to our ROBDDs quest, and we prove that there
exist non evasive simplicial complexes which are not ordered non evasive.
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1. Introduction

Fast evaluation of Boolean functions is of great practical importance and the problem is also foundational in complexity
theory. In this context, a Boolean function is called evasive if it is necessary to evaluate each of its arguments to know
its output. So, to determine whether a Boolean function is or is not evasive is an interesting problem. Another relevant
practical problem is to find the best way of representing a Boolean function to solve a certain kind of task. Bryant [4]
in 1986 introduced the notion of Binary Decision Diagram (or BDD, in short) as a compact way of representing Binary
Decision Trees (and therefore Boolean functions). A BDD is a directed acyclic graph obtained from a binary decision tree
by means of two kinds of reductions (see [4] for details). Each BDD defines a Boolean function, and a Boolean function
can be represented by many BDDs. A Boolean function is non evasive if and only if it can be represented by means of a
BDD with depth strictly less than n, being n the number of variables of the Boolean function. Among the zoo of BDDs, one
class that is specially efficient for certain type of Boolean operations is that of Reduced Ordered BDDs (ROBDDs, in short).
In this variant, a permutation of the Boolean function variables is fixed, and in each branch of the BDD the variables
are questioned in that order (but some of the variables may be skipped). Each binary decision tree with a fixed order in
the variables is canonically associated to a truth table for the Boolean function. In these terms, following the classical
approach by Knuth [6], the search for beads in a truth table is the key to studying the non evasiveness of the Boolean
function. So, in this setting, it is natural to pose the following question: are ROBDDs enough to determine evasiveness?
That is to say, if all the ROBDDs for a Boolean function are of maximal depth, then the Boolean function is evasive? In
other words: the absence of “bead decompositions” in all the truth tables of a Boolean function implies its evasiveness? We
know (see [2]) that if the Boolean function is non monotonic, the answer is negative. So, we can place ourselves in the case of
Boolean monotone functions to explore that problem. Since there is a bijective correspondence between Boolean monotone
functions and simplicial complexes, we translate our problem to the language of simplicial topology [8]. A non evasive
simplicial complex is contractible, so we can understand our quest as looking for criteria helping to detect the homotopical
triviality of simplicial complexes. The presence of a bead in a truth table is equivalent to finding a variable that has no
influence in the output of the corresponding Boolean sub-function. In topological terms, this amounts to detect a simplicial
sub-complex which is a cone with peek in the variable that can be skipped. Guided by this intuition, we introduce in this
paper the concept of ordered non evasive simplicial complex. A simplicial complex is ordered non evasive if and only if there
exists a ROBDD representig it (as a Boolean function) with depth less than the number of variables/vertices. In [2], we
proved that dismantlable (or 0-collapsible; see [3]) simplicial complexes are ordered non evasive (in that paper [2], ordered
non evasive simplicial complexes were called ligneous). Since dismantlable complexes are non evasive, we know that the
class of ordered non evasive simplicial complexes is large enough.

In summary, our objective is to prove that the set of ordered non evasive simplicial complexes is different from the set
of non evasive simplicial complexes. To this aim, it is enough to find an example of a non evasive simplicial complex which
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is not ordered non evasive. Nevertheless, since the number of permutations increases exponentially with the number of
vertices, an enumerative approach, based on an exhaustive search, is not possible in practice. So, our tactic was to find a
simplicial property hold by every ordered non evasive simplicial complex but not by all the non evasive simplicial complexes.
Our inspiration came from two sources. First, convex union representable simplicial complexes collapse to its stars [5].
Second, there exist non evasive simplicial complexes with exactly two free faces [1]. So, our idea was to find a simplicial
property of each ordered non evasive simplicial complex, related to collapses over stars, and implying that there are enough
free faces in it (more than two). This property is reflected in Theorem 4.1, the main result of this paper.

2. Preliminaries

Given any set X, we will denote by P(X) the power set of X and by #X its cardinality.

Definition 2.1. Given a finite set V , a simplicial complex on V is a pair (K,V ), where K ∈ P(P(V )) and it is “closed by
subsets” (in other words: for any s ∈ K, P(s) ⊆ K). The set V is called the vertex set of (K,V ). Each element s ∈ K is
called a simplex of (K,V ). If s = {vi0 , . . . , vid}, it is said that the dimension of the simplex s is d (note that the enumeration
of vertices starts at 0). If V ̸= ∅, the simplicial complex (P(V ), V ) is called standard simplex of dimension #V − 1, and it is
denoted by ∆(#V−1).

