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Abstract
Given a finite Coxeter system (W,S), we enumerate Boolean intervals in its weak Bruhat order by expressing them in
terms of independent sets in its Coxeter graph ΓW . In particular, we show that the number of Boolean intervals of rank k
is ik(ΓW ) · |W | / 2k, where ik(ΓW ) is the number of independent sets of size k in ΓW . Specializing to type An, we recover
work of Tenner [J. Combin. 13 (2022) 135–165], as well as Elder, Harris, Kretschmann, and Martı́nez Mori [J. Combin. 16
(2025) 65–89]. We derive analogous specialized results for types Cn and Dn, together with related generating functions and
new connections to known integer sequences.
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1. Introduction

Given a poset P , it is a common problem to determine if (and if so, how many times) a particular poset T appears as an
interval (subposet) within P . For an introduction to this area of mathematics we point the interested reader to [11, Chapter
5]. In this work, we settle this when P is the weak order of a (finite) Coxeter group and T is a Boolean poset.

We begin by recalling some definitions. Let W be a Coxeter group with generating set S forming the Coxeter system
(W,S). Let m be its associated Coxeter matrix, of dimensions |S| × |S|, whose entries are defined by m(s, s′) = m(s′, s) and
m(s, s′) = 1 if and only if s = s′. Associated to a Coxeter system is an undirected labeled graph known as the Coxeter graph.

Definition 1.1. Given a Coxeter system (W,S), its Coxeter graph ΓW has vertex set S and an edge between s, s′ ∈ S if and
only if m(s, s′) ≥ 3. By convention, edges are labeled with their corresponding weight m(s, s′) only when m(s, s′) > 3.

A pair of generators s, s′ ∈ S commute if and only if they are not adjacent in ΓW .
The (right) weak order of a Coxeter group W with generating set S is a poset whose element set is W and whose cover

relations arise from the right-hand side application of a generator s ∈ S. A poset is said to be Boolean if it is isomorphic
to the poset of subsets of a set I ordered by inclusion. If |I| = k < ∞, then a Boolean poset is ranked.

Let ℓ(π) denote the length of π ∈ W (i.e., ℓ(π) is the smallest integer k such that π can be written as a product of k
generators). For π ∈ W , let

DesW (π) = {s ∈ S | ℓ(πs) = ℓ(π)− 1}

denote the (right) descent set of π. We note the classical fact, see [1] for instance, that in the case of W = An−1
∼= Sn

this definition is equivalent to the classical definition of descents in permutations where Des(π) = {i ∈ [n− 1] |πi > πi+1}.
Additionally the (right) ascent set of π ∈ W is defined as

AscW (π) = {s ∈ S | ℓ(πs) = ℓ(π) + 1}.

We will omit the subscript for both the ascent and descent sets when it is clear from context. A generator s ∈ S is said to
be in the support of π, denoted supp(π), if it appears in a minimal decomposition of π. A result of Tenner [12, Corollary
4.4] states that, in the weak order of a (not necessarily finite) Coxeter group W , an interval [π, σ] is Boolean if and only
if π−1σ is a product of commuting generators. The following is a restatement of this result using the language of descent
sets; this version plays a key role in our enumerative results.
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Theorem 1.1. The interval [π, πsi1si2 . . . sik ] is a Boolean interval in the weak order of W if and only if J = {si1 , . . . , sik}
consists of commuting generators and J ∩Des(π) = ∅.

Recall that given a graph G = (V,E), a subset S ⊆ V of its vertices is an independent set if no two vertices u, v ∈ S are
adjacent in G. We use Theorem 1.1 to establish a bijection between Boolean intervals in the weak order of a (not necessarily
finite) Coxeter group W and the collection of independent sets of an induced subgraph of its Coxeter graph ΓW .

Corollary 1.1. For any π ∈ W , the set of σ ≥ π such that [π, σ] is a Boolean interval in the weak order of W is in bijection
with the collection of independent sets in ΓW [S \Des(π)] (i.e., the induced subgraph of ΓW obtained by deleting Des(π) from
its vertex set).

