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Abstract

Let D be a digraph of order n with adjacency matrix A(D). For α ∈ [0, 1], the Aα-matrix of digraph D is defined as
Aα(D) = αDeg(D) + (1 − α)A(D), where Deg(D) = diag(d+1 , d

+
2 , . . . , d

+
n ) is the diagonal matrix of vertex outdegrees of

D. The Aα-energy of D is defined as E(Aα(D)) =
∑n

i=1 |Re(zi)|, where z1, z2, . . . , zn are the eigenvalues of Aα(D), and
Re(zi) denotes the real part of zi. In this paper, we determine the Aα-spectrum for several classes of digraphs. We also
compute the Aα-energy for directed paths, directed cycles, bipartite digraphs, and k-regular digraphs. As a consequence,
we obtain McClelland’s inequality for the Aα-energy of k-regular digraphs.
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1. Introduction

A directed graph (or just digraph) D consists of two sets V and A, where V is a non-empty finite set whose elements are
called the vertices and A is a set of ordered pairs of the elements of V known as the arc set. A digraph D is strongly
connected if for every pair of vertices u, v ∈ V(D), there are directed paths from u to v and from v to u. Throughout this
paper, we consider finite, simple, connected digraphs. We follow [13] for terminology and notations.

In a digraph D, an arc from a vertex u to v is denoted by (u, v). In this case, we say that u is the tail and v is the head
of the arc (u, v). Two vertices u and v of a digraph D are said to be adjacent if they are joined by an arc (u, v) ∈ A(D)

or (v, u) ∈ A(D), and doubly adjacent if both (u, v) and (v, u) are in A(D). Let N−
D (u) = {v ∈ V(D) : (v, u) ∈ A(D)}

and N+
D (u) = {v ∈ V(D) : (u, v) ∈ A(D)} denote the in-neighbours and out-neighbours of the vertex u, respectively. Let

d−u = |N−
D (u)| and d+u = |N+

D (u)|, respectively, denote the indegree and outdegree of the vertex u in D. The minimum
outdegree is denoted by δ+, the maximum outdegree by ∆+, and the minimum indegree by δ−. A digraph is regular if each
vertex has the same indegree and the same outdegree. Specifically, a digraph is k-regular if each vertex has indegree and
outdegree k.

In a digraph, we denote a directed path by −→Pn, with the arc set A(−→Pn) = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}; a directed cycle
by−→Cn, with the arc setA(−→Cn) = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}; and the oriented complete bipartite graph by−→Kr,s.
Here, −→Kr,s consists of partite sets {u1, u2, . . . , ur} and {v1, v2, . . . , vs}, with arcs of the form (ui, vj) for i = 1, 2, . . . , r and
j = 1, 2, . . . , s.

A digraph D is said to be discrete if it has no arcs. It is called symmetric if for any (u, v) ∈ A(D), also (v, u) ∈ A(D),
where u, v ∈ V (D). There is a one-to-one correspondence between the simple graphs and the symmetric digraphs given by
G →

←→
G , where←→G has the same vertex set as the graph G, and each edge uv of G is replaced by a pair of symmetric arcs

(u, v) and (v, u). Under this correspondence, a graph can be identified with a symmetric digraph.
The adjacency matrix of a digraph D is an n× n matrix A(D) = (aij), where

aij =

1 if (vi, vj) ∈ A(D),

0 otherwise.

Let Deg(D) = diag(d+1 , d+2 , . . . , d+n ), where d+i = d+vi , be the diagonal matrix of vertex outdegrees of D. The matrices
L(D) = Deg(D) − A(D) and Q(D) = Deg(D) + A(D) are called the Laplacian and the signless Laplacian matrices of the
digraph D.
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Nikiforov [11] defined the generalized adjacency matrix Aα(G) for a graph G, as Aα(G) = αD(G) + (1 − α)A(G) for
α ∈ [0, 1]. Liu et al. [10] defined the analogous generalized adjacency matrix Aα(D) for a digraph D as