Remark 2.1. (i). Let us note that if (K,V ) is a simplicial complex and V ⊊ W , then (K,W ) is also a simplicial complex,
a different one. Conversely, if v ∈ V and v is not a member of any simplex in K, (K,V \ {v}) is also a simplicial
complex. Sometimes, we will denote a simplicial complex (K,V ) simply by K, but in general we will write the complete
description (mainly in definitions and statements), because most of the concepts in this paper depend heavily on the
vertex set V that is considered in each situation.

(ii). The empty set ∅ is considered of dimension −1, coherently with the dimension definition, and it is a simplex of any
K ̸= ∅. The singleton simplicial complex K = {∅} admits any vertex set (including V = ∅, as K = ∅ does), and it has
a somehow pathological nature in most of our definitions and results. Sometimes, in the literature, given v ∈ V , it is
written v ∈ K, but it is necessary to understand that the “vertex complex” associated to v is not a singleton, the notation
refers to the subcomplex {∅, {v}} ⊆ K.

Definition 2.2. Let (K,V ) be a simplicial complex and let s ̸= ∅ be a simplex of dimension d of (K,V ). Any subset s′ of s of
dimension d − 1 is called a face of s (note that s′ could be equal to ∅); in this situation, s is called a coface of s′. A facet of
(K,V ) is a simplex of (K,V ) with no coface.

Definition 2.3. Let (K,V ) be a simplicial set, and let v be a vertex of V . The costar of K with respect to v is defined by
cost(K, v) = {s ∈ K | v ̸∈ s} ∈ P(P(V \ {v})). Then, when referring to the costar of a simplicial complex (K,V ) with respect
to a vertex v ∈ V we mean the simplicial complex (cost(K, v), V \ {v}).

Definition 2.4. Let (K,V ) be a simplicial set, and let v be a vertex of V . The link of K with respect to v is defined by
link(K, v) = {s ∈ cost(K, v) | {v} ∪ s ∈ K} ∈ P(P(V \ {v})). Then, when referring to the link of a simplicial complex (K,V )

with respect to a vertex v ∈ V we mean the simplicial complex (link(K, v), V \ {v}).

Remark 2.2. Let us note that, by its very definition, link(K, v) ⊆ cost(K, v). When link(K, v) = cost(K, v) it is the case of
K being a cone (see Definition 2.5). The study of the relationship link(K, v) ⊂ cost(K, v) from a topological point of view is
central in this paper.

Definition 2.5. Let (K,V ) be a simplicial complex and let v /∈ V . The cone of K with peek v is defined by v ∗ K =

K ∪ {{v} ∪ s | s ∈ K} ∈ P(P(V ∪{v})). Then, K is called the basis of the cone, and when referring to the cone of a simplicial
complex (K,V ) with peek v ̸∈ V we mean the simplicial complex (v ∗K,V ∪ {v}).

Remark 2.3. (i). Let (K,V ) be a simplicial set, and let v be a vertex of V . The star of K with respect to v is defined by
star(K, v) = {s ∈ K | v ∈ s} ∈ P(P(V )). This concept explains why we call costar (see Definition 2.3) the complement
in K of the star. Note that, in general, star(K, v) is not a simplicial complex (it is not “closed by subsets”). The minimal
simplicial complex containing star(K, v) is called closed star and it is equal to v ∗ link(K, v), and this is the notation
preferred by us along the paper.

(ii). Let us note that given (K,V ) and v ∈ V such that K = v ∗ (K \ star(K, v)), then (K,V ) is a cone with peek v. When the
peek is unimportant, we simply write “(K,V ) is a cone”, meaning that there exists a vertex v ∈ V such that (K,V ) is a
cone with peek v.
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(iii). According to our definition, the simplicial complex (∅, V ) is a cone with peek v for all v ∈ V (assuming V ̸= ∅). It is a
convention to declare if ∅ is or is not a cone, but it is convenient for us to consider so.

The announced characterization of a cone by means of costar and link follows:

Proposition 2.1. A simplicial complex (K,V ) is a cone with peek v if and only if link(K, v) = cost(K, v).

The following decomposition is an essential tool in our approach; its proof is direct from the definitions, too.

Proposition 2.2. Let V ̸= ∅, (K,V ) be a simplicial complex and v ∈ V . Then K = cost(K, v) ∪ (v ∗ link(K, v)).

Remark 2.4. Let us observe that it is also true that K = cost(K, v)∪ star(K, v), being even a disjoint union. However, since
star(K, v) is not in general a simplicial complex, this decomposition is not so useful for reasoning by induction as that of
Proposition 2.2.

Now, we introduce the main concept about evasiveness (see, for instance, [3]).

Definition 2.6. Let V ̸= ∅ and (K,V ) be a simplicial complex. Then (K,V ) is non evasive if K = ∅, K = {∅, {v}} for some
v ∈ V , or ∃v ∈ V such that (cost(K, v), V \ {v}) and (link(K, v), V \ {v}) are non evasive.