Let ik(G) denote the number of independent sets of size k in G. If W is finite, then the bijection in Corollary 1.1 implies
our main enumerative result.

Theorem 1.2. If W is finite, there are ik(ΓW ) · |W | / 2k Boolean intervals of rank k in the weak order of W .

The remainder of this paper is organized as follows. In Section 2 we prove Theorem 1.2. In Section 3 we specialize this
result to Coxeter groups of types An, Cn, and Dn. For Coxeter groups of type An, we recover results given in [12] and [4].
For Coxeter groups of types Cn and Dn, we prove that the number of Boolean intervals (of all ranks) with a fixed minimal
element involves products of Fibonacci numbers and that, for type Dn, it also involves a Fibonacci-like sequence with initial
values 1 and 4 [10, A000285]. For the type Cn result see Theorem 3.2 and for the type Dn result see Theorem 3.4. We
also give formulas for the number of Boolean intervals of rank k in their weak orders; refer to Theorem 3.3 for the type
Cn result and Theorem 3.5 for the type Dn result. In Theorem 1.1 we do not assume that W is finite, or even irreducible.
Hence, in Section 4, we give formulas for the number of Boolean intervals with any given minimal element for all of the
infinite families of affine irreducible Coxeter groups, whose counts also involve products of Fibonacci numbers.

2. Results for Coxeter groups

We now turn to Theorem 1.2. Before proving the result, recall that if J ⊆ S, then WJ is the parabolic subgroup generated
by J . Define W J = {π ∈ W |Des(π) ⊆ S \ J}. It is known that W J is a system of minimal left coset representatives for
W/WJ . If W is finite, this implies |W J | = |W |/|WJ | [1, Corollary 2.4.5]. Returning to our problem, for each subset J ⊆ S

of commuting generators, we count the elements π ∈ W for which there is a Boolean interval [π, σ] with supp(π−1σ) = J .

Proof of Theorem 1.2. Let J = {si1 , si1 , . . . , sik} ⊆ S consist of any k commuting generators and let u = si1si2 · · · sik .
By Theorem 1.1, for each element π ∈ W with Des(π) ∩ J = ∅, there is a unique element σ ∈ W with σ ≥ π and interval
[π, σ] ≃ [e, u]. Note that W J is the set of elements π ∈ W for which Des(π) ∩ J = ∅, and |WJ | = 2k since the generators in
J commute. Therefore, there are |W J | = |W |/|WJ | = |W |/2k such intervals. Lastly, recall that J is any independent set of
ΓW of size k. In particular, this count is the same for any such independent set, and each distinct choice of independent
set defines distinct intervals. Therefore, we conclude that there are ik(ΓW ) · |W | / 2k Boolean intervals of rank k.

3. Specializing to Classical Coxeter Groups

We now specialize the results in Section 2 to the weak order of Coxeter groups of type An, Cn, and Dn. Throughout this
section we refer to the Coxeter graphs in Figure 3.1.

sn sn−1 sn−2 s3 s2 s1

(a) ΓAn .

sn
4
sn−1 sn−2 sn−3 s3 s2 s1

(b) ΓCn .

sn−1

s′n−1

sn−2 sn−3 s3 s2 s1

(c) ΓDn .

Figure 3.1: Coxeter graphs of classical Coxeter groups.

3.1. Boolean intervals in the weak order of An

For n ≥ 1, the Coxeter group of type An is described as follows. Let S = {s1, s2, . . . , sn} with m(si, sj) = 1 if i = j,
m(si, sj) = 3 if |i − j| = 1, and m(si, sj) = 2 if |i − j| > 1. Note that An is isomorphic to the symmetric group Sn+1. As
illustrated in Figure 3.1a, this system has a path graph Pn on n vertices as its Coxeter graph ΓAn

.
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Define the Fibonacci numbers by Fn+2 = Fn+1 + Fn, with initial values F1 = F2 = 1 as in [10, A000045]. The number
of independent sets of the path graph Pn on n vertices is known to be the Fibonacci number Fn+2. Moreover, a key insight
into our results is that the number of independent sets of a graph is the product of the number of independent sets of its
connected components. Therefore, the total number of Boolean intervals (of all possible ranks) above an element of An

is a product of Fibonacci numbers. This specialization of Theorem 1.1 recovers [4, Theorem 1.1] (which generalizes [12,
Proposition 5.9]). We state it below.

