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Abstract

To flatten a permutation π, expressed in standard cycle form, is to remove the parentheses enclosing the cycles and consider
the resulting permutation π′ in the one-line notation. Then π is said to avoid a pattern τ in the flattened sense if π′ avoids
τ in the usual sense. In this paper, we consider the problem of avoidance of one or more classical patterns of length three
in the flattened sense by derangements, which extends earlier results on flattened permutations and other structures. We
establish explicit formulas enumerating each corresponding avoidance class of derangements according to the number of
cycles. As a consequence of our results, we obtain the equivalences 213 ≈ 312 and 231 ≈ 321 for derangements in the
flattened sense. To establish the generating function formula in the case of the pattern 321, we make use of the kernel
method and Lagrange inversion.
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1. Introduction

A permutation π ∈ Sn is said to be in standard cycle form if its (disjoint) cycles are written from left to right in increasing
order of smallest elements, with the smallest element first in each cycle. Let flat(π) denote the permutation in one-
line notation obtained from π by erasing each pair of parentheses enclosing the cycles of π and considering the resulting
sequence, which is referred to as the flattening of π. For example, if π ∈ S8 has disjoint cycles (24), (315) and (876),
then its standard cycle form is (153)(24)(687) and flat(π) = 15324687. The notion of a flattened permutation was originally
introduced by Carlitz [5] in his definition of a certain kind of inversion statistic on Sn; see also [15], where further properties
of this statistic are studied. The idea of flattening was later extended independently by Callan [4] to finite set partitions,
where here the brackets enclosing the blocks of a partition of [n] = {1, . . . , n}, expressed in standard form, are erased and
the resulting sequence is considered. Analogous notions of flattening have since been defined on other discrete structures,
such as Catalan words [1], Stirling permutations [3] and parking functions [7].

Let ρ = ρ1 · · · ρn and τ = τ1 · · · τm be positive integral sequences such that the distinct letters of τ comprise [ℓ] for some
ℓ ≥ 1. Then ρ is said to contain the pattern τ in the classical sense if there exists a subsequence of ρ isomorphic to τ . That
is, there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such that ρij x ρik if and only if τj x τk for all j, k ∈ [m] and x ∈ {<,>,=}.
Otherwise, ρ is said to avoid τ . In analogy with the definition given for flattened set partitions [4], we say that ρ contains
or avoids τ in the flattened sense if ρ′ = flat(ρ) contains or avoids τ in the usual sense. For example, let ρ = 641935872 ∈ S9

in the one-line notation whose standard cycle form is given by (1653)(249)(78). Then ρ contains 312 in the flattened sense,
as ρ′ = 165324978 is seen to contain 312 in the usual sense (as witnessed by each of the four subsequences 634, 624, 534, 524
of ρ′). On the other hand, ρ itself contains several occurrences of 231, whereas ρ′ avoids 231. In general, the containment
(or avoidance) of a pattern τ by a permutation ρ in one sense is not related to its containment (or avoidance) in the other.

Recall that a derangement is a permutation of [n] without fixed points, i.e., each of its cycles has length at least two.
Let D(n) denote the set of all derangements of [n]. Here, we consider the problem of avoiding a pattern of length three
by members of D(n) in the flattened sense. This extends prior work concerning the pattern avoidance problem in the
flattened sense as well as related statistics (such as number of subwords or runs) on other discrete structures, including
permutations [10, 12], set partitions [4, 11], Catalan words [1], Stirling permutations [3] and parking functions [7]. By
contrast, in [13], the set of distinct permutations that arise as flattened partitions of [n] are considered (instead of the
original partitions themselves), and the statistic recording the number of increasing runs on this set is studied.
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Our results also extend work related to the avoidance of classical patterns by derangements in the usual sense. Robert-
son et al. in [14] enumerated the members of D(n) that avoid a single pattern of length three when represented in the
one-line notation, which was extended to the avoidance any subset of S3 in [9]. Among the results, it was shown in [14]
that members of D(n) avoiding 321 in the usual sense are enumerated by the n-th Fine number (see also [6]). By contrast,
we find here that the generating function enumerating members of D(n) that avoid 321 in the flattened sense satisfies a
third, instead of a second, order algebraic equation.

Given a set S of patterns, let DS(n) denote the subset of D(n) whose members avoid each pattern in S in the flattened
sense and let dS(n) = |DS(n)|. Let dS(n; y) denote the distribution of the statistic on DS(n) recording the number of cycles
(marked by y). Note dS(n; 1) = dS(n), by the definitions. When S is a single pattern τ , we will write τ in place of S in the
preceding quantities.

