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Abstract

A directed Toeplitz graph Tn⟨s1, . . . , sp; t1, . . . , tq⟩ with vertices 1, 2, . . . , n, where an edge (i, j) occurs if and only if j− i = sl
or i − j = tk for some 1 ≤ l ≤ p and 1 ≤ k ≤ q, is a digraph whose adjacency matrix is a Toeplitz matrix. In this paper, we
study Hamiltonicity in directed Toeplitz graphs with s1 = 1, s2 = 3 and s3 ≤ 7.
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1. Introduction

A Toeplitz graph, whether directed or undirected, is a graph whose adjacency matrix is a Toeplitz matrix—a square
matrix in which all elements along each diagonal parallel to the main diagonal are constant. This structure implies that
the presence or absence of edges in the graph follows a repetitive pattern based on vertex differences. Toeplitz graphs offer
an interesting blend of algebraic structure and combinatorial properties, making them valuable for studying Hamiltonian
cycles, connectivity, and spectral graph theory. Various properties of Toeplitz graphs, including colorability, planarity,
bipartiteness, connectivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric dimension,
have been extensively studied; for example, see [1–12,14,28].

In this paper, we consider only finite simple directed graphs. A directed Toeplitz graph, denoted Tn⟨s1, . . . , sp; t1, . . . , tq⟩,
is a digraph of order n > max{sp, tq}, with vertices labeled 1, 2, . . . , n, where an edge (i, j) occurs if and only if j − i = sl or
i− j = tk for some 1 ≤ l ≤ p and 1 ≤ k ≤ q.

The study of Hamiltonian properties in Toeplitz graphs was initiated by van Dal et al. in [29] and later explored further
in [13,27,30]. Research on Hamiltonicity in directed Toeplitz graphs was first conducted by Malik and Zamfirescu in [26],
followed by Malik [15–22], Malik and Qureshi [23,24], and Malik and Ramezani [25].

In [19,20], the Hamiltonicity of Toeplitz graphs Tn⟨1, 3, s3; t⟩ was fully examined for s3 = 4, whereas in [24], a complete
investigation was conducted for s3 = 5. The cases s3 = 6 and s3 = 7 were explored in [22] and [25], respectively, where
some conjectures were proposed. In this paper, we address most of these conjectures, refining or extending the previous
investigations. We give a complete characterization of Hamiltonicity for s3 = 6, resolving all previously unsettled cases, and
we provide new results for s3 = 7, where many conjectures are confirmed and several unresolved configurations are reduced
to a small number of open cases. Our contributions combine constructive proofs of Hamiltonian cycles with computational
verification using a Python-based algorithm.

2. Preliminaries

For a vertex a in Tn⟨1, 3, 7; t⟩ and r ∈ {4, 8}, we define the path Aa(r) in Tn⟨1, 3, 7; t⟩ as Aa(r)=(a, a+1, a+ r). We also define
the path Ba(8) in Tn⟨1, 3, 7; t⟩ as Ba(8) = Aa(4) ∪ (a+ 4, a+ 7, a+ 8). These paths are illustrated in Figures 2.1 and 2.2.

Remark 2.1. If the Toeplitz graph Tn⟨1, 3, s3; t⟩ has a Hamiltonian cycle that includes the edge (n−2, n−1), then the graph
Tn+(t−1)⟨1, 3, s3; t⟩ also possesses the same property. This is because a Hamiltonian cycle in Tn⟨1, 3, s3; t⟩ can be transformed
into a Hamiltonian cycle in Tn+(t−1)⟨1, 3, s3; t⟩ by replacing the edge (n − 2, n − 1) with the path (n − 2, n + 1, n + 2, . . . ,
n + (t − 3), n + (t − 2), n + (t − 1), n − 1), which preserves the same property. For instance, as illustrated in Figure 2.3, a
Hamiltonian cycle in T10⟨1, 3, 6; 5⟩ is transformed into a Hamiltonian cycle in T14⟨1, 3, 6; 5⟩ by replacing the edge (8, 9) with
the path (8, 11, 12, 13, 14, 9). This process can be repeated to extend the Hamiltonian cycle to T18⟨1, 3, 6; 5⟩, and so forth.
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Figure 2.1: Paths Aa(r) in Tn⟨1, 3, 7; t⟩, where r ∈ {4, 8}.
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Figure 2.2: Path Ba(8) in Tn⟨1, 3, 7; t⟩.
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Figure 2.3: Hamiltonian cycles in T10⟨1, 3, 6; 5⟩ and T14⟨1, 3, 6; 5⟩.