Aα(D) = αDeg(D) + (1− α)A(D),

where α is any real number in [0, 1]. It is clear that Aα(D) = A(D) if α = 0, 2Aα(D) = Q(D) if α = 1
2 , and Aα(D) = Deg(D)

if α = 1. From this, it follows that the matrix Aα(D) extends the spectral theory of both the adjacency matrix A(D) and the
signless Laplacian matrix Q(D) of the digraph. In general, the matrix Aα(D) is not symmetric, so its eigenvalues can be
complex numbers. The eigenvalues of Aα(D) are called the generalized adjacency eigenvalues of the digraph D. The set of
distinct eigenvalues of Aα(D) together with their multiplicities is called the spectrum of Aα(D). If D is a digraph of order n
with distinct generalized adjacency eigenvalues z1(Aα(D)), z2(Aα(D)), . . . , zk(Aα(D)) and if their respective multiplicities
are m1,m2, . . . ,mk, we write the spectrum of Aα(D) as

Spec(Aα(D)) =
{
z
(m1)
1 , z

(m2)
2 , . . . , z

(mk)
k

}
.

The eigenvalue of Aα(D) with the largest modulus is called the generalized adjacency spectral radius, or Aα-spectral radius
of the digraph D, and is denoted by z(Aα(D)). For recent work on Aα matrix of a digraph, see [3,4].

Gutman [8] defined the energy of a graph G as E(G) =
∑n

i=1 |λi|, where λ1 ≥ λ2 ≥ · · · ≥ λn are the adjacency eigenvalues
of G. Abreu et al. [1] defined the signless Laplacian energy of a graph G as QE(G) =

∑n
i=1

(
qi − 2m

n

)
, where q1 ≥ q2 ≥

· · · ≥ qn are the signless Laplacian eigenvalues of G and 2m
n is the average degree of G. For recent works on the energy,

the Laplacian energy, and the signless Laplacian energy, we refer to [2, 6, 9, 15]. Gou et al. [7] defined the generalized
adjacency energy or Aα-energy of a graph G with order n and size m as the mean deviation of the Aα-eigenvalues of G,
that is,

E(Aα(G)) =

n∑
i=1

∣∣∣∣pi − 2αm

n

∣∣∣∣ ,
where pi denotes the Aα-eigenvalues of G. From the definition, it is clear that E(A0(G)) = E(G) and 2E(A 1

2
(G)) = QE(G).

Therefore, the α-adjacency energy of a graph G merges the theories of adjacency energy and signless Laplacian energy.
The rest of the paper is organized as follows. In Section 2, we determine the Aα-spectrum for various types of digraphs,

including −→Pn, −→Cn and −→Kr,s. In Section 3, we calculate the Aα-energy for several digraphs and derive a sharp upper bound
for the Aα-energy of a k-regular digraph, expressed in terms of the number of arcs. This bound generalizes McClelland’s
inequality for the energy of digraphs, as given by Rada [16].

2. Aα-spectra of some families of digraphs

The following result gives the Aα-spectrum of the directed path −→Pn.

Theorem 2.1. The Aα-spectrum for the directed path −→Pn is given by

Spec(Aα(
−→
Pn)) =

{
α(n−1), 0(1)

}
.

Proof. Let −→Pn be a directed path with n vertices v1, v2, . . . , vn and n − 1 arcs given as (vi, vi+1) for i = 1, 2, . . . , n − 1.
We assume that n ≥ 2. For −→Pn, the degree matrix Deg(

−→
Pn) is a diagonal matrix with entries equal to 1 for the vertices

v1, v2, . . . , vn−1 and 0 for the vertex vn, that is,

Deg(
−→
Pn) =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 .

The adjacency matrix A(
−→
Pn) has 1’s on the first superdiagonal (corresponding to the arcs) and 0’s elsewhere, that is,

A(
−→
Pn) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . 1

0 0 0 · · · 0

 .
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Therefore, the matrix Aα(
−→
Pn) is given by

Aα(
−→
Pn) = αDeg(

−→
Pn) + (1− α)A(

−→
Pn),

= α


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

+ (1− α)


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . 1

0 0 0 · · · 0

 .

=


α 1− α 0 · · · 0
0 α 1− α · · · 0
0 0 α · · · 0
...

...
... . . . 1− α

0 0 0 · · · 0

 .

Therefore, the Aα-spectrum of the matrix Aα(
−→
Pn) is Spec(Aα(

−→
Pn)) =

{
α(n−1), 0(1)

}
.

Next, we obtain the Aα-spectrum of the directed cycle −→Cn.