The organization of this paper is as follows. In the next section, we find explicit expressions and/or generating function
formulas for dτ (n; y), and in particular dτ (n) (upon setting y = 1), for each pattern τ of length three. In particular,
it is shown the Wilf-equivalence 213 ≈ 312 for derangements in the flattened sense via a bijective proof. The case of
avoiding 321 is apparently more difficult and here we make use of an auxiliary array and the kernel method, along with
Lagrange inversion, to establish a formula for the (ordinary) generating function of d321(n; y). Next, we employ a system
of intertwined linear recurrences to prove the result for d231(n; y) and find 231 ≈ 321, with both this equivalence and the
preceding one respecting the number of cycles. In the third section, we briefly describe the main results concerning the
avoidance of two or more patterns in S3, where here the generating function for dS(n; y) works out to be rational in each
case of S ⊆ S3 for which |S| ≥ 2. Several entries from the OEIS [16] arise as enumerators of DS(n) when |S| ≥ 2, and hence
we obtain new combinatorial interpretations for these sequences in terms of pattern-avoiding derangements.

2. Avoiding a single pattern of length three

Let fn(y) =
∑⌊n/2⌋

i=0

(
n−i
i

)
yi for n ≥ 0 denote the n-th Fibonacci polynomial. Our first result concerns the patterns 123 and

132.

Proposition 2.1. The distribution for the statistic tracking the number of cycles (marked by y) on D123(n) and D132(n) is
given by y and yfn−2(y), respectively, for all n ≥ 2.

Proof. Let π ∈ D(n), where n ≥ 2. In order for π′ = flat(π) to avoid 123, we must have π′ = 1n(n−1) · · · 2, since the first cycle
in standard form always starts with 1. The only member of D(n) whose flattened form is as given is π = (1n(n − 1) · · · 2),
which yields the first assertion. On the other hand, we have that π avoids 132 if and only if π′ = 12 · · ·n. Recall that fn(y)
gives the distribution for the number of dominos on the set Fn consisting of the (linear) square-and-domino tilings of length
n (see, e.g., [2, Chapter 3]). Let F ′

n denote the subset of Fn whose members start with a domino. Then members of D132(n)

are in one-to-one correspondence with the tilings in F ′
n by putting a domino for the first two letters of each cycle (going

from left to right) and a square for each additional letter occurring within a cycle. Thus, the statistic on D132(n) tracking
the number of cycles corresponds to the parameter on F ′

n recording the number of dominos, with the latter distribution
being given by yfn−2(y) for all n ≥ 2, which implies the second statement.

For the sake of brevity, let us denote d312(n; y) by an = an(y) for n ≥ 2 and let Cn = 1
n+1

(
2n
n

)
denote the n-th Catalan

number. Then the sequence an is given recursively as follows.

Lemma 2.1. If n ≥ 3, then

an = an−1 + yCn−2 +

n−4∑
i=0

(yCi + (1 + y)Ci+1) an−i−2, n ≥ 3, (1)

with a2 = y.

Proof. Let π ∈ D312(n), where we may assume n ≥ 4, as (1) is seen to hold for n = 3 since a3 = 2y. Note first that any letter
occurring to the left of 2 within π′ = flat(π) must be less than any letter to the right of 2 in order to avoid 312. Thus, we
may decompose π′ as 1α2β, where α consists of all letters in [3, i+2] for some i ≥ 0. Note that there are Ci ways in which to
order the letters within α as they must avoid 312. We now consider several cases based on the position of 2 within π and let
C denote the first cycle of π. If 2 starts a cycle of π, then 1α comprises C and is of length i+1 for some i ≥ 1. Independent of
the choice of α, there are an−i−1 possibilities concerning the arrangement of the elements of [i+3, n]∪{2}, which comprise
the remaining cycles of π. Considering all possible 1 ≤ i ≤ n− 3 then yields a contribution of y

∑n−3
i=1 Cian−i−1 towards the

overall weight an, where the initial factor of y accounts for the cycle 1α.
If 2 does not start a cycle and is not the last letter of C, then 0 ≤ i ≤ n− 3 and we get a contribution of

∑n−3
i=0 Cian−i−1

in this case. Note that no extra y factor is required here, upon treating the terminal section 2γ of C, where γ is nonempty
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by assumption, as the first cycle in the derangement of [i+3, n]∪{2} accounted for by an−i−1. Finally, if 2 is the final letter
of C and π does not consist of a single cycle, then we must have 0 ≤ i ≤ n− 4 in this case since then at least two elements
must occur to the right of 2 in π′. This yields y

∑n−4
i=0 Cian−i−2 additional possibilities, where the factor of y again accounts

for the first cycle of π. Finally, if π consists of a single cycle ending in 2, then there are yCn−2 possibilities. Combining all of
the prior cases yields an=y

∑n−3
i=1 Cian−i−1+

∑n−3
i=0 Cian−i−1+y

∑n−4
i=0 Cian−i−2+yCn−2, which may be rewritten as (1).