Theorem 3.1 (see Theorem 1.1 in [4]). Let π = π1π2 · · ·πn+1 ∈ An be in one-line notation. Let ΓAn
[S \ Des(π)] be the

subgraph of ΓAn
induced by deleting Des(π) from its vertex set. Partition the vertex set of ΓAn

[S \ Des(π)] into connected
components b1, b2, . . . , bk. Then, the number of Boolean intervals [π, σ] in the weak order of the Coxeter group of type An with
fixed minimal element π is

∏k
i=1 F|bi|+2, where Fℓ is the ℓth Fibonacci number and F1 = F2 = 1.

The number of independent sets of size k ofPn is known to be
(
n+1−k

k

)
[6, Proposition 1.1.iv]. Therefore, the specialization

of Theorem 1.2 to An recovers [4, Theorem 1.3].

Corollary 3.1 (see Theorem 1.3 in [4]). There are n!
2k

(
n−k
k

)
Boolean intervals of rank k in the weak order of the Coxeter

group of type An−1.

3.2. Boolean intervals in the weak order of Cn

For n ≥ 2, the Coxeter group of type Cn is described as follows. Let S = {s1, s2, . . . , sn} with m(si, sj) = 1 if i = j,
m(si, sj) = 3 if |i − j| = 1 and i, j < n, m(si, sj) = 2 if |i − j| > 1, and m(si, sj) = 4 if i + j = 2n − 1. As illustrated in
Figure 3.1b, this system has an underlying unlabeled path graph Pn on n vertices as its Coxeter graph ΓCn

. Namely, the
edge labels on the Coxeter graph do not matter, and this is why the Coxeter graph of An and Cn are both path graphs.

Now, consider the isomorphic representation of the Coxeter group of type Cn in S2n where, if π = π1π2 · · ·π2n ∈ S2n,
we impose the additional requirement that

πi = k if and only if π2n−i+1 = 2n− k + 1. (1)

In this way, we treat the elements of Cn as mirrored permutations of [2n] in one-line notation, as in [3]. The cover relations
defining the weak order of Cn are as follows:

σ ⋖ τ if and only if
{
σsn = τ when n ∈ Des(τ)

σsis2n−i+1 = τ when i ∈ Des(τ) ∩ [n− 1].
(2)

Figure 3.2a depicts the Hasse diagram of the weak order of the Coxeter group of type C3.
Consider the following illustrative example.

Example 3.1. Consider the Boolean interval B3 in the weak order of S6 with minimal element π = 451623 and maximal
element σ = 546132 = πs1s3s5, depicted in Figure 3.3a. Note that both π and σ are elements of C3, as they satisfy the
condition given in (3) (i.e., they are mirrored permutations). Note that Des(σ) = {1, 3, 5} and consider the application of s1,
s3, and s5:

• Applying s3 to π and σ, respectively, gives another element of C3. Hence, π is covered by πs3 and σs3 is covered by σ,
and there are edges from 451623 to 456123 and from 541632 to 546132 in the weak order of C3.

• Applying any single one of s1 or s5 to π yields permutations that are not in C3, as they do not satisfy the condition given
in (3) (i.e., they are not mirrored permutations). However, applying s1s5 to π gives another element of C3. Hence, π is
covered by πs1s5 = 541632 and there is an edge from 451623 to 541632 in the weak order of C3.