3. Toeplitz graphs Tn⟨1, 3, 6; t⟩

In [22], it was established that the graph Tn⟨1, 3, 6; t⟩ is Hamiltonian for all n when t ≥ 12 or t ∈ {5, 10}. Additionally,
for t ∈ {3, 4, 6, 7, 8, 9, 11}, it was shown that Tn⟨1, 3, 6; t⟩ is Hamiltonian for all n, except for a finite set of values. These
exceptional cases were proposed as conjectures in [22]. In this section, we verify the non-Hamiltonicity of these conjectured
exceptions using a Python-based algorithm, described in Algorithm 1.

Algorithm 1 Finding Hamiltonian Cycle in a Toeplitz Graph
Require: Graph adjacency matrix G of size n× n, starting vertex s
Ensure: Hamiltonian cycle if exists, otherwise an empty list

1: Initialize path P with −1 (unvisited), set P [0] = P [n] = s
2: function IsValidConnection(G, v, index, P )
3: if G[P [index− 1]][v] = 0 or v is in P then
4: return False
5: end if
6: return True
7: end function
8: function UtilHamiltonianCycle(G,P, index)
9: if index = n then

10: return G[P [index− 1]][P [0]] = 1
11: end if
12: for each vertex v in G do
13: if IsValidConnection(G, v, index, P ) then
14: P [index]← v
15: if UtilHamiltonianCycle(G,P, index+ 1) then
16: return True
17: end if
18: P [index]← −1 ▷ Backtrack
19: end if
20: end for
21: return False
22: end function
23: function FindHamiltonianCycle(G, s)
24: Initialize path P of size n+ 1 with −1
25: Set P [0] = P [n] = s
26: if UtilHamiltonianCycle(G,P, 1) then
27: return P
28: else
29: return ∅
30: end if
31: end function

Through computational verification, we confirm the non-Hamiltonicity of the graph for these small values of n. In each
case, the algorithm returns an empty list, indicating the absence of a Hamiltonian cycle. This verification leads to the
following refined summary of the results reported in [22]:

• Tn⟨1, 3, 6; 3⟩ is Hamiltonian if and only if n /∈ {7, 8, 9, 12, 14, 16}.
• Tn⟨1, 3, 6; 4⟩ is Hamiltonian if and only if n ̸= 12.
• Tn⟨1, 3, 6; 6⟩ is Hamiltonian if and only if n /∈ {10, 14}.
• Tn⟨1, 3, 6; 7⟩ is Hamiltonian if and only if n /∈ {9, 12}.
• Tn⟨1, 3, 6; 8⟩ is Hamiltonian if and only if n ̸= 10.
• Tn⟨1, 3, 6; 9⟩ is Hamiltonian if and only if n ̸= 13.
• Tn⟨1, 3, 6; 11⟩ is Hamiltonian if and only if n ̸= 13.
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Also, in [22], it was established that Tn⟨1, 3, 6; 2⟩ is Hamiltonian for all n ≡ 0, 1, 3 (mod 4), while for n ≡ 2 (mod 4),
a conjecture has been proposed. In this section, we also prove the conjecture that Tn⟨1, 3, 6; 2⟩ is non-Hamiltonian for
n ≡ 2 (mod 4) (see Theorem 3.1). This result allows us to restate the conclusion as follows:

• Tn⟨1, 3, 6; 2⟩ is Hamiltonian if and only if n ̸≡ 2 (mod 4).

Theorem 3.1. Tn⟨1, 3, 6; 2⟩ is non-Hamiltonian for n ≡ 2 (mod 4).

Proof. Assume, for contradiction, that Tn⟨1, 3, 6; 2⟩ is Hamiltonian for n ≡ 2 (mod 4). Then there exists a Hamiltonian
cycle H, which must be expressible as the union of two directed paths: H = H1→n∪Hn→1, where H1→n visits some vertices
from 1 to n, while the remaining vertices are visited by Hn→1. In Tn⟨1, 3, 6; 2⟩, each vertex a is connected to a+1, a+3, a+6