Let A(x, y) =
∑

n≥2 an(y)x
n and C(x) =

∑
n≥0 Cnx

n = 1−
√
1−4x
2x , which will often be denoted by C.

Theorem 2.1. The generating function enumerating the members of either D213(n) or D312(n) for n ≥ 2 according to the
number of cycles is given by

A(x, y) =
x2yC(x)

1 + xy − x(1 + y + xy)C(x)
. (2)

Moreover, the number of members of D213(n) or D312(n) with exactly m cycles is given by
m−1∑
j=0

2m+ j

n+ j

(
m− 1

j

)(
2n− 2m+ j − 1

n− 2m

)
, 1 ≤ m ≤ ⌊n/2⌋.

Proof. Multiplying both sides of (1) by xn, and summing over all n ≥ 3, we obtain A(x, y) − x2y = xA(x, y) + x2y(C − 1)

+x2yCA(x, y) + x(1 + y)(C − 1)A(x, y), which yields (2). By the fact xC2 = C − 1, we have

A(x, y) =
x2yC2

1− y(C − x− 1)
=

x2yC2

1− x2yC2(C + 1)
=

∑
m≥1

C2m(C + 1)m−1x2mym.

Hence, if n ≥ 2 and 1 ≤ m ≤ ⌊n/2⌋, we then get

[xnym]A(x, y) =

m−1∑
j=0

(
m− 1

j

)
[xn−2m]C2m+j =

m−1∑
j=0

2m+ j

n+ j

(
m− 1

j

)(
2n− 2m+ j − 1

n− 2m

)
,

as desired, where we have applied [18, Equation 2.5.16] in the second equality.
To complete the proof, we define a bijection f = fn inductively as follows for all n ≥ 2 between D312(n) and D213(n),

which preserves the number of cycles. We may take fn to be the identity if n = 2, 3, so assume n ≥ 4. Let π ∈ D312(n) and
first suppose 2 does not lie in the same cycle as 1, with (1α) denoting the first cycle of π. Then π avoiding 312 implies α

consists of all the letters in [3, i] for some 3 ≤ i ≤ n− 1. Note α itself is a 312-avoiding permutation in the usual sense on
its alphabet. Let g be any of the known bijections between 312- and 213-avoiding permutations of the same length and we
apply g to α. We then add n− i to each letter in g(α) to obtain a 213-avoiding permutation of the set [n− i+3, n], which we
denote by γ. Next, we apply fn−i+1 to the partial derangement π− (1α), and express the resulting derangement, which we
denote by ρ, in standard cycle form using the letters in [2, n− i+ 2] instead of [i+ 1, n] ∪ {2}. Then let f(π) = (1γ)ρ, which
is seen to belong to D213(n) and has the same number of cycles as π. We define f similarly if 2 occurs in the first cycle,
where 2 is to maintain its relative position within the first cycle of f(π). One may verify that f yields the desired bijection
between D312(n) and D213(n).

2.1. The case 321
Given n ≥ 2 and 2 ≤ i ≤ n, let D321(n, i) denote the subset of D321(n) whose members end in i. Let us denote the distribution
d321(n; y) by dn = dn(y) and let dn,i = dn,i(y) be the restriction of dn to D321(n, i) for 2 ≤ i ≤ n. Note dn =

∑n
i=2 dn,i, by the

definitions.
In order to write a recurrence for dn,i, it is convenient to consider its restriction to a particular subset of D321(n, i) as

follows. Given n ≥ 3 and 2 ≤ i ≤ n, let wn,i = wn,i(y) denote the restriction of dn,i to those members of D321(n, i) whose
final cycle has length at least three, the subset of which we denote by W(n, i), and let wn =

∑n
i=2 wn,i. For example, when

n = 4, we have d4,2 = y, d4,3 = d4,4 = 2y+ y2 and w4,2 = y, w4,3 = w4,4 = 2y. Put zero for dn,i and wn,i in all cases where the
enumerated set of derangements is empty.

The dn,i and wn,i are given recursively as follows.

