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Abstract

Let G be a graph with n vertices. For i = 1, 2, . . . , n, let di be the degree of vertex vi in G. The atom-bond sum-connectivity
(ABS) matrix of G is an n × n matrix whose (i, j)-entry is equal to

√
(di + dj − 2)/(di + dj) if the vertices vi and vj are

adjacent, and 0 otherwise. The ABS spectral radius of G, denoted by ρ1(G), is the largest eigenvalue of the ABS matrix of
G. Let Cn be the cycle graph with n vertices. Let U1

n be the unicyclic graph with n vertices and maximum degree n− 1. For
a unicyclic graph G with n ≥ 17 vertices, we prove that ρ1(Cn) ≤ ρ1(G) ≤ ρ1(U

1
n), where the left equality holds if and only

if G ∼= Cn and the right equality holds if and only if G ∼= U1
n.
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1. Introduction

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). Denote by dG(vi) (or di for short) the degree of
vertex vi in G. The girth of a graph G, denoted by g(G), is the length of the shortest cycle contained in G. The star, cycle,
and path with n vertices are denoted by Sn, Cn, and Pn, respectively. A unicyclic graph is a simple connected graph with
an equal number of vertices and edges. Clearly, a unicyclic graph contains a unique cycle. Let U1

n denote the unicyclic
graph obtained from Sn by adding an edge. We use G − u and G − uv to denote the graphs that arise from G by deleting
the vertex u ∈ V (G) and the edge uv ∈ E(G), respectively. The spectral radius, denoted by λ1(G), is the largest eigenvalue
of the adjacency matrix A(G) of G.

The atom-bond sum-connectivity (or ABS, for short) index of a graph G, introduced by Ali, Furtula, Redžepović, and
Gutman [1] as a topological index, is defined as

ABS(G) =
∑

vivj∈E(G)

√
di + dj − 2

di + dj
.

The study of the ABS index is a subject of increasing interest, both in pure and applied mathematics. The mathematical
properties of the ABS index have been extensively studied; for example, see the survey paper [2].

Generally, a matrix keeps much more structural information about the graph than an index. Hence, extended adjacency
matrices constructed by topological indices have been proposed and extensively studied, such as the Randić matrix [7], the
geometric-arithmetic matrix [12], the harmonic matrix [8], the ABC matrix [5], the inverse sum indeg matrix [14] and
etc. Naturally, the spectral properties (including energy, spectral radius, and Estrada index) of the extended adjacency
matrices are among the popular topics in chemical graph theory.

In 2024, Lin et al. [9] introduced the atom-bond sum-connectivity matrix (ABS matrix, for short) from an algebraic view-
point. The ABS matrix of a graphG, denoted byA(G), is an n×nmatrix whose (i, j)-entry is equal to

√
(di + dj − 2)/(di + dj)

if vivj ∈ E(G), and 0 otherwise. The largest eigenvalue of the ABS matrix of G is called the ABS spectral radius, denoted
by ρ1(G). Lin et al. [9] showed that the spectral radius of the ABS matrix is useful in predicting certain physicochemical
properties of octane isomers. Moreover, they studied an extremal problem for the ABS spectral radius of trees and proved
that ρ1(Pn) ≤ ρ1(Tn) ≤ ρ1(Sn), where the left equality (respectively, right equality) holds if and only if Tn is isomorphic to
the path Pn (respectively, the star Sn). For research on other spectral properties of the ABS matrix, see [10,11,13]. Along
this line, it is natural to study the ABS spectral radius of unicyclic graphs. In this paper, we determine the upper and
lower bounds of the ABS spectral radius for unicyclic graphs, and characterize the respective extremal graphs.
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2. Preliminaries

Lemma 2.1 (see [3]). Suppose that A = (ai,j) and B = (bi,j) are two n× n nonnegative symmetric matrices. If A ≥ B, i.e.,
ai,j ≥ bi,j for all i, j, then λ1(A) ≥ λ1(B). Furthermore, if B is irreducible and A ̸= B, then λ1(A) > λ1(B).

Lemma 2.2 (see [3]). If M ′ is a principal sub-matrix of a real symmetric matrix M , then λ1(M) > λ1(M
′).

Lemma 2.3 (see [9]). Let Tn be a tree with n ≥ 9 vertices. Then

ρ1(Pn) < ρ1(Cn) < ρ1(Tn).

It is known that the first five largest values of the spectral radius of unicyclic graphs with n vertices are achieved by
the graphs shown in Figure 2.1, and λ1(U

1
n) > λ1(U

2
n) > · · · > λ1(U

5
n).

Lemma 2.4 (see [6]). The characteristic polynomials of the adjacency matricesA(U3
n), A(U4

n), andA(U5
n) are given as follows:

PA(U
3
n) = xn−6[x6 − nx4 − 2x3 + (2n− 6)x2 + 2x− n+ 5],

PA(U
4
n) = xn−4(x4 − nx2 + 2n− 8),

PA(U
5
n) = xn−4(x4 − nx2 − 2x+ 3n− 13).