(increasing edges), and a− 2 (the only decreasing edge), providing the indices lie within valid bounds. Since n ≡ 2 (mod 4),
we can write n = 4k + 2 for some integer k, which means the total number of vertices is even. To construct Hn→1, we
attempt to descend from n to 1 using decreasing edge of length 2. The only consistent path is (n, n − 2, n − 4, . . . , 2, 3, 1),
which covers all even vertices in descending order, then jumps to 3 and finally to 1. Next, we construct H1→n, avoiding all
vertices (except 1 and n) already used in Hn→1, namely the vertices 2, 3, . . . , n− 2, n− 4 in a descending pattern. The only
viable strategy for H1→n is to use a pattern that alternates between increasing edges of length 6 and decreasing edges
of length 2. This creates a repeating pattern of the form: (1, 7, 5), (5, 11, 9), . . . , (n − 7, n − 1, n − 3), (n − 3, n), where
each subpath (a, a + 6, a + 4) consists of a forward step of length 6 followed by a backward step of length 2. However, this
sequence successfully reaches n− 3 only if n− 3 ≡ 0 (mod 4). But since n ≡ (mod 4), it follows that n− 3 ≡ 3 (mod 4), which
makes it impossible to reach n−3 using this pattern. Therefore, we cannot complete the path from 1 to n, and therefore no
Hamiltonian cycle can exist. Thus, we conclude that the graph Tn⟨1, 3, 6; 2⟩ is non-Hamiltonian for all n ≡ 2 (mod 4).

The computational verification of our theoretical argument further solidifies the result in the theorem. By applying
Algorithm 1 implemented in Python, we confirm the non-Hamiltonicity of the graph for small values of n ≡ 2 (mod 4). In
each of these cases, the function consistently returns empty lists, thereby verifying that the graph Tn⟨1, 3, 6; 2⟩ does not
contain a Hamiltonian cycle for n ≡ 2 (mod 4).

4. Toeplitz graphs Tn⟨1, 3, 7; t⟩ with odd t

In [25], it was shown that for odd values of t where 3 ≤ t ≤ 15, the graph Tn⟨1, 3, 7; t⟩ is Hamiltonian if and only if n is even.
Furthermore, for odd t ≥ 17, it was shown that Tn⟨1, 3, 7; t⟩ is Hamiltonian for all even n, except in the following cases:
(i) if n ≡ 6, 10, . . . , t− 5 (mod (t− 1)) when t ≡ 3 (mod 4), or (ii) if n ≡ 8, 12, . . . , t− 5 (mod (t− 1)) when t ≡ 1 (mod 4).

These two cases were stated as conjecture. In this section, we aim to prove this conjecture in Theorem 4.1. Specifically,
for odd t, Tn⟨1, 3, 7; t⟩ is bipartite, and since a bipartite graph cannot contain a Hamiltonian cycle unless n is even, we can
conclude the result for all odd t ≥ 3 as follows: for odd t ≥ 3, Tn⟨1, 3, 7; t⟩ is Hamiltonian if and only if n is even.

Theorem 4.1. For odd t ≥ 17, if t ≡ 3 (mod 4), then Tn⟨1, 3, 7; t⟩ is Hamiltonian for all even n ≡ 6, 10, . . . , t− 5 (mod (t− 1)).
For odd t ≥ 17, if t ≡ 1 (mod 4), then Tn⟨1, 3, 7; t⟩ is Hamiltonian for all even n ≡ 8, 12, . . . , t− 5 (mod (t− 1)).

Proof. Let t be an odd number such that t ≥ 17, and let n be an even number.
Case 1. t ≡ 1 (mod 4) and n ≡ 8, 12, . . . , t− 5 (mod (t− 1)). It follows that, t+7 ≤ n ≤ 2t− 6. For n = 2t− 6, a Hamiltonian
cycle in Tn⟨1, 3, 7; t⟩ is (1, 4) ∪ A4(4) ∪ A8(4) ∪ · · · ∪ An−t−3(4) ∪ (n − t + 1, n − t + 2, n − t + 9, n − t + 10, . . . , n − 1, n, n − t,

n− t+3, n− t+4, n− t+5, n− t+8= t+2, 2)∪A2(4)∪A6(4)∪. . .∪An−t−5(4)∪ (n− t−1, n− t+6= t, t+1, 1), see Figure 4.1.
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Figure 4.1: A Hamiltonian cycle in T28⟨1, 3, 7; 17⟩.

For n = 2t − 14. Clearly here t ≥ 21 as t + 7 ≤ 2t − 14. A Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is (1, 4) ∪ A4(4) ∪ A8(4) ∪
· · · ∪ An−t−3=t−17(4) ∪ (n − t + 1 = t − 13, t − 10, t − 7, t − 4, t − 1, t + 2, 2) ∪ A2(4) ∪ A6(4) ∪ · · · ∪ An−t−5(4) ∪ (n − t − 1 =

t− 15, t− 12, t− 9, t− 6, t− 3, t, t+3, t+4, t+5, . . . , n− 1, n, n− t, n− t+3 = t− 11, t− 8, t− 5, t− 2, t+1, 1), see Figure 4.2.
For n = 2t − 22. Clearly here t ≥ 29 as t + 7 ≤ 2t − 22. A Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is A1(4) ∪ A1(5) ∪ · · · ∪

