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Abstract

Let G be a graph and (T, B) be a tree-decomposition of G, where B = (Bt)icv(r). The chromatic number of (T,B) is
the maximum chromatic number among the subgraphs induced by B;. The tree-chromatic number of G is the minimum
chromatic number of the tree-decompositions of G. Huynh, Reed, Wood, and Yepremyan [2019-20 MATRIX Annals, Springer,
Cham, 2021, 489-498] posed a Hadwiger-type conjecture for tree-chromatic number, and asked for a short proof that every
Kg-minor-free graph has tree-chromatic number at most 5 even if it is allowed to use the Four Color Theorem. The present
article answers this question by observing that, assuming Hadwiger’s Conjecture for K,-minor-free graphs, every K,;1-
minor-free graph has tree-chromatic number at most p. More precisely, only path-decompositions of graphs are considered.
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1. Introduction

In this paper, we only consider simple, undirected, and finite graphs. We use the terminology given in [3]. Given a graph G
and U C V(G), G[U] denotes the subgraph induced by U. For a graph G and a vertex v € V(G), N¢(v) is the neighborhood of
vin G, and N¢[v] is the closed neighborhood of v, i.e., Ng[v] = Ng(v)U{v}. For U C V(G), we write Ng(U) = U,y Na(v)\U
and Ng[U] = U,y Nelv]. Let G and H be graphs. We say that G contains an H-minor if a graph isomorphic to H can
be obtained from a subgraph of G by repeating contractions of an edge. If G does not contain an H-minor, we call G
H-minor-free.

A tree-decomposition of a graph G is a pair (T, B), where T' is a tree and B = (B;);cv () is a family of subsets of V' (G)
indexed by the vertices of T satisfying the following conditions:

* For any uwv € E(G), there exists t € V(T') such that u,v € B;.
* For any v € V(G), the set {t € V(T) | v € B;} induces a nonempty subtree of T

If T is a path, the tree-decomposition (7', B) is called a path-decomposition.

In [8], Seymour introduced the tree-chromatic number and the path-chromatic number of a graph as follows. Let G be
a graph and (7', B) be a tree-decomposition of G, where B = (B;);cv(r). The chromatic number of (T, B) is the maximum
chromatic number of G[B;] among ¢t € V(T). The tree-chromatic number (respectively, path-chromatic number) of G,
denoted by tree-x(G) (respectively, path-x(G)), is the minimum chromatic number of the tree-decompositions (respectively,
path-decompositions) of G. By definition, any graph G satisfies tree-x(G) < path-x(G) < x(G).

Hadwiger’s Conjecture [4] is well-known in graph theory:

Conjecture 1.1. For any integer p > 0, every K,1-minor-free graph G satisfies x(G) < p.

However, Conjecture 1.1 is extremely difficult and is proved only for p < 5 (see [7]). Considering this situation, Huynh,
Reed, Wood, and Yepremyan [6] posed Conjecture 1.1 for tree-chromatic number and path-chromatic number, respectively:

Conjecture 1.2. For any integer p > 0, every K,.1-minor-free graph G satisfies tree-x(G) < p.

Conjecture 1.3. For any integer p > 0, every K,1-minor-free graph G satisfies path-x(G) < p.
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Note that if Conjecture 1.3 is true, then Conjecture 1.2 is true. In [6], Huynh et al. showed that Conjecture 1.2 is more
tractable than Conjecture 1.1 by giving a proof of Conjecture 1.2 for p = 4 without using the Four Color Theorem [1, 2].
They also asked the following question in Section 3 of [6]:

Question 1.1. Can we give a short proof that Conjecture 1.2 holds for p = 5 even if we are allowed to use the Four Color
Theorem?

We answer Question 1.1 by observing that the following theorem holds:
Theorem 1.1. Let p > 0 be an integer. If Conjecture 1.1 holds for p, then Conjecture 1.3 holds for p + 1.

Since Conjecture 1.1 holds for p < 5 (see [7]), Conjecture 1.3 holds for p < 6 by Theorem 1.1. In particular, Conjecture 1.1
for p = 4 is equivalent to the Four Color Theorem by the classical Wagner’s Theorem [9], thus we give an answer to
Question 1.1.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we prepare the following simple path-decomposition introduced by Huynh and Kim [5]. Let
G be a graph of order n and given an enumeration (vy,...,v,) of V(G). For each i with 1 < i < n, put

Xi = Nc;[{vl,...,vi}] \ {’Ul,... ,Uifl}.

It is easy to check that (P,, (X;)1<i<n) is a path-decomposition of G. Now, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. For an integer p > 0, let G be a K, -minor-free graph of order n. We may assume that
G is connected. First, we choose a vertex v; of G arbitrarily. Next, for each ¢ with 1 < ¢ < n, we repeatedly choose

a vertex v; so that G[{v1,...,v;}] is connected. For an enumeration (v1,...,v,) of V(G) obtained by this procedure, let
X, = Neg[{v1,...,v;}] \ {v1,...,vi—1}. Then, (P,, (Xi)i<i<n) is a path-decomposition of G.
To complete the proof, we show that each G[X;] is p-colorable for i = 1,...,n. To this end, it suffices to show

X(GIXi\{vi}]) <p—1.

Let r be the largest integer such that G[X; \ {v;}] contains a K,.-minor. By the definition of X, every vertex in X; \ {v;}

is adjacent to some vertex in {vy,...,v;}. Thus, by contracting G[{vy,...,v;}] to a single vertex and G[X; \ {v;}] to K., we
find a K, -minor in G[X; U {v1,...,v;—1}]. Since G[X; U {v1,...,v;—1}] is K,41-minor-free, we have r +1 < p + 1, i.e.,
r < p. This implies that G[X; \ {v;}] is K,-minor-free. Since we have assumed that Conjecture 1.1 holds for p, we obtain
X(GIXi\ {vi}]) <p -1 O
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