Lemma 2.2. If n ≥ 3, then

dn,i = dn−1,i +

i−1∑
j=2

(dn−1,j + ywn−1,j), 2 ≤ i ≤ n− 1, (3)

wn,i =

i∑
j=2

dn−1,j , 2 ≤ i ≤ n− 1, (4)

with dn,n = dn−1 + ywn−1 and wn,n = dn−1 for n ≥ 3 and d2 = d2,2 = y and w2 = w2,2 = 0.
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Proof. The initial conditions for n = 2 are clear, so assume n ≥ 3. To show (3), let π ∈ D321(n, i) where i ∈ [2, n − 1]

and consider the penultimate letter j in flat(π). If j = n, then the final cycle of π must be of length at least three, and
hence deleting n in this case results in a member of D321(n − 1, i). Note i < j < n is not possible due to the avoidance
of 321, so assume i ≥ 3 with 2 ≤ j ≤ i − 1. If j does not start a cycle, then we may delete i (as it is preceded by j with
j < i), resulting in a member of ∪i−1

j=2D321(n − 1, j) and thus yielding a contribution of
∑i−1

j=2 dn−1,j towards the weight.
Otherwise, j and i comprise a 2-cycle, in which case we delete i and add j to the end of the penultimate cycle of π to obtain
a new derangement π∗. Note that π∗ ∈ W(n− 1, j), since the final cycle of π∗ has length at least three. Thus, we obtain a
contribution of y

∑i−1
j=2 wn−1,j , where the factor of y accounts for the terminal cycle (ji) which was deleted from π in forming

π∗. Combining each of the prior cases then implies (3). Note that deleting i from π ∈ W(n, i) where i ∈ [2, n− 1] results in
an arbitrary member of ∪i−1

j=2D321(n − 1, j) when j < i, whereas deleting n from π yields a member of D321(n − 1, i) when
j = n. Combining these two cases implies (4). Finally, the formulas for dn,n and wn,n follow by similar arguments and the
definitions of dn and wn.

Define the generating functions D(x, y; v) =
∑

n≥2

(∑n
i=2 dn,iv

i−2
)
xn and W (x, y; v) =

∑
n≥3

(∑n
i=2 wn,iv

i−2
)
xn. Then

D(x, y; v) satisfies the following functional equation.

Lemma 2.3. We have

K(v)

v(1− v)2
D(x/v, y; v) =

x2y

v2
+

x(v − xy − 1)

v(1− v)2
D(x, y; 1)− xy

v(1− v)
W (x, y; 1), (5)

where K(v) = v3 − 2v2 + (x+ 1)v − x2y − x.

Proof. First note

∑
n≥4

n−1∑
i=3

i−1∑
j=2

dn−1,jx
nvi−2=

∑
n≥4

xn
n−2∑
j=2

dn−1,j

n−1∑
i=j+1

vi−2=
∑
n≥3

xn
n−1∑
j=2

dn−1,j
vj−1 − vn−2

1− v
=

xv

1− v
D(x, y; v)− x

v(1− v)
D(xv, y; 1)

and, similarly,

y
∑
n≥4

n−1∑
i=3

i−1∑
j=2

wn−1,jx
nvi−2 =

xyv

1− v
W (x, y; v)− xy

v(1− v)
W (xv, y; 1).

By the formula for dn,n, we also have

∑
n≥3

dn,nx
nvn−2 =

∑
n≥3

xnvn−2
n∑

i=2

dn−1,i + y
∑
n≥4

xnvn−2
n−1∑
i=2

wn−1,i =
x

v
D(xv, y; 1) +

xy

v
W (xv, y; 1).

Thus, multiplying both sides of (3) by xnvi−2, summing over all n ≥ 3 and 2 ≤ i ≤ n − 1, and taking into account the
contribution from the dn,n terms yields

D(x, y; v) = x2y + xD(x, y; v) +
xv

1− v
D(x, y; v)− x

v(1− v)
D(xv, y; 1) +

xyv

1− v
W (x, y; v)− xy

v(1− v)
W (xv, y; 1)

+
x

v
D(xv, y; 1) +

xy

v
W (xv, y; 1)

= x2y +
x

1− v
(D(x, y; v)−D(xv, y; 1)) +

xy

1− v
(vW (x, y; v)−W (xv, y; 1)) . (6)

By (4) and the formula for wn,n, we also have

W (x, y; v) =
∑
n≥3

n−1∑
i=2

wn,ix
nvi−2 +

∑
n≥3

wn,nx
nvn−2 =

∑
n≥3

n−1∑
i=2

i∑
j=2

dn−1,jx
nvi−2 +

∑
n≥3

n−1∑
j=2

dn−1,jx
nvn−2

=
∑
n≥3

n−1∑
j=2

n−1∑
i=j

dn−1,jx
nvi−2 +

∑
n≥2

n∑
j=2

dn,jx
n+1vn−1

=
x

v(1− v)
(vD(x, y; v)−D(xv, y; 1)) +

x

v
D(xv, y; 1) =

x

1− v
(D(x, y; v)−D(xv, y; 1)) . (7)

