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Abstract

Let G be a graph and (T,B) be a tree-decomposition of G, where B = (Bt)t∈V (T ). The chromatic number of (T,B) is
the maximum chromatic number among the subgraphs induced by Bt. The tree-chromatic number of G is the minimum
chromatic number of the tree-decompositions ofG. Huynh, Reed, Wood, and Yepremyan [2019-20 MATRIX Annals, Springer,
Cham, 2021, 489–498] posed a Hadwiger-type conjecture for tree-chromatic number, and asked for a short proof that every
K6-minor-free graph has tree-chromatic number at most 5 even if it is allowed to use the Four Color Theorem. The present
article answers this question by observing that, assuming Hadwiger’s Conjecture for Kp-minor-free graphs, every Kp+1-
minor-free graph has tree-chromatic number at most p. More precisely, only path-decompositions of graphs are considered.
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1. Introduction

In this paper, we only consider simple, undirected, and finite graphs. We use the terminology given in [3]. Given a graph G

and U ⊆ V (G), G[U ] denotes the subgraph induced by U . For a graph G and a vertex v ∈ V (G), NG(v) is the neighborhood of
v in G, and NG[v] is the closed neighborhood of v, i.e., NG[v] = NG(v)∪{v}. For U ⊆ V (G), we write NG(U) =

⋃
v∈U NG(v)\U

and NG[U ] =
⋃

v∈U NG[v]. Let G and H be graphs. We say that G contains an H-minor if a graph isomorphic to H can
be obtained from a subgraph of G by repeating contractions of an edge. If G does not contain an H-minor, we call G

H-minor-free.
A tree-decomposition of a graph G is a pair (T,B), where T is a tree and B = (Bt)t∈V (T ) is a family of subsets of V (G)

indexed by the vertices of T satisfying the following conditions:

• For any uv ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Bt.

• For any v ∈ V (G), the set {t ∈ V (T ) | v ∈ Bt} induces a nonempty subtree of T .

If T is a path, the tree-decomposition (T,B) is called a path-decomposition.
In [8], Seymour introduced the tree-chromatic number and the path-chromatic number of a graph as follows. Let G be

a graph and (T,B) be a tree-decomposition of G, where B = (Bt)t∈V (T ). The chromatic number of (T,B) is the maximum
chromatic number of G[Bt] among t ∈ V (T ). The tree-chromatic number (respectively, path-chromatic number) of G,
denoted by tree-χ(G) (respectively, path-χ(G)), is the minimum chromatic number of the tree-decompositions (respectively,
path-decompositions) of G. By definition, any graph G satisfies tree-χ(G) ≤ path-χ(G) ≤ χ(G).

Hadwiger’s Conjecture [4] is well-known in graph theory:

Conjecture 1.1. For any integer p > 0, every Kp+1-minor-free graph G satisfies χ(G) ≤ p.

However, Conjecture 1.1 is extremely difficult and is proved only for p ≤ 5 (see [7]). Considering this situation, Huynh,
Reed, Wood, and Yepremyan [6] posed Conjecture 1.1 for tree-chromatic number and path-chromatic number, respectively:

Conjecture 1.2. For any integer p > 0, every Kp+1-minor-free graph G satisfies tree-χ(G) ≤ p.

Conjecture 1.3. For any integer p > 0, every Kp+1-minor-free graph G satisfies path-χ(G) ≤ p.
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Note that if Conjecture 1.3 is true, then Conjecture 1.2 is true. In [6], Huynh et al. showed that Conjecture 1.2 is more
tractable than Conjecture 1.1 by giving a proof of Conjecture 1.2 for p = 4 without using the Four Color Theorem [1, 2].
They also asked the following question in Section 3 of [6]:

Question 1.1. Can we give a short proof that Conjecture 1.2 holds for p = 5 even if we are allowed to use the Four Color
Theorem?

We answer Question 1.1 by observing that the following theorem holds:

Theorem 1.1. Let p > 0 be an integer. If Conjecture 1.1 holds for p, then Conjecture 1.3 holds for p+ 1.

Since Conjecture 1.1 holds for p ≤ 5 (see [7]), Conjecture 1.3 holds for p ≤ 6 by Theorem 1.1. In particular, Conjecture 1.1
for p = 4 is equivalent to the Four Color Theorem by the classical Wagner’s Theorem [9], thus we give an answer to
Question 1.1.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we prepare the following simple path-decomposition introduced by Huynh and Kim [5]. Let
G be a graph of order n and given an enumeration (v1, . . . , vn) of V (G). For each i with 1 ≤ i ≤ n, put

Xi = NG[{v1, . . . , vi}] \ {v1, . . . , vi−1}.

It is easy to check that (Pn, (Xi)1≤i≤n) is a path-decomposition of G. Now, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. For an integer p > 0, let G be a Kp+1-minor-free graph of order n. We may assume that
G is connected. First, we choose a vertex v1 of G arbitrarily. Next, for each i with 1 ≤ i ≤ n, we repeatedly choose
a vertex vi so that G[{v1, . . . , vi}] is connected. For an enumeration (v1, . . . , vn) of V (G) obtained by this procedure, let
Xi = NG[{v1, . . . , vi}] \ {v1, . . . , vi−1}. Then, (Pn, (Xi)1≤i≤n) is a path-decomposition of G.

To complete the proof, we show that each G[Xi] is p-colorable for i = 1, . . . , n. To this end, it suffices to show

χ(G[Xi \ {vi}]) ≤ p− 1.

Let r be the largest integer such that G[Xi \ {vi}] contains a Kr-minor. By the definition of Xi, every vertex in Xi \ {vi}
is adjacent to some vertex in {v1, . . . , vi}. Thus, by contracting G[{v1, . . . , vi}] to a single vertex and G[Xi \ {vi}] to Kr, we
find a Kr+1-minor in G[Xi ∪ {v1, . . . , vi−1}]. Since G[Xi ∪ {v1, . . . , vi−1}] is Kp+1-minor-free, we have r + 1 < p + 1, i.e.,
r < p. This implies that G[Xi \ {vi}] is Kp-minor-free. Since we have assumed that Conjecture 1.1 holds for p, we obtain
χ(G[Xi \ {vi}]) ≤ p− 1.
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