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Abstract

Let G be a graph with edge set E(G). Denote by du the degree of a vertex u in G. The atom-bond sum-connectivity (ABS)
index of G is defined as ABS(G) =

∑
xy∈E(G)

√
(dx + dy − 2)/(dx + dy). In this article, we determine the minimum possible

value of the ABS index of unicyclic graphs of order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n− 2. All the graphs that
attain the obtained minimum value are also characterized.
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1. Introduction

Consider a connected and simple graph G, represented as G = (V,E), with order n and size m. The graph G a c-cyclic
graph when m = n+ c− 1. Specifically, when c = 1, G is referred to as a unicyclic graph. Let Pn and Sn be respectively
the path and star graphs with n vertices. The set of neighbors of a vertex y in G is represented by NG(y) (or simply by
N(y)) and the degree of y in G is represented by dy(G) (or simply by dy). The symbols δ = δ(G) and ∆ = ∆(G) are used
to represent the minimum and maximum degrees of G, respectively. A vertex of degree 1 in G is referred to as a leaf or
an end-vertex, while a vertex adjacent to a leaf is known as a stem. On the other hand, a strong stem is a stem that is
adjacent to two or more leaves. A stem having at most one non-leaf neighbor is called an end stem.

Consider two different subsets U and V of V (G). A path P in G that begins at a vertex in U and ends at a vertex in V
such that all other vertices of P do not belong to either of the sets U and V is known as an (U ,V)-path. If V = {v}, we write
(U , v)-path instead of (U ,V)-path. The length of a shortest (U ,V)-path is referred to as the distance between the sets U and
V in the graph G, denoted as dG (U ,V).

Chemical graph theory [22] is a fundamental branch of mathematical chemistry, which focuses on representing and
analyzing chemical structures using mathematical models. In chemical graph theory, topological indices play a crucial
role in establishing connections between the structures of molecules and their properties related to the development of
computer-aided drug designs [10, 16]. Numerous topological indices based on vertex degrees have been discussed in [12,
15]. In this paper, we are concerned with the atom-bond sum-connectivity (ABS) index, which is a recently introduced
topological index [5]. The ABS index of G is defined as follows:

ABS(G) =
∑

xy∈E(G)

√
dx + dy − 2

dx + dy
.

In [5], various basic mathematical properties of the ABS index were established. Ali et al. [6] examined the chemical appli-
cability of the ABS index and identified its extremum values for unicyclic graphs. Gowtham and Gutman [14] formulated
several inequalities between the ABS index and another existing connectivity index. In [8,9], Alraqad et al. studied some
extremal problems related to this index for certain classes of graphs. Noureen and Ali [20] solved the problem of deter-
mining the largest ABS index of trees of a given order with a fixed number of leaves. In [19], we determined the first four
smallest values of the ABS index of unicyclic graphs of a given order with a specific girth and identified the graphs that
achieve the obtained extremal values. For more details about the ABS index and its applications in the field of chemistry,
additional information can be found in the references [1–3,7,13,18,19,25].
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Recently, Hussain et al. [17] determined some sharp bounds for the ABS index in terms of other graph invariants.
Among other things, a lower bound for the ABS index of trees in terms of their order and maximum degree was found
in [17]. In this article, we extend this lower bound of Hussain et al. [17] to the one for unicyclic graphs.

Let Un be the set of all unicyclic graphs on n ≥ 5 vertices. Denote by Un,k the subset of Un that consists of those
members of Un that have a fixed girth k, 3 ≤ k ≤ n. Certainly, Un =

⋃n
k=3 Un,k and Un,n = {Cn}, where Cn is the cycle on

n vertices. Let U1
n,n−1 be the unique unicyclic graph with n vertices and girth n− 1. Thus, Un,n−1 =

{
U1
n,n−1

}
. For k, with

3 ≤ k ≤ n− 2, denote by Uk1,k2,...,kb

n,k ∈ Un,k the unicyclic graph created by starting with the cycle Ck and then attaching b
paths to a single vertex x of Ck such that the attached paths have lengths k1, k2, . . . , kb provided that

∑b
j=1 kj = n− k, see

Figure 1.1.

C5 U1
5,4 U1,2,3,4

14,4

Figure 1.1: Some examples of unicyclic graphs.

The main objective of this study is to determine the minimum possible value of the ABS index of unicyclic graphs of
order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n− 2, and characterize all the graphs that attain this minimum value.
To prove some results of this paper, we utilize the following theorems:

Theorem 1.1. [19] Consider a non-trivial connected graph H with a vertex x. Create a new graph G by adding 2 pendant
paths P and Q to the vertex x. The paths are defined as P := xx1 . . . xa and Q := xy1 . . . yb, where a ≥ b ≥ 1). Now, obtain
a new graph G∗ from G by adding an edge between vertices xa and y1 and removing the edge between x and y1. Then
ABS(G) > ABS(G∗).