Substituting (7) into (6) yields, after some algebra,(
1− x

1− v
− x2yv

(1− v)2

)
D(x, y; v) = x2y − x− xv + x2yv

(1− v)2
D(xv, y; 1)− xy

1− v
W (xv, y; 1),

which may be rewritten to give (5), upon replacing x with x/v.
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Note that the kernel equation K(v) = 0 in (5) has three solutions v0, v1, v2, where

v0 = x+ (1 + y)x2 + · · · ,

v1 = 1 +

√
1 + 4y − 1

2
x+

1 + 3y − (1 + y)
√
1 + 4y

2
√
1 + 4y

x2 + · · · ,

v2 = 1−
√
1 + 4y + 1

2
x− 1 + 3y + (1 + y)

√
1 + 4y

2
√
1 + 4y

x2 + · · · .

Taking v = v1 or v = v2 in (5), and solving the resulting system in D(x, y; 1) and W (x, y; 1), we obtain

D(x, y; 1) =
−(v1v2 − v1 − v2 + 1)

v1v2
and W (x, y; 1) =

−(v1v2xy − v1v2 − xy + v1 + v2 − 1)

v1v2y
.

By the kernel equation, we have v0v1v2 = x(1 + xy) and v0 + v1 + v2 = 2. Hence, rewriting the formulas above for D(x, y; 1)

and W (x, y; 1) in terms of v0 yields the following result.

Lemma 2.4. We have

D(x, y; 1) =
v0(1− v0)

x(1 + xy)
− 1 and W (x, y; 1) =

v0(xy − 1 + v0)

xy(1 + xy)
+

1− xy

y
, (8)

where v0 = x+ (1 + y)x2 + · · · is a solution of K(v) = v3 − 2v2 + (x+ 1)v − x2y − x = 0.

Theorem 2.2. The generating function D(x, y; 1) is given explicitly by

D(x, y; 1) =
xy

1 + xy

∑
n≥1

n∑
j=0

1

n

(
n

j

)(
2n+ j

n− 1

)
xn+jyj . (9)

Moreover, the number of members of D321(a+ b) with exactly a cycles is given by
∑a

j=1
(−1)a−j

b

(
b

j−1

)(
2b+j−1
b−1

)
for 1 ≤ a ≤ b.

Proof. Let f(z) = z3 + xz2 − x2yz + x4y2 and let p denote a root to the kernel equation K(v) = 0. Note that

−f(p(1− p)− x) = p6 − 3p5 + (2x+ 3)p4 − (4x+ 1)p3 − x(xy − x− 2)p2 + x2(y − 1)p− x3y(1 + xy)

= (p3 − 2p2 + (x+ 1)p− x(1 + xy))(p3 − p2 + xp+ x2y) = K(p)(p3 − p2 + xp+ x2y) = 0,

and hence the roots r to f(z) = 0 are given by r = vi(1 − vi) − x for 0 ≤ i ≤ 2. Let s = r
xy , and note z = s is a

root of z = x + z2 + yz3. Then h = s − x satisfies h = (h + x)2(1 + y(h + x)), and applying the Lagrange inversion
formula (see, e.g., [17, Section 5.4] or [18, Section 5.1]), we have h = s − x =

∑
n≥1

∑n
j=0

1
n

(
n
j

)(
2n+j
n−1

)
xn+j+1yj . Note that

xy(h+ x) = vi(1− vi)− x for some 0 ≤ i ≤ 2, and upon observing that vi(1− vi)− x has x coefficient zero only for i = 0, we
must have xy(h+ x) = v0(1− v0)− x. By (8), we then get

D(x, y; 1) =
v0(1− v0)− x− x2y

x(1 + xy)
=

yh

1 + xy
=

xy

1 + xy

∑
n≥1

n∑
j=0

1

n

(
n

j

)(
2n+ j

n− 1

)
xn+jyj ,

as desired. Note that the coefficient of xc+1yd+1 where c > d ≥ 0 in D(x, y; 1) is given by
∑d

j=0
(−1)d−j

c−d

(
c−d
j

)(
2c−2d+j
c−d−1

)
, which

is zero if c ≤ 2d, by [8, Identity 5.25], as it should be on combinatorial grounds. Thus, the only other possible nonzero
coefficients of D(x, y; 1) are those of the form xa+bya for some 1 ≤ a ≤ b, in which case we get

[xa+bya]D(x, y; 1) =

a∑
j=1

(−1)a−j

b

(
b

j − 1

)(
2b+ j − 1

b− 1

)
,

which yields the second statement and completes the proof.