U 2
nU 1

n U 3
n U 4

n U 5
n

Figure 2.1: The unicyclic graphs U1
n, U2

n, U3
n, U4

n, and U5
n.

3. Main results

Theorem 3.1. Let f(x, y) be an increasing function in both x and y for x ≥ 1 and y ≥ 1. Define a matrix Af(G) = (wij),
called the weighted adjacency matrix of a connected graph G, whose (i, j)-entry is wij = f(di, dj) if vivj ∈ E(G) and wij = 0

otherwise. Let λw(G) be the largest eigenvalue of Af(G). Then λw(G) > λw(G− vivj) and λw(G) > λw(G− vi).

Proof. Since f(x, y) is increasing in both x and y for x ≥ 1 and y ≥ 1, we have Af(G) ≥ Af(G − vivj). If G − vivj is
connected, then Af(G − vivj) is irreducible. By Lemma 2.1, we have λw(G) > λw(G − vivj). If G − vivj is disconnected,
then by Lemma 2.2, we have λw(G) > λw(G− vivj).

Consider a vertex vi ∈ V (G) and let Afvi(G) be the principal submatrix of Af(G) obtained by deleting the row and
column related to vi. Since f(x, y) is increasing in both x and y for x ≥ 1 and y ≥ 1, we have Afvi(G) ≥ Af(G − vi). By
Lemma 2.2, we have λw(G) > λw(Afvi(G)) ≥ λw(G− vi). This completes the proof.

Since f(x, y) =
√

1− 2
x+y is strictly increasing in both x and y for x ≥ 1 and y ≥ 1. By Theorem 3.1, we obtain the

following corollary:

Corollary 3.1. Let G be a connected graph with n vertices. Then ρ1(G) > ρ1(G− uv) and ρ1(G) > ρ1(G− u).

Theorem 3.2. Let G be a connected graph with n ≥ 9 vertices. If G is neither Pn nor Cn, then

ρ1(G) > ρ1(Cn) > ρ1(Pn).

Proof. Let T be a spanning tree of G. By Corollary 3.1, we have

ρ1(G) ≥ ρ1(T ).

Note that ρ1(Cn) =
√

1
2 λ1(Cn) =

√
2. Since G is neither Pn nor Cn, by Lemma 2.3, we have

ρ1(G) ≥ ρ1(T ) >
√
2 > ρ1(Pn)

for n ≥ 9. This completes the proof.
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Theorem 3.3. Let G be a unicyclic graph with n ≥ 5 vertices. Then

ρ1(G) ≥
√
2

with equality if and only if G ∼= Cn.

Proof. If n ≥ 9, then by Theorem 3.2, the result holds. In what follows, assume that 5 ≤ n ≤ 8. Let Tn be a tree with n

vertices. If ∆(Tn) ≥ 4, then the star S5 must be a subgraph of Tn. By Corollary 3.1, we have

ρ1(Tn) ≥ ρ1(S5) =

√
12

5
>

√
2.

If ∆(Tn) = 3, then we consider all trees for n = 5, 6, 7, 8, depicted in Figure 3.1 (taken from Table A4 of [4]). Table 1 gives
the ABS spectral radius of these trees. Note that the ABS spectral radius of each of these trees except T 6, T 11, T 12, T 23,
and T 46, is greater than

√
2. Let U∗ be the set of graphs obtained from T 6, T 11, T 12, T 23, and T 46, by adding an edge. If

G ∈ U∗, then by simple numerical calculations, we have ρ1(G) >
√
2. In summary, for n ≥ 5, we have ρ1(G) ≥

√
2 with

equality if and only if G ∼= Cn.

Figure 3.1: All trees with n vertices and ∆ = 3, where 5 ≤ n ≤ 8.

Table 1: The spectral radius of A(T i) for trees T i depicted in Figure 3.1.

Trees ρ1 Trees ρ1 Trees ρ1 Trees ρ1

T 6 1.3198 T 20 1.4832 T 38 1.5802 T 43 1.4922

T 10 1.4884 T 21 1.4606 T 39 1.5744 T 44 1.4677

T 11 1.3956 T 22 1.4354 T 40 1.5568 T 45 1.4520

T 12 1.3730 T 23 1.3975 T 41 1.5195 T 46 1.4102

T 19 1.5352 T 36 1.6261 T 42 1.4687 - -

Theorem 3.4. Let G be a unicyclic graph with n ≥ 17 vertices. Then

ρ1(G) ≤ ρ1(U
1
n)

with equality if and only if G ∼= U1
n (see Figure 2.1).
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Proof. If g(G) ≥ 4, then di + dj ≤ n for vivj ∈ E(G). By Lemma 2.4, we have

PA(U
4
n) = xn−4(x4 − nx2 + 2n− 8).