Definition 2.7. Let (K,V ) be a simplicial complex. A simplex f ∈ K is called a free face if it has one, and only one, coface.
Since the coface of a free face f ∈ K is unique, we can refer unambiguously to it by the notation co(f) ∈ K.

Remark 2.5. According to the definition, if the dimension of a free face f ∈ K is d, that of its coface co(f) is d+ 1. Further-
more, co(f) must be a facet.

Definition 2.8. Given a simplicial complex (K,V ) and a free face f ∈ K, the pair (f, co(f)) is called an elementary collapse
datum. From an elementary collapse datum (f, co(f)), we define a new simplicial complex (K \ {f, co(f)},Wf ), where Wf =

V \{v} when (f, co(f)) = (∅, {v}) or (f, co(f)) = ({v}, co({v})); otherwise Wf = V . The simplicial complex (K \{f, co(f)},Wf )

is called the elementary collapse of (K,V ) through (f, co(f)), and we also say that (K,V ) elementarily collapses to (K \
{f, co(f)},Wf ).

A collapse from a simplicial complex (K,V ) to another one (L,W ) is defined by a sequence of elementary collapses
((f1, co(f1)), . . . , (fr, co(fr))) where the last simplicial complex obtained is (L,W ). We say then that (K,V ) collapses to
(L,W ). The case r = 0 is included, so that (K,V ) is considered a (trivial) collapse of itself.

A simplicial complex (K,V ) is called collapsible if it collapses to a simplicial complex of the form (∅,W ) for some vertex
set W ⊆ V (including W = ∅).

Remark 2.6. Let us stress that, contrary to the situation about evasiveness, the vertex set V plays no role when considering
collapses (they are related to the geometrical/simplicial nature of a simplicial complex and not to its combinatorial one as
a Boolean function). So, sometimes, when dealing with collapses we will simply write K instead of (K,V ).

3. Cones and collapses

The following property is well-known.

Proposition 3.1. A cone is non evasive.

Proof. Let (K,V ) be a cone and let v ∈ V be one of its possible peeks. The proof is by induction over n = #V , the cardinality
of V . If n ≤ 1, K = ∅ or K = {∅, {v}} and in both cases K is non evasive. Assuming that n > 1, we can choose a vertex
w ∈ V such that w ̸= v. By direct inspection, we check that (cost(K,w), V \ {w}) and (link(K,w), V \ {w}) are both cones
with peek v. Then, by induction hypothesis, both are non evasive, and the proof is completed.

A series of lemmas relating cones and collapses, which will be used in the sequel, follows. We omit the proofs, they are
simple and repetitive.

Lemma 3.1. Let (B1, VB1
) and (B2, VB2

) be simplicial complexes such that B2 ⊆ B1 and VB2
⊆ VB1

, and v ̸∈ VB1
. Then

(v ∗B1, VB1
∪ {v}) collapses to (v ∗B2, VB2

∪ {v}).

Corollary 3.1. A cone is collapsible.

Lemma 3.2. Let (B, VB) and (C, VC) be simplicial complexes such that (B, VB) collapses to (C, VC), and v /∈ VB . Then v ∗B
collapses to B ∪ (v ∗ C).
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Lemma 3.3. Let (A, VA), (B, VB) and (C, VC) be simplicial complexes such that B ⊆ A, VB ⊆ VA and (B, VB) collapses to
(C, VC). If v /∈ VA, then v ∗A collapses to B ∪ (v ∗ C).

Lemma 3.4. Let (A, VA) and (B, VB) be simplicial complexes such that B ⊆ A and VB ⊆ VA, with (B, VB) collapsible, and
v ̸∈ VA. Then (A ∪ (v ∗B), VA ∪ {v}) collapses to (A, VA).

The following proposition, needed in the sequel, is well-known (see, for instance, [8]), but we include an original proof
based on Lemma 3.4.

Proposition 3.2. A non evasive simplicial complex is collapsible.

Proof. Let (K,V ) be a non evasive simplicial complex. We organize the proof by induction on n, the cardinality of V . If
n = 0, K = ∅ is collapsible. If n = 1, V = {v1} and there are two non evasive simplicial complexes: (1) K = ∅ is collapsible,
and (2) K = {∅, {v1}} is collapsible, too (because ∅ is a free face, and so (∅, {v1}) defines an elementary collapse to ∅).

In the inductive case, applying the decomposition from Proposition 2.2 on a vertex v producing a costar and a link which
are non evasive and instantiating Lemma 3.4 with A := cost(K, v) and B := link(K, v) (since the number of vertices in the
link is less than n and it is non evasive, it is collapsible by induction hypothesis), we get a collapse from K to cost(K, v).
Again by induction hypothesis, cost(K, v) collapses to ∅, and composing both collapses, we get that (K,V ) is collapsible.