By the second statement in Theorem 2.2, we have

d321(n) =

⌊n/2⌋∑
m=1

m∑
j=1

(−1)m−j

n−m

(
n−m

j − 1

)(
2n− 2m+ j − 1

n−m− 1

)
, n ≥ 2,

with this sequence apparently not occurring in [16]. By (5) and (8), we have

D(x, y; v) =
xy(v̂20 + (v − 2)v̂0 + x2yv + x)

(1 + xyv)(1− x− (2− x+ x2y)v + v2)
, (10)

where v̂0 denotes v0 with x replaced by xv. Using (10) and the kernel equation, we obtain the next result for general v.
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Theorem 2.3. The generating function g(v) = D(x, y; v) satisfies

x4y3 + x2y2(3x2yv − xv + 3x− 1)g(v) + xy(3x2yv − 2xv + 2v + 3x− 2)(xyv + 1)g2(v)

− ((1− v)2 − x(1− v + xyv))(xyv + 1)2g3(v) = 0.

Moreover, expressing the solution to the preceding cubic equation trigonometrically, we obtain

D(x, y; v) =
xy

[
2
√
Q cos

(
1
3 arccos

(
R

2Q
√
Q

))
+ 3x2yv − 2xv + 2v + 3x− 2

]
3(1 + xyv)(1− x− (2− x+ x2y)v + v2)

, |v| < 1,

where Q = 1 − 2(2x + 1)v − (6x2y − x2 − 7x − 1)v2 + 3x(3xy − 1)v3 and R = 2 − 6(2x + 1)v − 3(6x2y − 5x2 − 11x − 2)v2

+(36x3y + 2x3 + 45x2y − 33x2 − 30x− 2)v3 + 9x(3x3y2 − 3x2y − 6xy + 2x+ 1)v4 + 27x2yv5.

To establish a comparable trigonometric formula for D(x, y; v) when v = 1, we first observe

v0(1− v0) =
2x

3

(
1−

√
3y + 1 cos

(
1

3
arccos

(
27xy2 + 9y + 2

2(3y + 1)3/2

)
− 2π

3

))
. (11)

Note that (11) can be shown by demonstrating that the right-hand side quantity satisfies the same minimal equation,
namely, p3 − 2xp2 + x2(1 − y)p + x3y(1 + xy) = 0, as the vi(1 − vi), and hence it must equal vi(1 − vi) for some 0 ≤ i ≤ 2.
Since only v0(1− v0) has leading coefficient x in its Taylor expansion like the right-hand side, equality (11) follows. Using
(8) and (11), we then obtain the following formula for D(x, y; 1).

Corollary 2.1. The generating function g = D(x, y; 1) counting the members of D321(n) for n ≥ 2 according to the number
of cycles is given by

D(x, y; 1) =
2
√
3y + 1 cos

(
1
3 arccos

(
27xy2+9y+2
2(3y+1)3/2

)
+ π

3

)
− 3xy − 1

3(xy + 1)

and satisfies the algebraic equation x2y2 + y(3x2y + 2x− 1)g + (xy + 1)(3xy + 1)g2 + (xy + 1)2g3 = 0.

In particular, the generating function f = D(x, 1; 1) of the sequence d321(n) for n ≥ 2 is given by

D(x, 1; 1) =
4 cos

(
1
3 arccos

(
27x+11

16

)
+ π

3

)
− 3x− 1

3(x+ 1)
,

with x2 + (x+ 1)(3x− 1)f + (x+ 1)(3x+ 1)f2 + (x+ 1)2f3 = 0.

2.2. The case 231
In this subsection, we show that 231 is Wilf-equivalent to 321 for derangements in the flattened sense. Let bn = bn(y)

denote the distribution d231(n; y). To assist in finding a formula for the generating function of bn, we consider its restriction
vn = vn(y) to those members of D231(n) whose final cycle has length at least three, the subset of which we will denote by
V(n). The sequences bn and vn satisfy the following system of intertwined recurrences.

Lemma 2.5. If n ≥ 4, then

bn = 2bn−1 + y(vn−1 + bn−2) + (1/y)

n−2∑
i=2

(bi + yvi)(bn−i + ybn−i−1), n ≥ 4, (12)

vn = bn−1 + vn−1 + bn−2 + 2yvn−2 + (1/y)

n−3∑
i=2

(bi + yvi)(vn−i + yvn−i−1), n ≥ 4, (13)

with b1 = v1 = v2 = 0, b2 = y and b3 = v3 = 2y.