An−t−3=t−17(4)∪ (n− t+1 = t− 21, t− 18, t− 15, . . . , t+3, t+4, . . . , n− 1, n, n− t = t− 22, t− 19, t− 16, . . . , t+2, 2)∪A2(4)∪
A6(4) ∪ · · · ∪An−t−5(4) ∪ (n− t− 1 = t− 23, t− 20, t− 17, . . . , t+ 1, 1), see Figure 4.3.
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Figure 4.2: A Hamiltonian cycle in T28⟨1, 3, 7; 21⟩.
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Figure 4.3: A Hamiltonian cycle in T36⟨1, 3, 7; 29⟩.

For n /∈ {2t− 6, 2t− 14, 2t− 22}. We consider two cases based on whether 2t− n is congruent to 2 modulo 8.
(i) If 2t − n ≡ 2 (mod 8), then a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is A1(4) ∪ A5(4) ∪ · · · ∪ An−t−10(4) ∪ (n − t − 6, n − t − 5,
n − t + 2, n − t + 3, n − t + 4) ∪ An−t+4(8) ∪ An−t+12(8) ∪ · · · ∪ At−6(8) ∪ (t + 2, t + 3, 3) ∪ A3(4) ∪ A7(4) ∪ · · · ∪ An−t−8(4)∪
(n − t − 4, n − t − 3, n − t − 2, , n − t − 1, n − t + 6) ∪ An−t+6(4) ∪ An−t+10(4) ∪ · · · ∪ At−8(4) ∪ (t − 4, t − 3, t + 4, t + 5, . . . ,
n− 1, n, n− t) ∪An−t(8) ∪An−t+8(8) ∪ · · · ∪At−10(8) ∪ (t− 2, t− 1, t, t+ 1, 1), see Figure 4.4.
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Figure 4.4: A Hamiltonian cycle in T32⟨1, 3, 7; 25⟩.

(ii) If 2t−n ̸≡ 2 (mod 8), then a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is A1(4)∪A5(4)∪· · ·∪An−t−10(4)∪(n− t−6, n− t−5, n− t+

2, n−t+3, n−t+10)∪An−t+10(4)∪An−t+14(4)∪· · ·∪At−20(4)∪(t−16, t−15, t−8, t−7, t−6, t−5, t+2, t+3, 3)∪A3(4)∪A7(4)∪· · ·∪
An−t−8(4)∪(n−t−4, n−t−3, n−t−2, , n−t−1, n−t+6, n−t+7, n−t+8)∪An−t+8(8)∪An−t+16(8)∪· · ·∪At−22(8)∪(t−14, t−13, t−
12, t−11, t−4, t−3, t+4, t+5, . . . , n−1, n, n−t, n−t+1, n−t+4)∪An−t+4(8)∪An−t+12(8)∪· · ·∪At−10(8)∪(t−2, t−1, t, t+1, 1),
see Figure 4.5.
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Figure 4.5: A Hamiltonian cycle in T44⟨1, 3, 7; 37⟩.

Case 2. t ≡ 3 (mod 4) and n ≡ 6, 10, . . . , t− 5 (mod (t− 1)). Clearly, t+5 ≤ n ≤ 2t− 6. For n = 2t− 6, a Hamiltonian cycle in
Tn⟨1, 3, 7; t⟩ is (1, 4)∪A4(4)∪A8(4)∪· · ·∪An−t−9(4)∪(n−t−5, n−t−4, n−t+3, n−t+6 = t, t+3)∪At+3(4)∪At+7(4)∪· · ·∪An−6(4)∪
(n−2, n−1, n−t−1, n−t+2, n−t+5, n−t+8 = t+2, 2)∪A2(4)∪A6(4)∪· · ·∪An−t−7(4)∪(n−t−3, n−t−2, n−t+1, n−t+4, n−t+11 =

t+ 5) ∪At+5(4) ∪At+9(4) ∪ · · · ∪An−4(4) ∪ (n, n− t, n− t+ 7 = t+ 1, 1), see Figure 4.6.
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Figure 4.6: A Hamiltonian cycle in T32⟨1, 3, 7; 19⟩.