Theorem 2.2. The Aα-spectrum for the directed cycle −→Cn is given by{
α+ (1− α)ωk : k = 0, 1, . . . , n− 1

}
,

where ω = e2πi/n is a primitive n-th root of unity.

Proof. Let −→Cn be a directed cycle with n vertices, v1, v2, . . . , vn and n arcs given as (vi, vi+1) for i = 1, 2, . . . , n − 1, with
(vn, v1) completing the cycle. We assume that n ≥ 2. The degree matrix Deg(

−→
Cn) is the identity matrix In because each

vertex has outdegree 1, that is,

Deg(
−→
Cn) = In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 .

The adjacency matrix A(
−→
Cn) is the full-cycle permutation matrix of order n. The (i, i + 1)-element of A(

−→
Cn) is 1,

i = 1, 2, . . . , n− 1, the (n, 1)-element of A(
−→
Cn) is 1, and the remaining elements of A(

−→
Cn) are zero.

A(
−→
Cn) =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


.

Therefore, the generalized adjacency matrix Aα(
−→
Cn) is given by

Aα(
−→
Cn) = αDeg(

−→
Cn) + (1− α)A(

−→
Cn) = αIn + (1− α)A(

−→
Cn).

Note that the eigenvalues of A(
−→
Cn) are the n-th roots of unity, given by ωk = e2πik/n, k = 0, 1, . . . , n − 1. Therefore, the

eigenvalues of A(
−→
Cn) are

zk = α · 1 + (1− α)ωk = α+ (1− α)e2πik/n, k = 0, 1, . . . , n− 1.

Thus, the Aα-spectrum of the directed cycle −→Cn is

Spec(Aα(
−→
Pn)) =

{
α+ (1− α)ωk : k = 0, 1, . . . , n− 1

}
,

where ω = e2πi/n is a primitive n-th root of unity.

We have the following observation.

Corollary 2.1. For α = 0, the Aα-spectrum of −→Cn reduces to the adjacency spectrum Spec(A(
−→
Cn)) = {ωk : k=0, 1, . . . , n−1},

as stated in [5].
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Next, we give the Aα-spectrum of the complete bipartite digraph −→Kr,s.

Theorem 2.3. The Aα-spectrum of the complete bipartite digraph −→Kr,s is given by
{
αs(r), 0(s)

}
.

Proof. Let −→Kr,s be a complete bipartite digraph with partite sets X = {u1, u2, . . . , ur} and Y = {v1, v2, . . . , vs} and arcs
(ui, vj), where i = 1, 2, . . . , r and j = 1, 2, . . . , s. The generalized adjacency matrix Aα(

−→
Kr,s) is given by

Aα(
−→
Kr,s) = αDeg(−→Kr,s) + (1− α)A(

−→
Kr,s),

where Deg(−→Kr,s) is the outdegree diagonal matrix of order (r + s) and A(
−→
Kr,s) is the adjacency matrix of order (r + s) of

the digraph. We have

Aα(
−→
Kr,s) = αDeg(−→Kr,s) + (1− α)A(

−→
Kr,s)

= α



s 0 · · · 0 0 · · · 0
0 s · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · s 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0


+ (1− α)



0 0 · · · 0 1 · · · 1
0 0 · · · 0 1 · · · 1
...

... . . . ...
... . . . ...

0 0 · · · 0 1 · · · 1
0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0


= α

(
sIr 0r×s

0s×r 0s×s

)
+ (1− α)

(
0r×r Jr×s

0s×r 0s×s

)

=

(
αsIr (1− α)Jr×s

0s×r 0s×s

)
.

Therefore, the Aα-spectrum of −→Kr,s is Spec(Aα(
−→
Kr,s)) =

{
αs(r), 0(s)

}
.

Remark 2.1. When r = 1 and s = n − 1, the complete bipartite digraph −→K1,n−1 is a directed star. The Aα-spectrum of
Aα(
−→
K1,n−1) can be directly calculated from the spectrum of Aα(

−→
Kr,s) by setting r = 1 and s = n− 1 in the formula given in

Theorem 2.3.

3. Aα-Energy of digraphs

Gou et al. [7] defined the generalized adjacency energy or Aα-energy for graphs. We extend this concept to digraphs.