We introduce a corollary that leads us to Lemma 3.5, a generalisation of the previous lemmas (we have included the
previous lemmas since it is the way we got to Lemma 3.5, and, in addition, they are the base cases to prove it).

Corollary 3.2. Let (A, VA) be a collapsible simplicial complex and v ̸∈ VA. Then (v ∗A, VA ∪ {v}) collapses to (A, VA).

Proof. One can choose to instantiate Lemma 3.4 with A := B, or Lemma 3.2 with A := B and C := ∅.

Lemma 3.5. Let (A, VA), (B, VB), (C, VC), (D,VD) be simplicial complexes such that C ⊆ A, VC ⊆ VA, D ⊆ B, VD ⊆ VB ,
(A, VA) collapses to (B, VB) and (C, VC) collapses to (D,VD). Let v /∈ VA. Then A ∪ (v ∗ C) collapses to B ∪ (v ∗D).

Proof. First, we manipulate the collapsing sequence from (C, VC) to (D,VD) as in the proofs of Lemma 3.2 or Lemma 3.4
to get a collapse from A ∪ (v ∗ C) to A ∪ (v ∗D). Then, we check that the sequence of elementary collapses from (A, VA) to
(B, VB), is also a valid sequence from A ∪ (v ∗D) to B ∪ (v ∗D). Composing both collapses we get the result.

The following result is symmetrical to Lemma 3.3.

Corollary 3.3. Let (A, VA), (B, VB) and (C, VC) be simplicial complexes such that C ⊆ B, VC ⊆ VB , and (A, VA) collapses
to (B, VB). Let v /∈ VA. Then A ∪ (v ∗B) collapses to v ∗ C.

Proof. Renaming in Lemma 3.5 B := C, C := B and D := C, we get that A ∪ (v ∗B) collapses to C ∪ (v ∗ C) = v ∗ C.

Definition 3.1. Let V ̸= ∅ and #V = n, (K,V ) be a simplicial complex, and let (v1, . . . , vn) be an ordering of the elements of
V . Then (K,V ) is ordered non evasive with respect to (v1, . . . , vn) if either (K,V ) is a cone with peek v1, or (cost(K, v1), V \
{v1}) and (link(K, v1), V \ {v1}) are ordered non evasive with respect to (v2, . . . , vn).

Proposition 3.3. Let (K,V ) be an ordered non evasive simplicial complex with respect to some ordering of V . Then (K,V )

is non evasive.

Proof. Since a cone is non evasive (Proposition 3.1), the proof follows easily by induction on the cardinality of V .

Now, we mimic, in the ordered setting, the layered approach by Barmak and Minian (see [3]).

Definition 3.2. Let V ̸= ∅ and #V = n, (K,V ) be a simplicial complex, and let (v1, . . . , vn) be an ordering of the elements of
V . Then (K,V ) is ordered 0-collapsible with respect to (v1, . . . , vn) if either (K,V ) is a cone with peek v1, or (cost(K, v1), V \
{v1}) is ordered 0-collapsible with respect to (v2, . . . , vn) and (link(K, v1), V \ {v1}) is a cone with peek v2.

Remark 3.1. Let us note that, in the previous definition, if V = {v1} (a singleton), and (K,V ) is not a cone (this implies
that K = {∅}, because the other two possibilities, namely K = ∅ and K = {∅, {v1}}, define cones), then (cost(K, v1), V \ {v1})
is not ordered 0-collapsible (because its vertex set is empty). Then, when asking about (link(K, v1), V \ {v1}) we know that
n > 1, and we can ask whether v2 is a peek.

Definition 3.3. Let V ̸= ∅ and #V = n, (K,V ) be a simplicial complex, and let (v1, . . . , vn) be an ordering of the elements
of V . Let m be a natural number (m > 0). Then (K,V ) is ordered m-collapsible with respect to (v1, . . . , vn) if either (K,V )

is a cone with peek v1, or (cost(K, v1), V \ {v1}) is m-collapsible with respect to (v2, . . . , vn) and (link(K, v1), V \ {v1}) is
(m− 1)-collapsible with respect to (v2, . . . , vn).
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The proofs of the following two lemmas are straightforward and are therefore omitted.

Lemma 3.6. Let (K,V ) be a simplicial complex such that #V ≤ 2. The following properties are equivalent: (1) (K,V ) is a
cone; (2) (K,V ) is non evasive; (3) (K,V ) is ordered non evasive with respect to any permutation of V (there are at most 2);
(4) (K,V ) is ordered m-collapsible with respect to any permutation of V and m ≥ 0.