Theorem 1.2. [19] Consider a non-trivial connected graph H with 2 distinct vertices x and y such that both x and y have
at least two neighbors. Additionally, suppose that when y (or x) has precisely two neighbors, the sum of these neighbors is
at most 7 in H. Create a new graph G from H by adding two paths P and Q, to the vertices x and y, respectively, where
P := xx1 . . . xa and Q := yy1 . . . yb(a ≥ b ≥ 1). Now, obtain a new graph G∗ from G by adding an edge between yb and x1 and
removing the edge between x and x1.Then ABS(G) > ABS(G∗).

2. Main results

Throughout this section, we denote by G a unicyclic graph with n vertices, where n ≥ 5. The unique cycle of the graph
G is denoted as C. Let w ∈ V (G) be the vertex with maximum degree ∆ such that its distance from the set of vertices of
the cycle C (that is, dG (V (C), w)) is minimum. Take N(w) = {w1, w2, . . . , w∆}. In addition, absw : E(G) → R is a function
defined by

absw(xy) =

√
dx + dy − 2

dx + dy
.

Hence, ABS(G) =
∑

xy∈E(G) absw(xy). The next two results are direct consequences of Theorem 1.1 and Theorem 1.2.

Corollary 2.1. Consider a unicyclic graph G with order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n− 2. If G possesses
a strong stem (a stem with at least three neighbors) that is distinct from the vertex w, then there is a unicyclic graph G∗ with
order n and maximum degree ∆ such that then ABS(G) > ABS(G∗).

Corollary 2.2. Consider a unicyclic graph G with order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2. Let P :=

y0y1 . . . yk = w be the shortest path from a vertex y0 ∈ V (C) to w (i.e., (V (C), w)-path), which may be of length zero. If G
contains a vertex of degree at least three, excluding w and y0, then there is a unicyclic graph G∗ with order n and maximum
degree ∆ such that ABS(G) > ABS(G∗).
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Figure 2.1: Unicyclic graph used in Lemma 2.1.

Lemma 2.1. Consider a unicyclic graph G with order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2. Let P :=

y0y1 . . . yk = w be a shortest path from a vertex y0 ∈ V (C) to w (i.e., (V (C), w)-path), which may be of length zero. If k ≥ 1,
then there is a unicyclic graph G∗ with order n and maximum degree ∆ such that ABS(G) > ABS(G∗).

Proof. By Corollary 2.2, we may assume that w and y0 are the only vertices of degree at least 3 in G. Let w1 be a
vertex on the path P . For the sake of simplicity, we assume that d(w2) ≤ d(w3) ≤ · · · ≤ d(w∆−1) ≤ d(w∆), where
N(w) = {w1, w2, . . . , w∆}. Now, let Tw be the component of G − ww1 containing w and within Tw, we have the longest
path wwi

0wi
1 . . . wi

bi , where wi = wi
0, for each 2 ≤ i ≤ ∆ (see Figure 2.1). Based on the selection of w and the assumption

of k ≥ 1, we can conclude that ∆ ≥ 4 and d(w) > d(y0). Assume that V (C) ∩N(y0) = {y2, y3} (see Figure 2.1).
First, consider the case when d(y0) ≥ 4. If y0 is a stem of degree at least 3 and is different from w, then the result

follows from Corollary 2.1. However, if y0 is not a stem, let x0 ∈ N (y0) − {y1, y2, y3} and let Ty0
be the component of

G − {y0y1, y0y2, y0y3} containing y0. The longest path in Ty0
is represented as y0x0 . . . xb. According to Corollary 2.2,

assume that d (x0) = · · · = d (xb−1) = 2 and d (xb) = 1. Now, let G∗ = G − y0x0 + x0w
b∆

∆ . It is evident that G∗ remains a
unicyclic graph with order n and ∆(G∗) = ∆. By Theorem 1.2, ABS(G) > ABS(G∗).

Now, we consider the case when d (y0) = 3. Let p1 = wb∆

∆ and p2 = w
b∆−1

∆−1 . Let z1 and z2 be the neighbors of p1 and p2, re-
spectively. Assume that G∗ = G − y0y2 + p1p2, and let S = {y0y1, y0y2, y0y3, p1z1, p2z2, y2x}, where
x ∈ (V (C) ∩N(y2)) − {y0}. It is evident that G∗ is a unicyclic graph with order n and ∆ = ∆(G∗). The assertion is
that ABS(G) > ABS(G∗).