Proof. We may assume n ≥ 4, the initial conditions being clear. To show (12), let π ∈ D231(n) and we consider the position
of n within π′ = flat(π). Note that any letter occurring to the left of n within π′ is smaller than any occurring to the right
in order to avoid 231, and hence those to the left comprise the set [i] for some i ∈ [n − 1]. If n occurs as the second letter
of π′, then the weight of such π is seen to be ybn−2 + bn−1, upon considering whether or not the 2-cycle (1n) occurs. If n is
the last letter of π′, then the weight is yvn−1 + bn−1, upon considering whether or not n belongs to a 2-cycle, since in cases
when it does, we may add i occurring in the terminal cycle (in) to the end of the penultimate cycle of π and delete (in),
which accounts for the extra factor of y.
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So assume that the set of letters occurring to the left of n within π′ is [i] for some 2 ≤ i ≤ n − 2 and we consider the
following four subcases:

(a) n is second in its cycle, but not last,
(b) n occurs in a 2-cycle,
(c) n is neither second nor last in its cycle,
(d) n is last in its cycle, but does not occur in a 2-cycle.

Note that i ≥ 2 implies n cannot appear within the first cycle of π in case (a) and that the 2-cycle (1n) cannot occur in (b),
with these excluded cases already having been treated above. Likewise, n cannot occur as the final element of π′ in either
(b) or (d). One then obtains the following respective contributions to the overall weight from the four cases: (a)

∑n−2
i=3 vibn−i,

(b) y
∑n−3

i=3 vibn−i−1, (c) (1/y)
∑n−2

i=2 bibn−i, (d)
∑n−3

i=2 bibn−i−1.
To show (a), note that if the cycle C containing n starts j, n for some j ∈ [2, i], then appending j to the end of the cycle

preceding C results in a member of V(i), with all elements of π to the right of and including n within π′ being enumerated
by bn−i (where here we treat n as the “smallest” element, with its cycle comprising C − {j}). Note i ≥ 3 in this case
since n being second in its cycle implies at least three letters must occur to the left of n in π′. Considering all possible
3 ≤ i ≤ n− 2 then gives a contribution of

∑n−2
i=3 vibn−i. If (b) holds, then we delete the 2-cycle (jn) and append j to the cycle

preceding C. Note that 3 ≤ i ≤ n − 3 in (b) since n is neither second nor last in π′. Considering all possible i then yields
y
∑n−3

i=3 vibn−i−1, where the extra factor of y accounts for the deleted cycle (jn). Comparable arguments may be given for
the contributions from (c) and (d), where in these cases no letter needs to be moved forward to the cycle preceding C as n

here is not the second letter of C. Note that the summation formulas in cases (a) and (b) above may be started at i = 2

since v2 = 0, while those in (b) and (d) may go up to i = n − 2 as b1 = 0. Thus, the formulas from (a) and (b) combine to
give

∑n−2
i=2 vi(bn−i + ybn−i−1), whereas those from (c) and (d) give (1/y)

∑n−2
i=2 bi(bn−i + ybn−i−1). Combining cases (a)–(d)

then yields (1/y)
∑n−2

i=2 (bi + yvi)(bn−i + ybn−i−1). Taking this expression together with the cases above where n was either
second or last in π′ implies (12).

A comparable argument applies to (13). Let π ∈ V(n), where n ≥ 4. Note first that π for which n occurs second in π′

contribute yvn−2+vn−1 towards the overall weight vn, upon considering whether or not the 2-cycle (1n) occurs, whereas π for
which n is last in π′ contribute bn−1. So assume n is neither second nor last within π′. We obtain from the cases (a)–(d) above
respective contributions towards the weight of (a) yvn−2 +

∑n−3
i=3 vivn−i, (b) y

∑n−4
i=3 vivn−i−1, (c) bn−2 + (1/y)

∑n−3
i=2 bivn−i

and (d)
∑n−4

i=2 bivn−i−1. Note that the initial yvn−2 term in (a) accounts for the case in which the final cycle of π is (in(n−1))

for some i ∈ [2, n− 2], whereas the bn−2 term in (c) accounts for π in which the last cycle has the form (jαn(n− 1)), where
α is nonempty. Thus (a)–(d), taken together, yields

bn−2 + yvn−2 + (1/y)

n−3∑
i=2

(bi + yvi)(vn−i + yvn−i−1),

and combining with the first two cases above gives (13).

Theorem 2.4. The patterns 231 and 321 are equivalent in the flattened sense on derangements, with this equivalence
respecting the number of cycles.

Proof. Let B(x, y) =
∑

n≥2 bn(y)x
n and V (x, y) =

∑
n≥3 vn(y)x

n, which we will denote by B and V , respectively. Multiplying
both sides of (12) and (13) by xn, and summing over n ≥ 4, we obtain

B = x2y + 2xB + xy(xB + V ) +
1 + xy

y
B(B + yV ), (14)

V = x3y + x(1 + x)B + x(1 + 2xy)V +
1 + xy

y
V (B + yV ). (15)

Multiplying both sides of (14) by V and both sides of (15) by B, and comparing the resulting equations, gives

xyV + yV 2 = x2yB + (1 + x)B2 − (1− xy)BV. (16)

Solving for V in terms of B in (14), and substituting into (16), we obtain after several algebraic steps,

x2y2 − y(1− 2x− 3x2y)B + (1 + xy)(1 + 3xy)B2 + (1 + xy)2B3 = 0.