Lemma 3.7. Let (K,V ) be a cone. Then (K,V ) is ordered m-collapsible with respect to any ordering of V and for m ≥ 0.

Proposition 3.4. Let m ≥ 0 and (K,V ) be an ordered m-collapsible simplicial complex with respect to (v1, . . . , vn). Then
(K,V ) is ordered (m+ 1)-collapsible with respect to (v1, . . . , vn).

Proof. We divide the proof into two parts. First, we prove that 0-collapsible implies 1-collapsible. Second, taking the
previous step as base case, we prove the statement by induction over m.

To prove that 0-collapsible implies 1-collapsible we apply induction over n = #V . Thanks to Lemma 3.6, we can go
directly to the inductive case. If (K,V ) is a cone with peek v1, the proof is finished by Lemma 3.7. Otherwise, (cost(K, v1), V \
{v1}) is 1-collapsible with respect to (v2, . . . , vn) by induction hypothesis, and (link(K, v1), V \ {v1}) is 0-collapsible again by
Lemma 3.6. And this ends the proof that 0-collapsible implies 1-collapsible.

The second part follows the same pattern, taking into account that (link(K, v1), V \ {v1}) (m − 1)-collapsible implies
(link(K, v1), V \ {v1}) m-collapsible, by the hypothesis induction over m.

The proof of the following proposition follows a similar pattern to the previous one (first, prove that 0-collapsible implies
non evasive; then, taking the previous step as base case, the statement is proved by induction over m).

Proposition 3.5. Let m ≥ 0 and (K,V ) be an ordered m-collapsible simplicial complex with respect to (v1, . . . , vn) (with
V ̸= ∅ and #V = n). Then (K,V ) is ordered non evasive with respect to (v1, . . . , vn).

Proposition 3.6. Let (K,V ) be an ordered non evasive simplicial complex with respect to (v1, . . . , vn) (with V ̸= ∅ and
#V = n). Then there exits m ≥ 0 such that (K,V ) is ordered m-collapsible with respect to (v1, . . . , vn).

Proof. We define m := n, the cardinality of V , and prove the statement by induction over n. By Lemma 3.6, we can go
ahead with the inductive case, with n > 2. If (K,V ) is a cone, it is ordered m-collapsible with respect to any permutation
of V and for all non-negative integer number m (by Lemma 3.7). Therefore, we can assume that (cost(K, v1), V \ {v1}) and
(link(K, v1), V \{v1}) are ordered non evasive with respect to (v2, . . . , vn). By induction hypothesis, (link(K, v1), V \{v1}) and
(cost(K, v1), V \ {v1}) are ordered (n − 1)-collapsible with respect to (v2, . . . , vn). By Proposition 3.4, (cost(K, v1), V \ {v1})
also is ordered n-collapsible with respect to (v2, . . . , vn), ending the proof.

Remark 3.2. Let us note that n is an upper bound of m, but it is a strict one. For instance, a cone with peek the first vertex
in the ordering is obviously ordered 0-collapsible, independently of the cardinality of its vertex set.

4. Main theorem

As explained in the introduction, our goal is to find a simplicial property hold by every ordered non evasive simplicial
complex but not by all the non evasive simplicial complexes, and our inspiration comes from two sources. First, convex
union representable simplicial complexes collapse to its stars [5] (and K collapses to v ∗ link(K, v) if and only if cost(K, v)

collapses to link(K, v)). Second, there exist non evasive simplicial complexes with exactly two free faces [1]. So, our idea is
to find a simplicial property of each ordered non evasive simplicial complex K ensuring that there are enough free faces in
K. This is the property we found:

Theorem 4.1. Let (K,V ) be an ordered non evasive simplicial complex with respect to (v1, . . .) (with V ̸= ∅). Then
(cost(K, v1), V \ {v1}) collapses to (link(K, v1), V \ {v1}).

According to the propositions of the previous section, it is enough to prove the theorem for ordered m-collapsible sim-
plicial complexes, for all m ≥ 0. The central part of the proof is by induction over the measure (m,n) < (m′, n′) if and only
if m < m′, or m = m′ and n < n′, with n = #V .

First, we need some auxiliary lemmas. Particularly, we need to prove that, under good circumstances, an ordered
non evasive simplicial complex with respect to a permutation (v1, v2, v3, . . . , vn) is also ordered non evasive with respect to
(v2, v1, v3, . . . , vn). The result is based on the following properties that can be proved by direct inspection.