Case 1: d (w, y0) = 1 and b∆ = b∆−1 = 0.
Note that y0 = w1, w = y1, p1 = w∆ and p2 = w∆−1. By the definition of the ABS index, we have

ABS(G) =
∑
xy/∈S

absw(xy) +

√
∆ + 1

∆ + 3
+ 2

√
3

5
+ 2

√
∆− 1

∆ + 1
+

√
1

2
, (1)

ABS(G∗) =
∑
xy/∈S

absw(xy) + 3

√
∆

∆ + 2
+

√
1

3
+ 2

√
1

2
. (2)

Since ∆ ≥ 4, it follows that √
∆

∆ + 2
+

√
1

2
<

√
∆− 1

∆ + 1
+

√
3

5
. (3)

By utilizing (3) along with Equations (1) and (2), we deduce that ABS(G) > ABS(G∗).
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Case 2: d (w, y0) ≥ 2 and b∆ = b∆−1 = 0.
We observe that p1 = w∆ and p2 = w∆−1. By the definition of the ABS index, we have

ABS(G) =
∑
xy/∈S

absw(xy) + 2

√
∆− 1

∆ + 1
+ 3

√
3

5
+

√
1

2
,

ABS(G∗) =
∑
xy/∈S

absw(xy) + 2

√
∆

∆ + 2
+ 3

√
1

2
+

√
1

3
.

By employing (3), we deduce that ABS(G) > ABS(G∗).

Case 3: d (w, y0) = 1, b∆ ≥ 1, b∆−1 = 0.
In this case, y0 = w1, w = y1, p2 = w∆−1. By the definition of the ABS index, we have

ABS(G) =
∑
xy/∈S

absw(xy) +

√
∆ + 1

∆ + 3
+ 2

√
3

5
+

√
∆− 1

∆ + 1
+

√
1

3
+

√
1

2
, (4)

ABS(G∗) =
∑
xy/∈S

absw(xy) + 2

√
∆

∆ + 2
+

√
1

3
+ 3

√
1

2
. (5)

By employing (4) and (5), along with (3), we deduce that ABS(G) > ABS(G∗).

Case 4: d (w, y0) ≥ 2 , b∆ ≥ 1, b∆−1 = 0.
Note that p2 = w∆−1 and hence

ABS(G) =
∑
xy/∈S

absw(xy) +

√
∆− 1

∆ + 1
+ 3

√
3

5
+

√
1

3
+

√
1

2
,

ABS(G∗) =
∑
xy/∈S

absw(xy) +

√
∆

∆ + 2
+ 4

√
1

2
+

√
1

3
.

By employing (3), we deduce that ABS(G) > ABS(G∗).

Case 5: d (w, y0) = 1, b∆ ≥ 1, and b∆−1 ≥ 1.
In this case, we have

ABS(G) =
∑
xy/∈S

absw(xy) +

√
∆ + 1

∆ + 3
+ 2

√
3

5
+ 2

√
1

3
+

√
1

2
, (6)

ABS(G∗) =
∑
xy/∈S

absw(xy) +

√
∆

∆ + 2
+

√
1

3
+ 4

√
1

2
. (7)

Using (6) and (7), along with (3), we deduce that ABS(G) > ABS(G∗).

Case 6: d (w, y0) ≥ 2, b∆ ≥ 1, b∆−1 ≥ 1.
By the definition of the ABS index, we have

ABS(G) =
∑
xy/∈S

absw(xy) + 3

√
3

5
+ 2

√
1

3
+

√
1

2
,

ABS(G∗) =
∑
xy/∈S

absw(xy) + 5

√
1

2
+

√
1

3
.

It is clear that ABS(G) > ABS(G∗).
In all cases, we arrive at the desired inequality.

By Corollary 2.2 and Lemma 2.1, we may make the assumption that w is a vertex on the cycle C and it is the only vertex
in G having a degree greater than two.

Contracting an edge e in a graph G gives a new graph G/e obtained from G by removing e and then merging its end
vertices into a single vertex.

Lemma 2.2. Consider a unicyclic graph G with order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2. If w is a stem
and the girth of G is k ≥ 4, then there is a unicyclic graph G∗ with order n and ∆(G∗) = ∆ such that ABS(G) > ABS(G∗).
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Figure 2.2: Unicyclic graphs used in Lemma 2.2.

Proof. Let N(w) ∩ V (C) = {w1, w2} and V (C) = {w,w1, x1, . . . , xk−3, w2}. Now, choose w3 ∈ N(w) such that d(w3) = 1.
Create a new graph G∗ obtained from G by identifying the vertices w and w1 and adding a new pendant edge w3w

′ (see
Figure 2.2). It is clear that G∗ is a unicyclic graph with order n and ∆(G∗) = ∆. Now, let S = {ww1, w1x1, ww3}. Using the
definition of the ABS index, we have

ABS(G) =
∑
xy/∈S

absw(xy) +

√
∆

∆ + 2
+

√
1

2
+

√
∆− 1

∆ + 1
, (8)

ABS(G∗) =
∑
xy/∈S

absw(xy) + 2

√
∆

∆ + 2
+

√
1

3
. (9)

Since ∆ ≥ 3, from (8) and (9), it follows that ABS(G) > ABS(G∗).