• Applying any single one of s1 or s5 to πs3 = 456123 yields permutations that are not in C3, as they do not satisfy the
condition given in (3). However, applying s1s5 to πs3 gives another element of C3. Hence, πs3 is covered by πs3s1s5 =

546132 and there is an edge from 456123 to 546132 in the weak order of C3.

The edges described in this example form a Boolean interval of rank two in the weak order of C3 with minimal element
451623 and maximal element 546132, as depicted in Figure 3.3b.

The total number of Boolean intervals (of all possible ranks) above π ∈ Cn is a product of Fibonacci numbers.
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(b) D3.

Figure 3.2: Weak order of Coxeter groups C3 and D3 represented as mirrored permutations.

Theorem 3.2. Let π = π1π2 · · ·π2n ∈ S2n satisfy πi = k if and only if π2n−i+1 = 2n− k+1 for all i ∈ [n]. Let ΓCn
[S \Des(π)]

be the subgraph of ΓCn induced by deleting Des(π) from its vertex set. Partition the vertex set of ΓCn [S\Des(π)] into connected
components b1, b2, . . . , bk. Then, the number of Boolean intervals [π, σ] in the weak order of the Coxeter group of type Cn with
fixed minimal element π is

∏k
i=1 F|bi|+2, where Fℓ is the ℓth Fibonacci number and F1 = F2 = 1.

Proof. Condition (1) implies that, for τ ∈ Cn with associated mirrored permutation π and 1 ≤ i ≤ n, si ∈ Des(τ) if and
only if i ∈ Des(π). Therefore, the elements of ΓCn

[S \ Des(τ)] correspond to i ∈ {1, 2, . . . , n} such that si ∈ AscCn
(π). This

means that the connected components of ΓCn
[S \ Des(τ)] are exactly the maximal blocks of consecutive entries, call them

b1, b2, . . . , bk. Since each bi corresponds to a path graph of size |bi|, by Theorem 1.1, we have that the number of Boolean
intervals above τ (equivalently above π) is

∏k
i=1 F|bi|+2, as desired.

Example 3.2. Let n = 9 and suppose π ∈ S18 satisfies AscCn
(π) = {s1, s3, s4, s9}. Then, there are F3 · F4 · F3 = 12 Boolean

intervals in the weak order of Cn with minimal element π. For an explicit example, consider the following permutation in
S18:

π = 3(17)47(18)(14)(11)96(13)(10)851(12)(15)2(16),

which is written in one-line notation and we have placed parenthesis around numbers with two digits. Note that the cover
relations are determined by left multiplying π by s1s17, s3s15, s4s14, and s9. There is 1 Boolean interval of rank 0, there are
4 Boolean intervals of rank 1, 5 Boolean intervals of rank 2, and 2 Boolean intervals of rank 3. This gives a total of 12
Boolean intervals with minimal element π, as expected.

Since ΓCn is a path graph Pn on n vertices, the next result follows directly from Theorem 1.2 and [6, Proposition 1.1.iv].

Theorem 3.3. There are 2n−kn!
(
n+1−k

k

)
Boolean intervals of rank k in the weak order of the Coxeter group of type Cn.

Setting k = 1 in Theorem 3.3 gives the number of edges in the weak order of Cn, namely the number of Boolean intervals
of rank one, denoted B1. This case corresponds to [10, A014479].

Corollary 3.2. The number of edges in the weak order of Cn is n
2 2

nn!.

Setting k = 2 in Theorem 3.3 gives the sequence for the number of Boolean intervals of rank 2 in the weak order of Cn,
which for n ≥ 2 begins with 0, 12, 288, 5760, 115200, 2419200, 54190080, 1300561920, 33443020800, . . .. We added this sequence
to the Online Encyclopedia of Integer Sequences (OEIS) [10, A380082].

We conclude this subsection with the following exponential generating function for the number of Boolean intervals of
rank k in the weak order of the Coxeter groups of type Cn.
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(a) A Boolean interval of rank three in the weak order of S6
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s1s5
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546132

451623

456123

(b) A Boolean interval of rank two in weak order of C3.