For n = 2t−14 (excluding n = 24 when t = 19), a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is (1, 2, . . . , n−t−4 = t−18)∪At−18(8)∪
At−10(8)∪At−2(8)∪At+6(4)∪At+10(4)∪· · ·∪An−7(4)∪(n−3, n−2, n−t−2, n−t−1, n−t+6, n−t+7, n−t+8, n−t+9, n−t+16 =

t+2, t+3, t+4)∪At+4(4)∪At+8(4)∪· · ·∪An−5(4)∪ (n−1, n, n− t, n− t+1, n− t+2, n− t+3, n− t+10 = t−4, t−3, t, t+1, 1),
refer to Figure 4.7.

A Hamiltonian cycle in T24⟨1, 3, 7; 19⟩ is (1, 8, 9, 16, 17, 24, 5, 12, 19, 22, 23, 4, 11, 14, 15, 18, 21, 2, 3, 6, 7, 10, 13, 20, 1).
For n /∈ {2t− 6, 2t− 14}. We consider two cases based on whether 2t− n is congruent to 2 modulo 8.

(i) If 2t − n ≡ 2 (mod 8), a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is (1, 2, . . . , n − t − 4) ∪ An−t−4(8) ∪ An−t+4(8) ∪ An−t+12(8) ∪
An−t+20(4)∪An−t+24(4)∪ · · · ∪An−7(4)∪ (n− 3, n− 2, n− t− 2, n− t− 1, n− t+6, n− t+7, n− t+8, n− y+9, n− t+16, n−
t+ 17, n− t+ 18)∪An−t+18(8)∪An−t+26(8)∪ · · · ∪At−4(8)∪At+4(4)∪At+8(4)∪ · · · ∪An−5(4)∪ (n− 1, n, n− t, n− t+ 1, n−
t+ 2, n− t+ 3, n− t+ 10, n− t+ 11, n− t+ 14) ∪An−t+14(8) ∪An−t+22(8) ∪ · · · ∪At−8(8) ∪ (t, t+ 1, 1), see Figure 4.8.
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Figure 4.7: A Hamiltonian cycle in T40⟨1, 3, 7; 27⟩.
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Figure 4.8: A Hamiltonian cycle in T28⟨1, 3, 7; 23⟩.

(ii) If 2t−n ̸≡ 2 (mod 8), then a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is (1, 2, . . . , n− t−3, n− t+4)∪An−t+4(4)∪An−t+8(4)∪· · ·∪
An−7(4)∪(n−3, n−2, n−t−2, n−t−1, n−t+6, n−t+7, n−t+8, n−t+9, n−t+16, n−t+17, n−t+18)∪An−t−18(8)∪An−t−10(8)∪
· · ·∪At−4(8)∪At+4(4)∪At+8(4)∪· · ·∪An−5(4)∪(n−1, n, n−t, n−t+1, n−t+2)∪An−t+2(8)∪An−t+10(8)∪· · ·∪At−8(8)∪(t, t+1, 1),
see Figure 4.9.
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Figure 4.9: A Hamiltonian cycle in T40⟨1, 3, 7; 31⟩.

Thus, for any odd t ≥ 7, the Toeplitz graph Tn⟨1, 3, 7; t⟩ is Hamiltonian for all even values of n that satisfy the conditions:
n ≡ 6, 10, . . . , t− 5 (mod (t− 1)) when t ≡ 3 (mod 4), or n ≡ 8, 12, . . . , t− 5 (mod (t− 1)) when t ≡ 1 (mod 4).

5. Toeplitz graphs Tn⟨1, 3, 7; t⟩ with even t

In [25], it was shown that for t = 6, Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n. Additionally, for even values of t ≤ 14, that is for
t ∈ {2, 4, 8, 10, 12, 14}, it was shown that Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n, except for a finite number of cases, which were
stated as conjectures. In this section, we examine these conjectures and verify the conjectures’ non-Hamiltonicity using
Algorithm 1 in Python. This ultimately leads to a summary of the results as follows:

• Tn⟨1, 3, 7; 2⟩ is Hamiltonian if and only if n /∈ {8, 11, 12, 13, 14, 18, 19, 20, 25, 26, 32}.
• Tn⟨1, 3, 7; 4⟩ is Hamiltonian if and only if n ̸= 12.
• Tn⟨1, 3, 7; 8⟩ is Hamiltonian if and only if n ̸= 10.
• Tn⟨1, 3, 7; 10⟩ is Hamiltonian if and only if n ̸= 14.
• Tn⟨1, 3, 7; 12⟩ is Hamiltonian if and only if n /∈ {14, 18}.
• Tn⟨1, 3, 7; 14⟩ is Hamiltonian if and only if n ̸= 19.

Furthermore, for even t ≥ 16, a conjecture was stated as:
(a). If t ≡ 0 (mod 4), then Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n different from t+ 2.
(b). If t ≡ 2 (mod 4), then Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n.