Lemma 4.1. Let (K,V ) be a simplicial complex and #V ≥ 2. If v1 ∈ V, v2 ∈ V and v1 ̸= v2, then cost(cost(K, v1), v2) =

cost(cost(K, v2), v1), cost(link(K, v1), v2) = link(cost(K, v2), v1), and link(link(K, v1), v2) = link(link(K, v2), v1).
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Lemma 4.2. Let (K,V ) be an ordered m-collapsible simplicial complex with respect to (v1, v2, v3, . . . , vn) such that m > 0

and n = #V > 2. If K is not a cone with peek v1 and neither cost(K, v1) nor link(K, v1) are cones with peek v2, then (K,V )

is ordered m-collapsible with respect to (v2, v1, v3, . . . , vn).

Proof. First, let us note that K is not a cone with peek v2 (otherwise, cost(K, v1) and link(K, v1) would also be cones with
peek v2, contrary to the hypotheses of the lemma). In the same vein, cost(K, v2) and link(K, v2) are not both cones with
peek v1 (in that case, K would also be a cone with peek v1). Let us observe that, even if these cases could exist, (K,V )

would be ordered m-collapsible with respect to (v2, v1, v3, . . . , vn). This observation will be relevant in a later proof.
Remark that, according to the hypotheses, cost(cost(K, v1), v2) is ordered m-collapsible with respect to (v3, . . . , vn) and

cost(link(K, v1), v2) and link(cost(K, v1), v2) are ordered (m − 1)-collapsible with respect to the same permutation. If m =

1 then link(link(K, v1), v2) is a cone with peek v3, and if m > 1, link(link(K, v1), v2) is ordered (m − 2)-collapsible with
respect to (v3, . . . , vn) (when m > 1, this includes also the case when link(link(K, v1), v2) is a cone with peek v3). Applying
Lemma 4.1, we get that cost(cost(K, v2), v1) is ordered m-collapsible with respect to (v3, . . . , vn) and cost(link(K, v2), v1) and
link(cost(K, v2), v1) are ordered (m− 1)-collapsible with respect to the same permutation. If m = 1 then link(link(K, v2), v1)

is a cone with peek v3, and if m > 1, link(link(K, v2), v1) is ordered (m− 2)-collapsible with respect to (v3, . . . , vn).
Going back to the decomposition of K corresponding to the permutation (v2, v1, v3, . . . , vn), the possible cases are:

1. link(K, v2) is a cone with peek v1 but cost(K, v2) is not a cone with peek v1.

2. cost(K, v2) is a cone with peek v1 but link(K, v2) is not a cone with peek v1.

3. The case in which neither cost(K, v2) nor link(K, v2) are cones with peek v1 is dealt with using similar reasoning.

In the first case, according to Lemma 3.7, link(K, v2) is ordered (m− 1)-collapsible with respect to (v1, v3, . . . , vn). Now,
we know that cost(cost(K, v2), v1) is ordered m-collapsible and link(cost(K, v2), v1) is ordered (m− 1)-collapsible, both with
respect to the same ordering (v3, . . . , vn); therefore cost(K, v2) is ordered m-collapsible with respect to (v1, v3, . . . , vn). Join-
ing both properties, we get the result in this case. The remaining two cases are dealt with using a similar reasoning.

Before starting the proof of Theorem 4.1 by induction over (m,n), we prove the base case when m = 0.

Proposition 4.1. Let (K,V ) be an ordered 0-collapsible simplicial complex with respect to (v1, . . .) (with V ̸= ∅). Then
(cost(K, v1), V \ {v1}) collapses to (link(K, v1), V \ {v1}).

Proof. The proof is by induction over n = #V . If n ≤ 2 a direct inspection (see Lemma 3.6) proves the result. Other-
wise, if K is a cone with peek v1, cost(K, v1) = link(K, v1) (Lemma 2.1) and the proof is completed. In the remaining case,
link(K, v1) is a cone with peek v2 and cost(K, v1) is ordered 0-collapsible with respect to (v2, . . . , vn). By induction hypoth-
esis, we know that cost(cost(K, v1), v2) collapses to link(cost(K, v1), v2). Now, we can instantiate Corollary 3.3, with A =

cost(cost(K, v1), v2), B = link(cost(K, v1), v2) and C = link(link(K, v1), v2) (= cost(link(K, v1), v2), because link(K, v1) is a cone
with peek v2), obtaining that cost(cost(K, v1), v2)∪(v2∗ link(cost(K, v1), v2)) collapses to v2∗ link(link(K, v1), v2) = link(K, v1).
Taking into account the main decomposition from Lemma 2.2, cost(cost(K, v1), v2)∪ (v2 ∗ link(cost(K, v1), v2)) = cost(K, v1),
and the proof is completed.

We present now the proof of the main theorem, by induction over (m,n).