Figure 3.3: Examples of Boolean intervals in the weak order of C3.

Corollary 3.3. Let fC(n, k) count the Boolean intervals of rank k in Cn. Then
∑
n≥0

∑
k≥0

fC(n, k)q
k x

n

n!
=

(2 + q)x+ 2qx2

1− 2x− 2qx2
+ 1.

Proof. If n ≥ 3, then fC(n, k) satisfies the following recurrence: fC(n, k) = 2nfC(n − 1, k) + 2n(n − 1)fC(n − 2, k − 1)

depending on whether s1 is supported in the interval. So, using standard techniques of exponential generating functions
which can be found in [13] for example, the desired generating function will be rational with denominator 1 − 2x − 2qx2.
Then note in C1 there are 2 Boolean intervals of rank 0 and 1 Boolean interval of rank 1. In C2 the number of Boolean
intervals is 8 of rank 0, and 8 of rank 1 as there are 2 intervals above the minimal element and 1 above every element
that is not maximal. Applying the recurrence, we find that if b is the coefficient of x2

2 , then b + 8 + 4q will correspond to∑2
i=0 fC(2, i)q

i = 8+8q. So, the coefficient of x2

2 is 4q. Therefore the numerator is (2+ q)x+2qx2, leading to the generating
function (2+q)x+2qx2

1−2x−2qx2 . To account for n = 0 we add 1.

Corollary 3.4. Let fC(n) count the Boolean intervals in Cn. Then,
∑
n≥0

fC(n)
xn

n!
=

3x+ 2x2

1− 2x− 2x2
+ 1.

3.3. Boolean intervals in the weak order of Dn

We now consider the Coxeter group of type Dn. Let S = {sn−1, s
′
n−1, sn−2, . . . , s1} with m(si, sj) = 1 if si = sj , m(si, sj) = 3

if |i− j| = 1, and m(si, sj) = 2 if |i− j| > 1, and that m(sn−1, s
′
n−1) = m(s′n−1, sn−1) = 2. In this case, ΓDn

is the graph on n

vertices illustrated in Figure 3.1c.
We again return to the perspective of mirrored permutations. Consider the isomorphic representation of the Coxeter

group of type Dn ⊂ Cn ⊂ A2n−1 where, if π = π1π2 . . . πnπn+1πn+2 . . . π2n ∈ S2n we impose the additional requirements that

πi = k if and only if π2n−i+1 = 2n− k + 1. (3)

and {π1, π2, . . . , πn} always contains an even number of elements from the set {n + 1, n + 2, . . . , 2n}. In this way, we treat
the elements of Dn as mirrored permutations of [2n] in one-line notation, as in [3]. The cover relations defining the weak
order of Dn are as follows:

σ ⋖ τ if and only if
{
σ(snsn−1sn+1sn) = τ when n ∈ Des(τ)

σsis2n−i+1 = τ when i ∈ Des(τ) ∩ [n− 1].
(4)

Figure 3.2b depicts the Hasse diagram of the weak order of the Coxeter group of type D3. One can compare Figures 3.2a
and 3.2b to verify that Dn ⊂ Cn.
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We begin by giving a recursive formula for the number of independent sets of ΓDn .

Lemma 3.1. Let (dn)n≥1 be the sequence given by dn = dn−1 + dn−2 with d1 = 1, d2 = 4. Then, for n ≥ 1, dn is the number
of independent sets of ΓDn .

Proof. For n = 1, 2, 3, note that ΓD1
is the empty graph, which has 1 independent set, ΓD2

is two disjoint vertices which
has 4 independent sets, and ΓD3 = P3 which has 5 independent sets.