In this section, we also prove some theorems that partially address the conjecture. The remaining cases, due to their
irregular patterns of Hamiltonian cycles, are presented as conjectures. Finding a general pattern for the Hamiltonian
cycle in these cases is challenging. However, computational verification for small values of n supports our conjecture.

Theorem 5.1. The graph Tt+2⟨1, 3, 7; t⟩ is non-Hamiltonian when t ≡ 0 (mod 4).

Proof. Let t ≡ 0 (mod 4). Assume, for contradiction, that the graph Tt+2⟨1, 3, 7; t⟩ is Hamiltonian, and let H be a Hamilto-
nian cycle in this graph.

The Hamiltonian cycle H can be decomposed into two paths: P1→t+2 (path from vertex 1 to vertex t + 2) and Pt+2→1

(path from vertex t+2 to vertex 1). Since every vertex in H must have both in-degree and out-degree equal to one, and the
only decreasing edges are of length t, the edges (t + 2, 2) and (t + 1, 1) must be part of Pt+2→1, as these are the only ways
to return to vertices 1 and 2. Therefore, Pt+2→1 can be expressed as (t+ 2, 2) ∪ P2→t+1 ∪ (t+ 1, 1).
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In Tt+2⟨1, 3, 7; t⟩, the only allowed increasing edges have lengths 1, 3, and 7. For the subpath P2→t+1, we can use one
single edge or five consecutive edges of length 1, because otherwise, the other path P1→t+2, would not be able to complete
the traversal as there are only jumps of 3 and 7. Also we cannot use exclusively consecutive edges of length 3 or 7 either, as
there is no jump of 2 in P1→t+2, so between jumps of length 3 or 7, we need edges of length 1 or 5. Furthermore, the edges
(2, 3) and (t, t+ 1) must be part of path P2→t+1.

For P2→t+1, to reach vertex t+ 1 from vertex 2, while maintaining valid transitions, we have the following options:
P2→t = (2, 3, 4, 5, 6, 7) ∪ P7→t ∪ (t, t+ 1),
P2→t = (2, 3) ∪ (3, 6) ∪ P6→t ∪ (t, t+ 1),
P2→t = (2, 3) ∪ (3, 10) ∪ P10→t ∪ (t, t+ 1)).
For each Pr→t with r ∈ {6, 7, 10}, we again have the same options. Since, the total distance from vertex r to vertex t is t− r,
for r ∈ {6, 7, 10}. Clearly, the jumps of length 3 or 7 contribute 0mod4 to the total distance. For the total distance t − r to
be achievable, we must have t − r ≡ 0 (mod 4), which means t ≡ 1, 2 (mod 4) as r ∈ {6, 7, 10}. However, our assumption is
that t ≡ 0 (mod 4), which contradicts. Hence, the graph cannot be Hamiltonian under the given conditions.

In the next two theorems, we will investigate the hamiltonicity of the graph Tn⟨1, 3, 7; t⟩, where t ≥ 16 is an even integer,
for the cases when n ≡ 0 (mod 4) and n ≡ 3 (mod 4). The latter case specifically considers the condition t ≡ 0 (mod 4); thus,
the case t ≡ 2 (mod 4) is not investigated here, although it has been verified for small values and is stated as a conjecture.
The cases n ≡ 1 (mod 4) and n ≡ 2 (mod 4) are also stated as conjectures, but have been verified for small values of n using
Algorithm 1.

Theorem 5.2. Let t be an even integer with t ≥ 16. Then, the graph Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n ≡ 0 (mod 4).

Proof. We prove this theorem by explicitly constructing a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ that contains the edge (n −
2, n− 1) for n < 2t+ 1. This allows us to apply Remark 1, which ensures the extension of this Hamiltonian cycle to larger
graphs of the form Tn+(t−1)⟨1, 3, 7; t⟩. Let n < 2t + 1 and n ≡ 0 (mod 4). Since n is a multiple of 4 and n − t − 2 ≥ 0, we
analyze the subcases based on n− t− 2.
(i) n− t− 2 = 0. A Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is constructed as (1, 4) ∪A4(4) ∪A8(4) ∪ · · · ∪An−4=t−2(4) ∪ (n, n− t =

2)∪A2(4)∪A6(4)∪ · · · ∪At−4(4)∪ (n− 2 = t, n− 1 = t+1, 1). See Figure 5.1 for reference. Applying Remark 2.1, we extend

7 129 11 10 1413 1 63 5 2 4 8 1615 1817 2019 

Figure 5.1: A Hamiltonian cycle in T20⟨1, 3, 7; 18⟩.