Proof of Theorem 4.1. The base case when m = 0 is proved by the previous proposition. The case m = 1 is proved
by a similar argument. So, given a simplicial complex (K,V ) ordered m-collapsible with respect to (v1, . . . , vn), we can
assume that the result is true for any other simplicial complex m′-collapsible with m′ < m and we proceed by induction
over n = #V . In the cases where n ≤ 2 or K is a cone with peek v1, we know that the theorem holds. So, let m > 2, n > 2

and K not a cone with peek v1. We proceed by distinguishing cases depending on the reasons why cost(K, v1) is ordered
m-collapsible and link(K, v1) is ordered (m− 1)-collapsible (both with respect to (v2, . . . , vn)).

1. If cost(K, v1) and link(K, v1) are both cones with peek v2, by applying Lemma 3.1 with B1 = cost(cost(K, v1), v2)

(= link(cost(K, v1), v2)) and B2 = cost(link(K, v1), v2) (=link(link(K, v1), v2)), we get the result.

2. If cost(K, v1) is a cone with peek v2 and link(K, v1) is not, by induction hypothesis, we know that cost(link(K, v1), v2)

collapses to link(link(K, v1), v2). By applying Lemma 3.3 with A = cost(K, v1), B = cost(link(K, v1), v2) and C =

link(link(K, v1), v2), and then Lemma 2.2, the result holds.

3. If link(K, v1) is a cone with peek v2 and cost(K, v1) is not, by induction hypothesis, we know that cost(cost(K, v1), v2)

collapses to link(cost(K, v1), v2). By applying Corollary 3.3 with A = cost(cost(K, v1), v2), B = link(cost(K, v1), v2) and
C = link(link(K, v1), v2)(= cost(link(K, v1), v2)), and then Lemma 2.2, the result holds.
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4. In this case, neither cost(K, v1) nor link(K, v1) are cones with peek v2, and Lemma 4.2 can be applied: (K,V ) is
ordered m-collapsible with respect to (v2, v1, v3, . . . , vn). Next we will prove that, in this case, cost(cost(K, v1), v2)

collapses to cost(link(K, v1), v2) and link(cost(K, v1), v2) collapses to link(link(K, v1), v2). We can apply Lemma 3.5 with
A = cost(cost(K, v1), v2), B = cost(link(K, v1), v2), C = link(cost(K, v1), v2) and D = link(link(K, v1), v2), and applying
Lemma 2.2 twice the result follows.

In the fourth case, we know (as seen in the proof of Lemma 4.2) that K is not a cone with peek v2. So, we can consider the
four subsimplicial complexes cost(cost(K, v2), v1), link(cost(K, v2), v1), cost(link(K, v2), v1) and link(link(K, v2), v1). Either for
being cost(K, v2) or link(K, v2) cones with peek v1 or by induction hypothesis, we obtain that cost(cost(K, v2), v1) collapses to
link(cost(K, v2), v1) and cost(link(K, v2), v1) collapses to link(link(K, v2), v1) (trivial collapses in the case of a cone). Applying
Lemma 4.1, we complete the proof of the main theorem.

5. Consequences of the main theorem

Let (K,V ) be a simplicial complex, we define the set V (K) := {v ∈ V | {v} ∈ K}. Note that, given K, V (K) is the smallest
vertex set such that (K,V (K)) is a simplicial complex.

Definition 5.1. A simplicial complex is called pure of dimension d (or d-complex) if all its facets are of dimension d.

The proof of the following lemma is straightforward and is therefore omitted.

Lemma 5.1. Let (K,V ) be a d-complex with d > 0, and let v ∈ V such that {v} ∈ K. Then link(K, v) is a (d− 1)-complex.

Now, let us state and prove the following well-known proposition (see, for instance, [1]). We include a proof, because it
is important the fact that, if the simplicial complex is not a tree, the two free faces contain the pivotal vertex v.

Proposition 5.1. Let (K,V (K)) be a non evasive d-complex with d > 0. Then (K,V (K)) has at least two free faces.

Proof. The proof is by induction on d, the dimension of K. If d is 1, (K,V (K)) must be a tree, and from the hypothesis of
the statement, it has at least one edge, so it has at least two free vertices, as claimed in the statement.

If d is greater than 1, since (K,V (K)) is non evasive there exits a vertex v ∈ V such that the corresponding costar
and link are non evasive. We fix our attention on link(K, v). It is non evasive and it is a (d − 1)-complex (according to
Lemma 5.1), so by induction hypothesis there are at least two free faces f1 and f2 in the link. Now it is easy to check that
{v} ∪ f1 and {v} ∪ f2 are different free faces of K.

We are now ready to introduce the first consequence of Theorem 4.1.

Corollary 5.1. Let (K,V (K)) be an ordered non evasive d-complex with respect to (v1, . . .) such that it is not a cone with
peek v1, and let d > 1. Then (K,V (K)) has at least three free faces.