The initial conditions are such that d4 and d5 correspond to where ΓDn has 4 and 5 vertices, which is a star with 3 leaves
having 9 independent sets and adjoining a new vertex connected to one of the leaves, which has 14 independent sets. In
general, the number of independent sets of ΓDn

for n ≥ 6 can be enumerated via the case where the leaf connected to a
vertex of degree-2 is in the set, and alternatively where the leaf connected to a vertex of degree-2 is not in the set. If the leaf
connected to a vertex of degree-2 is in the set, then the remaining elements are an independent set of the graph obtained
by deleting the leaf and its neighbor, which is ΓDn−2

. On the other hand, if the leaf is connected to a vertex of degree-2 is
not in the set, then the independent set is of the graph obtained by just deleting the leaf, which is ΓDn−1

. Adding those
cases yields the desired recurrence dn = dn−1 + dn−2.

The sequence dn of Lemma 3.1 appears in [10, A000285], which already mentions the enumeration of independent sets
in this family of graphs (unfortunately, no attribution is available). The same sequence has been considered before in the
context of collapse free Hecke algebras in Dn [7].

Theorem 3.4. Let π ∈ Dn. Let ΓDn [S \Des(π)] be the subgraph of ΓDn induced by deleting the elements in Des(π) from its
vertex set. Partition the vertex set of ΓDn [S \Des(π)] into connected components b1, b2, . . . , bk, and let b0 be the (possibly empty)
connected component containing a vertex of degree-3. Then, the number of Boolean intervals [π, σ] in the weak order of the
Coxeter group of type Dn with fixed minimal element π is d|b0| ·

∏k
i=1 F|bi|+2, where we define d0 = 1, Fℓ is the ℓth Fibonacci

number, and F1 = F2 = 1.

Proof. Note that ΓDn
[S \ Des(π)] has a single, possibly empty, component containing a vertex of degree-3, and that any

other connected component is a path graph. Then, by Theorem 1.1, together with Lemma 3.1, and the fact that the number
of independent sets of a path graph on k vertices is Fk+2, the result follows.

To count Boolean intervals of a fixed rank, it suffices to count independent sets of ΓDn of size k for all n ≥ 4. We give
this count next.

Lemma 3.2. For n ≥ 4, the number of independent sets of ΓDn
of size k is ik(ΓDn

) =
(
n−k
k−2

)
+
(
n−k−1
k−1

)
+
(
n−k
k

)
.

Proof. An independent set of ΓDn
of size k must contain some subset of the 2 leaves adjacent to the degree-3 vertex. If it

contains both, then the remaining independent set is an independent set of size k − 2 on the graph obtained by deleting
these leaves and the degree-3 vertex. This deletion gives a path graph on n − 3 vertices, so by [6, Proposition 1.1.iv],
the number of independent sets of size k − 2 is

(
n−k
k−2

)
. If only one of these vertices is in the independent set, then the

remaining elements are again an independent set on the path graph obtained by deleting the degree-3 vertex and the
adjacent leaves. As there are two choices for which of these vertices is to be in the independent set, there are 2

(
n−k−1
k−1

)
such independent sets. Finally, if neither of these vertices are in the independent set, then the independent set is just an
independent set of size k on the graph obtained by deleting these leaves, which is a path graph on n − 2 vertices. In this
case, the number of such independent sets is [6, Proposition 1.1.iv] as

(
n−k−1

k

)
. The claim then follows from the binomial

identity
(
n−k−1
k−1

)
+
(
n−k−1

k

)
=

(
n−k
k

)
.

Specializing Theorem 1.2 to the Coxeter group of type Dn and using Lemma 3.2 yields the following result.

Theorem 3.5. There are 2n−k−1n!

((
n−k
k−2

)
+

(
n−k−1
k−1

)
+

(
n−k
k

))
Boolean intervals of rank k in the weak order of the Coxeter

group of type Dn.

Setting k = 1 in Theorem 3.5 gives the number of edges in the weak order of Dn, namely the number of Boolean intervals
of rank one, denoted B1. This case corresponds to [10, A019999], which has been studied in the context of local bisection
refinement for n-simplicial grids generated by reflection [9].

Corollary 3.5. The number of edges in the weak order of Dn is 2n−2n!n.