this cycle to Tn+t−1⟨1, 3, 7; t⟩, and so on.
(ii) For n − t − 2 > 0. A Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ is (1, 2, 3, . . . , n − t − 2) ∪ An−t−2(4) ∪ An−t+2(4) ∪ · · · ∪ At−2(4) ∪
(t + 2, t + 3, . . . , n − 2, n − 1, n, n − t) ∪ An−t(4) ∪ An−t+4(4) ∪ · · · ∪ At−4(4) ∪ (t, t + 1, 1), see Figure 5.2 for reference. Since
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Figure 5.2: A Hamiltonian cycle in T28⟨1, 3, 7; 18⟩.

this cycle contains (n− 2, n− 1), we apply Remark 2.1. This completes the proof.

Theorem 5.3. Let t ≡ 0 (mod 4) with t ≥ 16. Then, the graph Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n ≡ 3 (mod 4).

Proof. We prove this theorem by explicitly constructing a Hamiltonian cycle in Tn⟨1, 3, 7; t⟩ that contains the edge (n −
2, n− 1) for n < 2t+1. This allows us to apply Remark 2.1, which ensures the extension of this Hamiltonian cycle to larger
graphs of the form Tn+(t−1)⟨1, 3, 7; t⟩. Since n is odd, so is 2t− n. we consider the following cases:

If 2t−n ≡ 3, 5 (mod 8), then a Hamiltonian cycle in Tn̸=t+3⟨1, 3, 7; t⟩ is (1, 4)∪A4(4)∪A8(4)∪· · ·∪An−t−3(4)∪(n−t+1, n−
t+4)∪An−t+4(8)∪An−t+12(8)∪· · ·∪At−9(8)∪ (t−1, t, t+3, t+4, . . . , n−2, n−1, n, n− t, n− t+7)∪An−t+7(8)∪An−t+15(8)∪
· · · ∪At−6(8)∪ (t+2, 2)∪A2(4)∪A6(4)∪ · · · ∪An−t−5(4)∪ (n− t− 1, n− t+2)∪Bn−t+2(8)∪Bn−t+10(8)∪ · · · ∪Bt−11(8)∪ (t−
3, t−2, t+1, 1), see Figure 5.3. Since (n−2, n−1) is present, Remark 2.1 applies. And a Hamiltonian cycle in Tt+3⟨1, 3, 7; t⟩
is (1, 4, 7)∪A7(8)∪A15(8)∪ · · · ∪An−12(8)∪ (n− 4, n− 3, n, n− t = 3, 10)∪A10(8)∪A18(8)∪ · · · ∪An−9(8)∪ (n− 1, n− t− 1 =

2, 5) ∪B5(8) ∪B13(8) ∪ · · · ∪Bt−7(8) ∪ (t+ 1, 1), see Figure 5.4.
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Figure 5.3: A Hamiltonian cycle in T27⟨1, 3, 7; 20⟩.
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Figure 5.4: A Hamiltonian cycle in T23⟨1, 3, 7; 20⟩.

If 2t−n ≡ 1, 7 (mod 8), then a Hamiltonian cycle in Tn̸=t+3⟨1, 3, 7; t⟩ is (1, 4)∪A4(4)∪A8(4)∪· · ·∪An−t−3(4)∪(n−t+1, n−
t+4)∪An−t+4(8)∪An−t+12(8)∪ · · · ∪At−5(8)∪ (t+3, t+4, . . . , n− 2, n− 1, n, n− t, n− t+7)∪An−t+7(8)∪An−t+15(8)∪ · · · ∪
At−10(8)∪(t−2, t−1, t+2, 2)∪A2(4)∪A6(4)∪· · ·∪An−t−5(4)∪(n−t−1, n−t+2)∪Bn−t+2(8)∪Bn−t+10(8)∪· · ·∪Bt−11(8)∪(t−
3, t−2, t+1, 1), see Figure 5.5. Since (n−2, n−1) is present, Remark 2.1 applies. And a Hamiltonian cycle in Tt+3⟨1, 3, 7; t⟩
is (1, 4, 7) ∪ A7(8) ∪ A15(8) ∪ · · · ∪ An−8(8) ∪ (n, n− t = 3) ∪ A3(8) ∪ A11(8) ∪ · · · ∪ An−13(8) ∪ (n− 5, n− 4, n− 1, n− t− 1 =

2, 5) ∪B5(8) ∪B13(8) ∪ · · · ∪Bt−10(8) ∪ (n− 2 = t+ 1, 1), see Figure 5.6.
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Figure 5.5: A Hamiltonian cycle in T31⟨1, 3, 7; 24⟩.
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Figure 5.6: A Hamiltonian cycle in T23⟨1, 3, 7; 20⟩.