Definition 3.1. Let D be a digraph with generalized adjacency eigenvalues z1, z2, . . . , zn. We define the Aα-energy E(Aα(D))

of D as

E(Aα(D)) =

n∑
i=1

|Re(zi)| ,

where Re(zi) denotes the real part of the eigenvalue zi.

Example 3.1. Let −→Pn be the directed path. By Theorem 2.1, the Aα-spectrum of Aα(
−→
Pn) is {α(n−1), 0}. Therefore, the Aα-

energy is given as

E(Aα(
−→
Pn)) =

n∑
i=1

|Re(zi)| = |α|+ |α|+ · · ·+ |α|+ |0| = (n− 1)α.

Remark 3.1. For α = 0, the Aα-energy of the directed path −→Pn reduces to the energy of the path as computed by Pena and
Rada. [12]

Example 3.2. Let−→Kr,s be the complete bipartite digraph. By Theorem 2.3, Aα-spectrum of Aα(
−→
Kr,s) is given by {αs(r), 0(s)}.

Therefore,

E(Aα(
−→
Kr,s)) =

n∑
i=1

|Re(zi)| = |αs|+ |αs|+ · · ·+ |αs|+ |0|+ |0|+ · · ·+ |0| = rsα.

Remark 3.2. The Aα-energy of the directed star −→K1,n−1 is (n− 1)α. Notably, this value coincides with the Aα-energy of the
directed path −→Pn, as established in Example 3.1.

24



S. Pirzada and S. Mushtaq / Discrete Math. Lett. 16 (2025) 21–28 25

Now, we obtain the Aα-energy of the directed cycle −→Cn.

Theorem 3.1. The Aα-energy of the directed cycle −→Cn is given by
n−1∑
k=0

∣∣∣∣α+ (1− α) cos

(
2πk

n

)∣∣∣∣ .
Proof. By Theorem 2.2, the Aα-spectrum of −→Cn is given by{

α, α+ (1− α)ω, α+ (1− α)ω2, · · · , α+ (1− α)ωn−1
}
,

where ω = e2πi/n is a primitive n-th root of unity. We have

zk = α+ (1− α)e
2πik
n , k = 0, 1, . . . , n− 1.

The real part of zk is then given by

Re(zk) = α+ (1− α) cos

(
2πk

n

)
, k = 0, 1, . . . , n− 1.

Therefore,

E(Aα(
−→
Cn)) =

n∑
i=1

|Re(zi)| =
n−1∑
k=0

∣∣∣∣α+ (1− α) cos

(
2πk

n

)∣∣∣∣ .

Corollary 3.1. For α = 0, the Aα-energy of the directed cycle −→Cn reduces to the energy calculated from the adjacency matrix
of the directed cycle, as given by Pirzada and Bhat [14].

Next, we determine the value of the Aα-energy of the directed cycle −→Cn for 1
2 ≤ α ≤ 1.

Theorem 3.2. If 1
2 ≤ α ≤ 1, then the Aα-energy of the directed cycle −→Cn is nα.

Proof. From Theorem 3.1, we know that

E(Aα(
−→
Cn)) =

n−1∑
k=0

∣∣∣∣α+ (1− α) cos

(
2πk

n

)∣∣∣∣ .
For 1

2 ≤ α ≤ 1, we claim that α+ (1− α) cos
(
2πk
n

)
≥ 0. Since −1 ≤ cos 2πk

n ≤ 1, consider the case when cos 2πk
n = −1 so that

α + (1 − α) cos
(
2πk
n

)
= α + (1 − α)(−1) = 2α − 1. This expression is non-negative if α ≥ 1

2 . Therefore, for 1
2 ≤ α ≤ 1, the

claimed inequality holds. Thus,

E(Aα(
−→
Cn)) =

n−1∑
k=0

∣∣∣∣α+ (1− α) cos

(
2πk

n

)∣∣∣∣
=

n−1∑
k=0

(
α+ (1− α) cos

(
2πk

n

))

=

n−1∑
k=0

α+ (1− α)

n−1∑
k=0

cos

(
2πk

n

)
.

Since,
∑n−1

k=0 cos(
2πk
n ) = 0, it follows that E(Aα(

−→
Cn)) = nα.