Setting k = 2 in Theorem 3.5 gives the sequence for the number of Boolean intervals of rank 2 in the weak order of
Dn, which for n ≥ 1 begins with 0, 1, 6, 144, 2880, 57600, 1209600, 27095040, 650280960, 16721510400, 459841536000, . . .. This
sequence does not appear in the OEIS [10].
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We conclude this section with an exponential generating function for the number of Boolean intervals of rank k in the
weak order of Dn.

Corollary 3.6. Let fD(n, k) count Boolean intervals of rank k in Dn. Then,

∑
n≥0

∑
k≥0

fD(n, k)qk
xn

n!
=

1

2

(
2x+ (4q + q2)x2

1− 2x− 2qx2

)
+ 1.

Proof. If n ≥ 3, then fD(n, k) satisfies the following recurrence: fD(n, k) = 2nfD(n − 1, k) + 2n(n − 1)fD(n − 2, k − 1)

depending on whether s1 is supported in the interval. Using standard techniques of exponential generating functions
which can be found in [13] for example, the desired generating function will be rational with denominator 1 − 2x − 2qx2.
Then note that in D1 there is a single Boolean interval of rank 0. In D2 the number of Boolean intervals of rank 4 is 0, of
rank 1 is 4, and of rank 2 is 1. Applying the recurrence, we have that if b is the coefficient of x2

2 , then b+ 4 will correspond
to

∑2
i=0 fD(2, i)qi = 4 + 4q + q2. So the coefficient of x2

2 is 4q + q2. Consequently the numerator is x+ (4q+q2)x2

2 , leading to
the generating function

x+ (4q + q2)x
2

2

1− 2x− 2qx2
=

1

2

(
2x+ (4q + q2)x2

1− 2x− 2qx2

)
.

To account for n = 0 we add 1.

Corollary 3.7. Let fD(n) count Boolean intervals in Dn. Then,
∑
n≥0

fD(n)
xn

n!
=

1

2

(
2x+ 5x2

1− 2x− 2x2

)
+ 1.

4. Specializing to affine Coxeter groups

In this section, we briefly consider the enumeration of Boolean intervals in the weak order of the Coxeter groups Ãn, B̃n, C̃n,

and D̃n. As Theorem 1.2 only applies in the case where W is finite, we will only be able to apply Theorem 1.1 to obtain
results for the number of Boolean intervals above a given element. One thing we mention with regards to the affine types
is that in type X̃n, a set of generators S is such that |S| = n + 1, differing from the finite case where in Xn, |S| = n. We
use the definitions of these groups via their diagrams from [8, Section 2.5]. This differs from previous sections where
we additionally provided combinatorial embeddings of the Coxeter groups as subgroups of a permutation group, but as
the arguments for these groups will not differ we omit them. Again in contrast to previous sections we do not include any
further discussion about generating functions counting Boolean intervals by rank in the affine irreducible types as in these
cases there are an infinite number of Boolean intervals of a given rank. Throughout this section we reference the Coxeter
graphs in Figure 4.1.

s1

s0

s2 s3 sn−2 sn−1 sn

(a) Ãn.

s0

s′0

s1 s2 sn−4 sn−3 sn−2 s′4

(b) B̃n.

s0
4

s1 s2 s3 sn−3 sn−2 sn−1 s′4

(c) C̃n.

s0

s′0

s1 s2 sn−4 sn−3

sn−2

s′n−2

(d) D̃n.

Figure 4.1: Summary of Coxeter graphs of affine Coxeter groups.

We begin with type Ãn, for n ≥ 2. In type Ãn, the relations are exactly those of An, except that there is a new generator
s0 with m(s0, s1) = m(s0, sn) = 3 as well. This means that ΓÃn

is a cycle graph with n+ 1 vertices.