Proof. Applying Theorem 4.1, we know that cost(K, v1) collapses to link(K, v1). Since link(K, v1) ̸= cost(K, v1) (by Propo-
sition 2.1), the collapse from cost(K, v1) to link(K, v1) is not trivial, and therefore there exists a free face f3 of cost(K, v1)

which is not a simplex of link(K, v1); therefore the coface of f3 in cost(K, v1) is not a simplex of link(K, v1). Now, we claim
that this free face f3 of cost(K, v1) is also a free face of K. First, let us note that co(f3), which is a facet in cost(K, v1) must
also be a facet in K. Otherwise, {v1}∪co(f3) ∈ K, contradicting that co(f3) ̸∈ link(K, v1). Let us assume that f3 has a coface
in K different from co(f3). Then that new coface should be {v1} ∪ f3 ∈ K, contradicting that f3 ̸∈ link(K, v1). Therefore, f3
is a free face of K such that v1 ̸∈ f3. Since the dimension of (K,V (K)) is strictly greater than 1, according to the proof of
Proposition 5.1, it has two free faces, both containing v1, and so both are different from f3.

Adiprasito, Benedetti, and Lutz [1] constructed a non evasive 2-complex with exactly two free faces (see Figure 5.1(a)).
Since that example is not a cone, that same simplicial complex proves that ROBDDs are not enough to decide evasiveness:

Corollary 5.2. There exists a non evasive simplicial complex (K,V ) which is not ordered non evasive with respect to any
permutation of V .

The 2-complex with exactly two free faces described in [1] is constructed as the barycentric subdivision of the 2-complex
Σ2 represented in Figure 5.1(a); we denote it by sdΣ2. Let σ = (1, 2) be the only free face in Σ2 (displayed in red in
Figure 5.1(a)) and vσ the corresponding vertex in sdΣ2 (see Figure 5.1(b)). Note that vσ is the only vertex of sdΣ2 such that
link(sdΣ2, vσ) is non evasive (the rest of links are not collapsible complexes). Moreover, the two free faces of cost(sdΣ2, vσ)

belong to link(sdΣ2, vσ) (see Figure 5.1(b)). Then, any sequence of elementary collapses from cost(sdΣ2, vσ) does not preserve
link(sdΣ2, vσ), illustrating that Theorem 4.1 does not hold in this example (since its premises are not satisfied).
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Figure 5.1: (a): The 2-complex Σ2. (b): Zoom on the barycentric subdivision of the bottom triangle of 2-complex Σ2 of (a).

From Theorem 4.1 we can establish that any ordered non evasive simplicial complex is anti-collapsible, describing
explicitly how an ordered non evasive simplicial complex (K,V ) anti-collapses to the standard simplex ∆(#V−1). Before
proving that, we state the following property of ordered non evasive simplicial complexes.

Corollary 5.3. Let V ̸= ∅ and (K,V ) be an ordered non evasive simplicial complex with respect to (v1, . . .). Then K collapses
to v1 ∗ link(K, v1), the closed star of K with respect to v1.

Proof. The sequence of elementary collapses from cost(K, v1) to link(K, v1) shows that K collapses to v1 ∗ link(K, v1) (the
decomposition in Proposition 2.2 can be used and then Corollary 3.3).

Corollary 5.4. Let V ̸= ∅ and (K,V ) be an ordered non evasive simplicial complex with respect to (v1, . . .). Then ∆n−1

collapses to K and K collapses to v1 ∗ link(K, v1).

Proof. As the second collapse is that of Corollary 5.3, we focus on the first one. The standard simplex ∆n−1 is a cone with
peek v1 and let A be its basis. We apply Lemma 3.3 with B := cost(K, v1) and C := link(K, v1) (the hypotheses of Lemma 3.3
are satisfied thanks to Theorem 4.1). Now, from the thesis of Lemma 3.3 and using the decomposition in Proposition 2.2,
we get the result.

6. Conclusions and further work

In this paper we have answered, in the negative, whether ROBDDs are enough to determine the evasiveness of Boolean
functions. This has been achieved by looking for a simplicial property satisfied by all the ordered non evasive simplicial
complexes: namely, its costar collapses to its link. Several questions remain open. First, the relationship among m-
collapsible complexes and its ordered counterpart should be elucidated. Second, it would be also interesting to know if
there exist non-trivial ordered non evasive simplicial complexes with exactly three free faces. Furthermore, in a parallel
project, we are formalizing all our developments in the Isabelle/HOL proof assistant [7]. The reason is that the problem,
being very combinatorial in nature, has shown itself to be very prone to our mistakes, and then we prefer to ensure all our
steps by means of a mechanical tool. This project is almost finished and is a continuation of the library reported in [2].
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