Since for n = t+3, the Hamiltonian cycle does not contain the edge (n−2, n−1), we then consider n = 2t+1. Since t is even,
n is odd, and n−t is also odd. We analyze three cases based on n−t modulo 3. If n−t ≡ 0 (mod 3), then a Hamiltonian cycle
in Tn=2t+1⟨1, 3, 7; t⟩ is (1, 4, 7, . . . , t+2, 2, 5, 8, . . . , t−3, t+4, t+7)∪At+7(4)∪At+11(4)∪· · ·∪An−6(4)∪ (n−2, n−1, n− t−1 =

t, t+ 3, 3, 6, 9, . . . , t− 2, t+ 5) ∪At+5(4) ∪At+9(4) ∪ · · · ∪An−4(4) ∪ (n, n− t = t+ 1, 1), see Figure 5.7.
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Figure 5.7: A Hamiltonian cycle in T41⟨1, 3, 7; 20⟩.

If n− t ≡ 1 (mod 3), then a Hamiltonian cycle in Tn=2t+1⟨1, 3, 7; t⟩ is (1, 8, 11, 14, . . . , t+ 2, 2, 5, 6, 9, 12, . . . , t− 3, t+ 4, t+

7) ∪At+7(4) ∪At+11(4) ∪ · · · ∪An−6(4) ∪ (n− 2, n− 1, n− t− 1 = t, t+ 3, 3, 4, 7, 10, . . . , t− 2, t+ 5) ∪At+5(4) ∪At+9(4) ∪ · · · ∪
An−4(4) ∪ (n, n− t = t+ 1, 1), see Figure 5.8.

If n− t ≡ 2 (mod 3), then a Hamiltonian cycle in Tn=2t+1⟨1, 3, 7; t⟩ is (1, 8, 9, 12, 15, . . . , t+ 2, 2, 5, 6, 7, 10, 13, . . . , t− 3, t+

4, t+7)∪At+7(4)∪At+11(4)∪· · ·∪An−6(4)∪ (n−2, n−1, n− t−1 = t, t+3, 3, 4, 11, 14, 17, . . . , t−2, t+5)∪At+5(4)∪At+9(4)∪
· · · ∪An−4(4) ∪ (n, n− t = t+ 1, 1), see Figure 5.9. Since (n− 2, n− 1) is included in all three cases, Remark 1 ensures the
cycle extends to T2t+1+(t−1)⟨1, 3, 7; t⟩, and so on. This completes the proof.

Conjecture 5.1. Let t be an even integer such that t ≥ 16.
(i). The graph Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n ≡ 1, 2 (mod 4).

(ii). Let t ≡ 2 (mod 4). Then, the graph Tn⟨1, 3, 7; t⟩ is Hamiltonian for all n ≡ 3 (mod 4).
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Figure 5.8: A Hamiltonian cycle in T49⟨1, 3, 7; 24⟩
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Figure 5.9: A Hamiltonian cycle in T33⟨1, 3, 7; 16⟩

If both parts of Conjecture 5.1 are resolved affirmatively and Theorems 5.1–5.3 are applied, then the following result
may be obtained:
Let t be an even integer with t ≥ 16. Then, the graph Tn⟨1, 3, 7; t⟩ is Hamiltonian if and only if n ̸= t+ 2 when t ≡ 0 (mod 4).

6. Concluding remarks

The Hamiltonicity of Toeplitz graphs Tn⟨1, 3, s3; t⟩ has been extensively studied in the literature for s3 ∈ {4, 5}. In this
paper, we address the remaining cases where s3 ∈ {6, 7}. Our investigation is complete for s3 = 6. For s3 = 7, most of
the cases have been examined. However, some configurations remain unresolved. For these, we propose conjectures based
on empirical observations. Due to the lack of an apparent pattern for constructing Hamiltonian cycles in the unresolved
cases, a generalization remains challenging. Nevertheless, we have verified several small cases using Algorithm 1 and
found consistent results that support our conjectures.

As a natural continuation of this work, future research should aim to resolve the conjectures proposed for s3 = 7.
Moreover, it would be worthwhile to explore Toeplitz graphs of the form Tn⟨1, 3, 8, s4, s5, . . . , sp; t1, t2, . . . , bq⟩ and extend the
analysis to s3 ≥ 8 to investigate whether a broader structural pattern governs Hamiltonicity of these graphs.
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