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Abstract
Let H be a graph possibly with loops. Let G be a simple graph. We say that G is an H-colored graph whenever every edge
of G has assigned a vertex of H as a color. A cycle C in an H-colored graph G is an H-cycle if and only if the colors of
consecutive edges in C are adjacent vertices in H, including the last and first edges of C. An H-colored graph G is said to be
vertex H-pancyclic if every vertex of G is contained in an H-cycle of length l for every l in {3, . . . , |V (G)|}. A properly colored
cycle in an edge-colored graph is a particular case of H-cycles in H-colored graph, namely when H is a complete graph with
no loops. In this paper, we show sufficient conditions on an H-colored complete graph G to be vertex H-pancyclic. As a
consequence, we obtain a well-known result about properly vertex pancyclicism in edge-colored complete graphs.
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1. Introduction

For basic concepts, terminology, and notation not defined here, we refer the reader to [7]. Throughout this work, we
consider finite simple graphs, unless otherwise specified. Let G be a graph. The sets of vertices and edges of G are denoted
by V (G) and E(G), respectively.

We say that a graph G is pancyclic whenever G contains a cycle of length l for every l in {3, . . . , |V (G)|}. Moreover, G
is said to be vertex pancyclic if and only if each vertex of G is contained in a cycle of length l for every l in {3, . . . , |V (G)|}.
In 1971, Bondy [4] conjectured that almost every condition implying that a graph G is Hamiltonian, also implies that the
graph G is pancyclic. Since then, several authors have extensively studied whether a given graph is pancyclic or vertex-
pancyclic, see for example [5,6,8]. In particular, conditions on the minimum degree of the graph have proven to be efficient
in knowing if a graph is vertex pancyclic, see Theorem 1.1. In [18], Ming-Chi Li et al. proved that deciding whether a
graph is (vertex) pancyclic is NP -complete, even for 3-connected cubic planar graphs.

Theorem 1.1 (see [17]). If G is a graph of order n, with n ≥ 3, such that δ(G) ≥ n+1
2 , then G is vertex pancyclic.

Let Ik = {1, . . . , k} be a given set of colors, with k ≥ 2. A graph G is a k-edge-colored graph whenever every edge has
a color in Ik. A walk W in G is properly colored if and only if no consecutive edges have the same color; in particular,
when W is a cycle, we say that W is a properly colored cycle. Properly colored walks are of interest for theoretical reasons
(for example, in undirected and directed graphs [2]) as well as for graph theory application (for example, in genetic and
molecular biology [11, 12, 20, 22], engineering and computer science [1, 21, 23], and management science [24, 25]). In
particular, Dorninger in [11] studied a model of cell division where a properly colored cycle that contains all the vertices
of a 2-edge-colored graph is needed.

Let G be a k-edge-colored graph with n vertices. We say that G is properly vertex pancyclic if and only if each vertex of
G is contained in a properly colored cycle of length l for every l in {3, . . . , n}. This concept has been studied by considering
the following definitions: for every vertex v in V (G), the color degree of v, denoted by δc(v), is the number of different colors
on the edges incident with the vertex v in G, and δc(G) is the minimum value of δc(v) over all vertices v in G.

Fujita and Magnant [13] conjectured that every edge-colored complete graph with n vertices, n ≥ 3, such that δc(G) ≥
n+1
2 is properly vertex pancyclic. Chen et al. in [9] partially solve this conjecture by adding the condition that the graph

has no monochromatic cycles of length three (a monochromatic cycle is a cycle where all of its edges are color alike).

Theorem 1.2 (see [9]). Let G be an edge-colored complete graph on n vertices, n ≥ 3, such that δc(G) ≥ n+1
2 . If G contains

no monochromatic cycles of length 3, then G is properly vertex pancyclic.
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Let H be a graph possibly with loops and G a graph. We say that G is an H-colored graph if there exists a function
c : E(G) −→ V (H). These types of colorings were introduced by Linek and Sands in the context of kernels of a digraph
to codify allowed color transitions in the walks of G (see [19]). A walk W = (x0, . . . , xk) in G is an H-walk if and only if
(c(x0x1), c(x1x2), . . . , c(xk−1ck)) is a walk in H, and in particular, a cycle C = (x0, . . . , xk = x0) in G is an H-cycle if and only
if (c(x0x1), c(x1x2), . . . , c(xk−1xk), c(x0x1)) is a walk in H. Notice that when H is a complete graph without loops, C is an
H-cycle if and only if C is a properly colored cycle, moreover, H decides what color transitions are allowed in a cycle to be
an H-cycle. We say that G is vertex H-pancyclic if and only if each vertex of G is contained in a H-cycle of length l for every
l in {3, . . . , n}.