Thus, we have
λ1(G) ≤ λ1(U

4
n) ≤

√
n− 1

for n ≥ 7 and g(G) ≥ 4, where U4
n is given in Figure 2.1. Since f(x, y) =

√
1− 2

x+y is strictly increasing in both x and y for
x ≥ 1 and y ≥ 1, by Lemma 2.1 and Corollary 3.1, we have

ρ1(G) <

√
n− 2

n
λ1(G) ≤

√
n− 2

n
λ1(U

4
n) ≤

√
(n− 1)(n− 2)

n
= ρ1(Sn) < ρ1(U

1
n)

for n ≥ 7 and g(G) ≥ 4.
If g(G) = 3, then di + dj ≤ n+ 1 for vivj ∈ E(G). Then, there are three cases.

Case 1. g(G) = 3 and di + dj ≤ n. By Lemma 2.4, we have

PA(U
3
n) = xn−6[x6 − nx4 − 2x3 + (2n− 6)x2 + 2x− n+ 5].

Thus, we have λ1(G) ≤ λ1(U
3
n) ≤

√
n− 1 for n ≥ 11. Since f(x, y) =

√
1− 2

x+y is strictly increasing in both x and y for x ≥ 1

and y ≥ 1, by Lemma 2.1 and Corollary 3.1, we have

ρ1(G) <

√
n− 2

n
λ1(G) ≤

√
n− 2

n
λ1(U

3
n) ≤

√
(n− 1)(n− 2)

n
= ρ1(Sn) < ρ1(U

1
n)

for n ≥ 11.

Case 2. g(G) = 3, di + dj = n+ 1, G ≇ U1
n and G ≇ U2

n, where U1
n and U2

n are shown in Figure 2.1. By Lemma 2.4, we have

PA(U
5
n) = xn−4(x4 − nx2 − 2x+ 3n− 13).

Thus, we have λ1(G) ≤ λ1(U
5
n) ≤

√
n− 2 for n ≥ 17. Since f(x, y) =

√
1− 2

x+y is strictly increasing in both x and y for x ≥ 1

and y ≥ 1, by Lemma 2.1 and Corollary 3.1, we have

ρ1(G) <

√
n− 1

n+ 1
λ1(G) ≤

√
n− 1

n+ 1
λ1(U

5
n) ≤

√
(n− 1)(n− 2)

n+ 1
< ρ1(Sn) < ρ1(U

1
n)

for n ≥ 17.

Case 3. G ∼= U2
n. By direct computation, we obtain the characteristic polynomial of the ABS matrix A(U2

n):

PABS(U
2
n, x) = det(xIn −A(U2

n))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −
√

n−2
n −

√
n−1
n+1 0 −

√
n−3
n−1 · · · −

√
n−3
n−1

−
√

n−2
n x −

√
3
5 0 0 · · · 0

−
√

n−1
n+1 −

√
3
5 x −

√
1
2 0 . . . 0

0 0 −
√

1
2 x 0 · · · 0

−
√

n−3
n−1 0 0 0 x · · · 0

...
...

...
...

... . . . ...
−
√

n−3
n−1 0 0 0 0 · · · x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

xn−4

10n(n− 1)(n+ 1)

[
(10n3 − 10n)x4 − (10n4 − 29n3 + 10n2 + 109n+ 20)x2

−4(n− 1)
√
15(n4 − 2n3 − n2 + 2n)x+ 11n4 − 61n3 + 45n2 + 127n+ 10

]
.
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Let f(x) = (10n3−10n)x4−(10n4−29n3+10n2+109n+20)x2−4(n−1)
√

15(n4 − 2n3 − n2 + 2n)x+11n4−61n3+45n2+127n+10.

We observe that f ′(x) > 0 for x ∈ [
√
n− 3,+∞). Thus, f(x) is strictly increasing on [

√
n− 3,+∞). Since

f
(√

n− 3
)
= 10n4 −

(
4

√
15(n− 1)(n− 2)(n− 3)

n(n+ 1)
+ 78

)
n3 + 26n2 +

(
4

√
15(n− 1)(n− 2)(n− 3)

n(n+ 1)
+ 344

)
n+ 70 < 0

and

f

(√
(n− 1)(n− 2)

n

)
=

1

n

(
10n5 −

(
4n2 − 12n+ 8

n

√
15

n+ 1
+ 58

)
n4 − 36n3

+

(
4n2 − 12n+ 8

n

√
15

n+ 1
+ 324

)
n2 − 28n− 80

)
> 0

for n ≥ 9, it follows that
√
n− 3 < ρ1(U

2
n) <

√
(n− 1)(n− 2)

n
= ρ1(Sn).

By Corollary 3.1, we have ρ1(U
2
n) < ρ1(Sn) < ρ1(U

1
n).

Combining the conclusions of all three cases, we obtain ρ1(G) ≤ ρ1(U
1
n) with equality if and only if G ∼= U1

n.
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[2] A. Ali, I. Gutman, B. Furtula, I. Redžepović, T. Došlić, Z. Raza, Extremal results and bounds for atom-bond sum-connectivity index, MATCH Commun. Math. Comput.

Chem. 92 (2024) 271–314.
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