Lemma 2.3. Consider a unicyclic graph G with order n and maximum degree ∆ such that 4 ≤ ∆ ≤ n − 2. If w is a stem,
w3 is a leaf adjacent to w, and there exists an end vertex y with d (y, w3) ≥ 4, then there is a unicyclic graph G∗ with order n
and ∆(G∗) = ∆ such that ABS(G) > ABS(G∗).

Proof. Suppose that N(w)∩ V (C) = {w1, w2}. Consider the component Tw of G−E(C) containing w and within Tw, there
exists a longest path ww0

iw
1
i . . . w

bi
i , where wi = w0

i , for each 4 ≤ i ≤ ∆(G). In this path d
(
wbi

i

)
= 1 for each i and d

(
wj

i

)
= 2

otherwise. Assuming that b4 ≥ 2. Create a new graph G∗ = G− wb4
4 w

b4−1
4 w3w

b4
4 as illustrated in Figure 2.3. Additionally,

take S =
{
ww3, w

b4
4 w

b4−1
4 , wb4−1

4 wb4−2
4

}
. It is clear that G∗ is a unicyclic graph with n vertices and ∆(G∗) = ∆. Using the

definition of the ABS index, we have

ABS(G) =
∑
xy/∈S

absw(xy) +

√
∆− 1

∆ + 1
+

√
1

3
+

√
1

2
, (10)

ABS(G∗) =
∑
xy/∈S

absw(xy) +

√
∆

∆ + 2
+ 2

√
1

3
. (11)

From (10) and (11), it is evident that ABS(G) > ABS(G∗).

Recall the structure of the graph Uk1,k2,...,kb

n,k defined in the introduction section. For 3 ≤ ∆ ≤ n− 2, let

F1(n,∆) =
{
Ub1,...,b∆−2

n,3 : 1 ≤ b1, . . . , b∆−2 ≤ 2
}

and F2(n,∆) =
{
Ub1,...,b∆−2

n,k : k ≥ 3 and b1, . . . , b∆−2 ≥ 2
}
.
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Figure 2.3: Unicyclic graphs used in Lemma 2.3.

We are now prepared to present the proof of our main result.

Theorem 2.1. Consider a unicyclic graph G with order n and maximum degree ∆ such that 3 ≤ ∆ ≤ n− 2, then

ABS(G) ≥


(2∆− n− 1)

√
∆− 1

∆ + 1
+ (n−∆ + 1)

√
∆

∆ + 2
+ (n−∆− 1)

√
1

3
+

√
1

2
if ∆ ≥ n+ 2

2
,

∆

√
∆

∆ + 2
+ (n− 2∆ + 2)

√
1

2
+ (∆− 2)

√
1

3
if ∆ ≤ n+ 1

2
.

Equality is achieved if and only if G ∈ F1 ∪ F2.

Proof. Let U∆
n be the collection of unicyclic graphs with n vertices and maximum degree ∆ such that 3 ≤ ∆ ≤ n − 2.

Consider G ∈ U∆
n such that

ABS (G) = min
{
ABS (G1) : G1 ∈ U∆

n

}
.

Consider a vertex w ∈ V (G) with maximum degree ∆. By Corollary 2.2 and Lemma 2.1, it is concluded that w ∈ V (C) and
it is the only vertex with a degree exceeding two in G. With the help of Lemma 2.2 and Lemma 2.3 along with our choice
of G, we conclude that G ∈ F1(n,∆) ∪ F2(n,∆).

First, consider the case when G ∈ F2(n,∆). In this case n ≥ 2∆− 1, which implies ∆ ≤ n+ 1

2
. Using the definition of

the ABS index, we have

ABS(G) = ∆

√
∆

∆ + 2
+ (n− 2∆ + 2)

√
1

2
+ (∆− 2)

√
1

3
. (12)

Now, assume that G ∈ F1(n,∆). Let γ be the number of leaves adjacent to w. If γ = 0, then G ∈ F2(n,∆) and we already
determined ABS(G) in (12). However, if γ ≥ 1, then n − 3 = 2∆ − γ − 4 and γ = 2∆ − n − 1. Given that γ ≥ 1, it follows
that ∆ ≥ n+ 2

2
. Using the definition of the ABS index, we have

ABS(G) = γ

√
∆− 1

∆ + 1
+ (∆− γ)

√
∆

∆ + 2
+ (∆− γ − 2)

√
1

3
+

√
1

2

ABS(G) = (2∆− n− 1)

√
∆− 1

∆ + 1
+ (n−∆ + 1)

√
∆

∆ + 2
+ (n−∆− 1)

√
1

3
+

√
1

2
.

This completes the proof.
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