Remark 3.3. We observe that the Aα-energy of the directed cycle −→Cn is an increasing function of α for 1
2 ≤ α ≤ 1. This

follows directly from the fact that E(Aα(
−→
Cn)) = nα, which is a linear function of α in this range.

Next, we obtain an upper bound for the Aα-energy of the directed cycle for 0 ≤ α < 1
2 .

Theorem 3.3. For α ≥ 0, the Aα-energy of the directed cycle −→Cn satisfies

E(Aα(
−→
Cn)) ≤


nα+ 2 cot π

n if n = 4m,

nα+ csc π
2n if n = 4m+ 1 or n = 4m+ 3,

nα+ 2 csc π
n if n = 4m+ 2.

Moreover, equality holds if and only if α = 0.
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Proof. By Theorem 3.1, we have

E(Aα(
−→
Cn)) =

n−1∑
k=0

∣∣∣∣α+ (1− α) cos

(
2πk

n

)∣∣∣∣
=

n−1∑
k=0

∣∣∣∣α+ cos

(
2πk

n

)
− α cos

(
2πk

n

)∣∣∣∣
=

n−1∑
k=0

∣∣∣∣α(
1− cos

(
2πk

n

))
+ cos

(
2πk

n

)∣∣∣∣
≤

n−1∑
k=0

∣∣∣∣α(
1− cos

(
2πk

n

))∣∣∣∣+ n−1∑
k=0

∣∣∣∣cos(2πk

n

)∣∣∣∣ . (1)

Since α ≥ 0 and (1− cos
(
2πk
n

)
) ≥ 0, it follows that

E(Aα(
−→
Cn)) ≤

n−1∑
k=0

α

(
1− cos

(
2πk

n

))
+

n−1∑
k=0

∣∣∣∣cos(2πk

n

)∣∣∣∣
=

n−1∑
k=0

α− α

n−1∑
k=0

cos

(
2πk

n

)
+

n−1∑
k=0

∣∣∣∣cos(2πk

n

)∣∣∣∣
= nα+

n−1∑
k=0

∣∣∣∣cos(2πk

n

)∣∣∣∣ ,
where the last equality follows from

∑n−1
k=0 cos

(
2πk
n

)
= 0. In [14], Pirzada and Bhat have shown that

n−1∑
k=0

∣∣∣∣cos(2πk

n

)∣∣∣∣ =

2 cot π

n if n ≡ 0 (mod 4),

csc π
2n if n ≡ 1 (mod 4) or n ≡ 3 (mod 4),

2 csc π
n if n ≡ 2 (mod 4).

Thus, it follows that

E(Aα(
−→
Cn)) ≤


nα+ 2 cot π

n if n ≡ 0 (mod 4),

nα+ csc π
2n if n ≡ 1 (mod 4) or n ≡ 3 (mod 4),

nα+ 2 csc π
n if n ≡ 2 (mod 4).

We now determine the equality case. Note that the inequality above becomes equality if and only if equality holds in each
of the triangle inequalities (1). This happens if and only if the two terms inside each modulus are non-negative multiples
of each other or one of them is zero, that is, α(1 − cos

(
2πk
n

)
) · cos

(
2πk
n

)
≥ 0, for all k = 0, 1, 2, . . . , n − 1. Since α ≥ 0 and

1 − cos
(
2πk
n

)
≥ 0, this condition reduces to cos

(
2πk
n

)
≥ 0, for all k = 0, 1, 2, . . . , n − 1. However, this is not possible for all

k = 0, 1, 2, . . . , n− 1. Therefore, the only possibility is α = 0. This completes the proof.

In [12], Pena and Rada defined the energy of a digraph as

E(D) =

n∑
i=1

|Re(λi)| ,

where λ1, λ2, . . . , λn are the adjacency eigenvalues of the digraph D and Re(λi) denotes the real part of λi.
In the following theorem, we establish an upper bound for the Aα-energy of a k-regular digraph D of order n, expressed

in terms of α, k, n, and the energy of the digraph E(D). Here, we note that a discrete digraph can be regarded as a regular
digraph with degree of regularity equal to zero.