A comparison with Corollary 2.1 now shows B(x, y) = D(x, y; 1), which implies the result.

We were unable to find a direct bijective proof of the preceding theorem, which we leave as an open question.
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3. Avoiding two or more patterns of length three

In this section, we state without proof the results concerning the avoidance of two or more patterns of length three. Our
work is shortened somewhat in this regard by noting that if S ⊆ S3 contains 123 or 132, where |S| ≥ 2, then dS(n; y) may
easily be obtained from the proof of Proposition 2.1. In cases when S contains 123, then dS(n; y) is trivial, either being 0
or y for all n ≥ 4 depending on whether or not S also contains 132 or 321. On the other hand, if S contains 132, but not
123, then dS(n; y) = d132(n; y) = yfn−2(y) for n ≥ 2. Thus, we may restrict attention to S not containing 123 or 132.

Our first result features several pattern pairs for which dS(n; y) satisfies a recurrence of second order.

Theorem 3.1. If n ≥ 1, then dS(n; y) = jn and d{231,321}(n; y) = kn, where S = {213, 231}, {231, 312} or {312, 321}, jn is
given recursively by jn = 2jn−1 + 2yjn−2 for n ≥ 3, with j1 = 0, j2 = y, and kn is given by kn = 2kn−1 + 3ykn−2 for n ≥ 3,
with the same initial conditions.

We have that jn and kn for n ≥ 1 reduce when y = 1 to the sequences A002605[n − 1] and A015518[n − 1], respectively,
in [16]. Note that the formulas in Theorem 3.1 may be obtained directly by arguing that dS(n; y) satisfies the stated
two-term recurrence in each case, upon considering the relative position of certain elements (such as 2 or n) within a
pattern-restricted derangement expressed in standard cycle form.

There are the following generating function formulas in the cases when S = {213, 312} or {213, 321}.

Theorem 3.2. We have ∑
n≥2

d{213,312}(n; y)x
n =

x2y(1− x)

(1− 2x)(1− x− x2y)
, (17)

∑
n≥2

d{213,321}(n; y)x
n =

x2y(1− x+ x2 + x3y)

(1− x)(1− x− x2y)2
. (18)

Upon taking y = 1 in (17), we have d{213,312}(n) = 2n−1 − Fn, where Fn = Fn−1 + Fn−2 for n ≥ 2 denotes the n-th Fibonacci
number with F0 = 0, F1 = 1. Hence, d{213,312}(n) coincides with A027934[n − 1] for all n ≥ 1. Note that it is also possible
to show this result directly by defining a bijection between the members of D{213,312}(n) and compositions of n containing
at least one even part. Further, from the form of the generating functions in (17) and (18), it is seen that the sequences
d{213,312}(n; y) and d{213,321}(n; y) satisfy third and fifth order linear recurrences, respectively.

We have the following result for avoiding more than two patterns of length three, where fn(y) =
∑⌊n/2⌋

k=0

(
n−k
k

)
yk for

n ≥ 0, with f−1(y) = 0.

Theorem 3.3. If n ≥ 2, then dT (n; y) = fn(y) − 1, d{213,231,321}(n; y) =
(n−1)yfn−1(y)+2ny2fn−2(y)

1+4y , d{231,312,321}(n; y) = ℓn and
d{213,231,312,321}(n; y) = y(fn−2(y)+ fn−3(y)), where T = {213, 231, 312} or {213, 312, 321} and ℓn denotes the sequence defined
recursively by ℓn = ℓn−1 + (2y + 1)ℓn−2 + yℓn−3 for n ≥ 4, with ℓ1 = 0, ℓ2 = y, ℓ3 = 2y.

Let Ln = Ln−1 + Ln−2 and pn = 2pn−1 + pn−2 for n ≥ 2 denote the n-th Lucas and n-th Pell number, respectively,
where L0 = 2, L1 = 1, p0 = 0, p1 = 1. Taking y = 1 in Theorem 3.3 implies dT (n) = Fn+1 − 1, d{213,231,321}(n) =
nLn−Fn

5 , d{231,312,321}(n) = pn−1 and d{213,231,312,321}(n) = Fn, where T is as above. Note that Fn+1 − 1 and nLn−Fn

5 occur
respectively as A000071[n − 1] and A001629[n] in [16], and hence one obtains new combinatorial interpretations for these
sequences like others in this section in terms of flattened derangements.
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