Corollary 4.1. Suppose π ∈ Ãn. If π ̸= e, let b1, b2, . . . , br be the connected components of ΓÃn
[S \Des(π)]. Then the number

of Boolean intervals of the form [π, σ] with fixed minimal element π is counted by
∏r

i=1 F|bi|+2. If π = e (the identity), then
the number of Boolean intervals of the form [π, σ] is the (n+ 1)th Lucas number, see [2, p .46].

Proof. If π ̸= e, then Des(π) ̸= ∅. Consequently ΓÃn
[S \ Des(π)] is a disjoint union of r path graphs, with the sizes of the

connected components b1, b2, . . . , br. Then by Theorem 1.1 and the fact that the number of independent sets of a path graph
on k vertices is Fk+2 the claim follows.

Instead if π = e, then by Theorem 1.1 the number of Boolean intervals above v is the number of independent sets of a
cycle on n+ 1 vertices, which is the (n+ 1)th Lucas number [10, A000032].
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For type B̃n, as ΓB̃n
is the same graph when edge labels are omitted as ΓDn+1 , we have the following result via a proof

identical to that of Theorem 3.5.

Corollary 4.2. Suppose π ∈ B̃n. Let b0, b1, b2, . . . , br be the connected components of ΓB̃n
[S \Des(π)] with b0 the, potentially

empty, connected component containing a degree-3 vertex. Then the number of Boolean intervals of the form [π, σ] with fixed
minimal element π is counted by d|b0|

∏r
i=1 F|bi|+2, with d0 = 1.

For Type C̃n, as ΓC̃n
is a path graph on n+1 vertices, we have the following result as a consequence of Theorem 1.1 and

the fact that every induced subgraph of a path is a path.

Corollary 4.3. Suppose π ∈ C̃n. Let b1, b2, . . . , br be the connected components of ΓC̃n
[S \ Des(π)]. Then the number of

Boolean intervals of the form [π, σ] with fixed minimal element π is counted by
∏r

i=1 F|bi|+2.

For type D̃n, we have the following consequence of Theorem 1.1.

Corollary 4.4. Suppose π ∈ D̃n. If π ̸= e, let b0, b′0, b1, b2, . . . , br be the connected components of ΓD̃n
[S \ Des(π)], with b0, b

′
0

the, potentially empty, connected components containing a vertex of degree-3. Then the number of Boolean intervals of the
form [π, σ] with fixed minimal element π is counted by d|b0|d|b′0|

∏r
i=1 F|bi|+2, where d0 = 1. If π = e (the identity), then the

number of Boolean intervals of the form [π, σ] is dn + 2dn−2.

Proof. When π ̸= e, so Des(π) ̸= ∅, the first statement follows immediately from Theorem 1.1 together with the fact that
any induced subgraph obtained by deleting at least one vertex of ΓD̃n

will have as its connected components path graphs,
together with at most two components that are copies of the Coxeter diagram for type Dk for some smaller k’s.

For the second statement, the number of Boolean intervals above e is just the number of independent sets of any size of
ΓD̃n

. If an independent set contains sn−2, then the remaining elements are an independent set of the graph ΓDn−2
together

with an isolated vertex s′n−2, as sn−3 cannot be in the set, of which there are 2dn−2 such independent sets by Lemma 3.1.
In the case where sn−2 is not in the set, the independent set is an independent set of the graph ΓDn

of which there are dn

independent sets, again by Lemma 3.1.

5. Future work

In [4] the authors provided a parking function interpretation for the Boolean intervals of rank k in the weak order of the
Coxeter group of type An. We wonder if there is such a direct interpretation for Boolean intervals in other weak orders
of classical Coxeter groups, which does not utilize the embedding of them into a larger permutation group. Moreover,
such a combinatorial interpretation in terms of parking functions for the affine cases remains an open problem worthy
of investigation. We also ask whether other combinatorial families of objects arise in characterizing and enumerating
Boolean intervals in other well-known posets, including the strong Bruhat order of Coxeter groups and the Tamari lattice.
For the reader interested in the latter, we point to the work of Fishel who enumerates chains in the Tamari lattice [5].
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