Theorem 3.4. If D is a k-regular digraph of order n and α ∈ [0, 1], then

E(Aα(D)) ≤ αkn+ (1− α)E(D). (2)

Moreover, the equality holds if and only if D satisfies one of the following (a) D is a discrete digraph (b) α = 0 or 1 (equality
holds for all k-regular digraphs).
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Proof. Let λ1, λ2, . . . , λn be the adjacency eigenvalues ofD. IfD is k-regular, thenDeg(D) = kIn. The generalized adjacency
matrix of D is given by Aα(D) = αDeg(D)+(1−α)A(D), which simplifies to Aα(D) = αkIn+(1−α)A(D). From this equality,
it follows that the Aα-spectrum of D is {αk + (1− α)λ1, . . . , αk + (1− α)λn} . We know that E(Aα(D)) =

∑n
i=1 |Re(zi)| ,

where zi = αk + (1− α)λi. Therefore, we have

E(Aα(D)) =

n∑
i=1

|Re(αk + (1− α)λi)| =
n∑

i=1

(|αk + (1− α)Re(λi)|) .

Applying the triangle inequality and noting that αk is constant for all i, we obtain

E(Aα(D)) ≤
n∑

i=1

|αk|+
n∑

i=1

(1− α) |Re(λi)| = nαk + (1− α)E(D).

This proves (2). Assume that the equality holds in (2). Then equality holds in each triangle inequality, and the equality
in the triangle inequality holds if and only if for each i the quantities αk and (1 − α)Re(λi) have the same sign or one
of them is zero. Since αk ≥ 0, therefore (1 − α)Re(λi) ≥ 0. This implies that Re(λi) ≥ 0, for all i = 1, 2, . . . , n. Since∑n

i=1 Re(λi) = 0, it follows that Re(λi) = 0, for all i = 1, 2, . . . , n. As A(D) is a non-negative matrix, the spectral radius ρ(D)

is a non-negative eigenvalue of D. Moreover, |λi| ≤ ρ(D), for all λi ∈ spec(D). From the above, we conclude that λi = 0, for
all i = 1, 2, . . . , n, which implies that D is an acyclic digraph [Proposition 2.1, [16]]. Among acyclic digraphs, only regular
digraph is a discrete digraph, which we consider as a zero regular digraph. Conversely, if α ∈ [0, 1] and D is a discrete
digraph, then both sides of (2) are equal to zero. If α = 0 then both sides of (2) are equal to E(D). If α = 1, then both sides
of the (2) are equal to kn, so equality holds for all k regular digraphs.

In [16], Rada extended McClelland’s inequality to digraphs and derived a sharp upper bound for the energy of a digraph
in terms of the number of arcs, which is given by

E(D) ≤
√

n(a+ c2)

2
, (3)

where c2 denotes the number of closed walks of length 2. Equality holds if and only if D ∼=
⊕n/2

i=1

←→
K2, the direct sum of n

2

copies of the symmetric complete digraph on 2 vertices.
As an immediate consequence of Theorem 3.4 and inequality (3), we obtain the following upper bound for the Aα-energy

of a k-regular digraph.

Corollary 3.2. If D is a k-regular digraph with n vertices, a arcs and c2 closed walks of length 2, then

E(Aα(D)) ≤ αkn+ (1− α)

√
n(a+ c2)

2
.

Moreover, the equality holds if and only if (a) D is a discrete digraph (b) α = 0 and D ∼=
⊕n/2

i=1

←→
K2 (c) α = 1 and D is any

k-regular digraph

Remark 3.4. Setting α = 0 in Corollary 3.2, we recover inequality (3) given by Rada for the energy of a digraph as stated
in [16].

4. Conclusion

By setting α = 0 and α = 1
2 in the results derived in Sections 2 and 3, we recover the corresponding spectrum, energy, and

bounds for the adjacency matrix A(D) and the signless Laplacian matrix Q(D), respectively. Most of the results of Sections
2 and 3 have already been studied in the context of the adjacency matrix A(D) and/or the signless Laplacian matrix Q(D).
Therefore, our findings serve as a generalization of these results. Furthermore, by replacing D with ←→G , where ←→G is
the symmetric digraph corresponding to the underlying graph G, we obtain analogous results for graphs. While we have
determined the value of the Aα-energy of the directed cycle −→Cn for 1

2 ≤ α ≤ 1, the value of E(Aα(
−→
Cn)) for 0 < α < 1

2 remains
unknown.
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