The study of H-colorings in graphs began in [15] when Galeana-Sánchez, Rojas-Monroy, Sánchez-López and Villareal-
Valdés characterized the H-colored multigraphs containing Euler H-trails. Later in [16], they gave an algorithm to deter-
mine whether an H-colored multigraph has an H-cycle. They work with an auxiliary graph, introduced in [3] by Benkour
et al., as follows: Let G be an H-colored graph. For each non-isolated vertex v in V (G), Gv is the graph with vertex set
V (Gv) = {vx : vx ∈ E(G)}, and ab ∈ E(Gv), with a 6= b, if and only if c(a)c(b) ∈ E(H). Note that Gv is a simple graph for
every non-isolated vertex v of G.

Let W = (x0, x1, . . . , xk) a walk in an H-colored graph G, and i in {1, . . . , k − 1}. We say that xi is an obstruction of the
walk W if and only if c(xi−1xi)c(xixi+1) /∈ E(H). When x0 = xk we say that x0 is an obstruction of the closed walk W if
and only if c(xk−1xk)c(x0x1) /∈ E(H). We denote by OH(W ) to the set of obstructions of the walk W . Notice that W is an
H-walk if and only if OH(W ) = ∅.

In [14], Galeana-Sánchez, Hernández-Lorenzana and Sánchez-López proved the following result as a first approach to
the study of vertex H-pancyclism.

Theorem 1.3 (see [14]). Let H be a graph possibly with loops and G be an H-colored complete graph of order n, such that:
for every x in V (G), Gx is a complete kx-partite graph for some kx in N; for any cycle C of length 4 in G, |OH(C)| 6= 3; and
for every x in V (G), kx ≥ n+1

2 . Then:

1. Each vertex of G is contained in an H-cycle of length 3 (n ≥ 3).

2. Each vertex of G is contained in an H-cycle of length 4, whenever for every cycle C of length 3 in G, |OH(C)| 6= 2 and
n ≥ 4.

This work is organized as follows: Section 2 gives the basic concepts, terminology, and some results that we will use in
the rest of the paper. In Section 3, we give sufficient conditions, similar to those stated in Theorem 1.3, for an H-colored
complete graph to be vertex H-pancyclic. It is worth mentioning that the conditions in the main theorem can be verified
in polynomial time. Finally, Theorem 1.2 is proven as a direct consequence of the main result.

2. Preliminaries

For a better understanding for the reader, we start with some notation, and some observations introduced in [14].
Let G be a graph. For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X. A walk will be denoted by the

sequence of its vertices W = (v0, v1, . . . , vk). If V = (u0, . . . , un) and W = (un, v1, v2, . . . , vk) are two walks, and {i, j} is
a subset of {0, . . . , n}, with i < j, the concatenation (u0, . . . , un, v1, v2 . . . , vk) of the walks V and W is denoted by V ∪W ,
the subwalk (ui, ui+1, . . . , uj) is denoted by (ui, V, uj), and the walk (un, . . . , u0) is denoted by V −1. A subset I of V (G) is
independent if and only if the subgraph G[I] has no edges.

Observation 2.1. Let G be an H-colored graph, such that for every x in V (G), Gx is a complete kx-partite graph for some
kx in N. Suppose that {ux, vx} is a subset of E(G). Then, x /∈ OH((u, x, v)) if and only if ux and vx are in different partite
sets of the kx-partition of V (Gx).

As a direct consequence of Observation 2.1 and the definition of H-cycle, we have the following observations.

Observation 2.2. Let G be an H-colored graph, such that for every x in V (G), Gx is a complete kx-partite graph for some
kx in N. Suppose that C = (u1, . . . , un−1, un, u1) is a cycle in G. Then, C is an H-cycle in G if and only if ui−1ui and ui+1ui

are in different partite sets of the kui
-partition of V (Gui

) for every i in {1, . . . , n} (the subindices are taken modulo n).

Observation 2.3. Let G be an H-colored graph, such that for every x in V (G), Gx is a complete kx-partite graph for some
kx in N. If (u, v, w) is an H-path, then for every x adjacent with v, x /∈ {u,w}, we have that (x, v, u) or (x, v, w) is an H-path.
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Observations 2.1, 2.2, and 2.3 will be frequently used along with the proof of the main result.
Notice that if G is an H-colored graph, D is an induced subgraph of G and x is a vertex of D such that Gx is a complete

kx-partite graph for some kx in N, then Dx is a complete kDx -partite graph for some kDx in N. Moreover, if {P x
1 , P

x
2 , . . . , P

x
kx
}

is the kx-partition of V (Gx) into independent sets, then {P x
i ∩V (Dx) : P

x
i ∩V (Dx) 6= ∅, i ∈ {1, 2, . . . , kx}} is the kDx -partition

of V (Dx) into independent sets.
Let G be an H-colored complete graph, A a subset of V (G) and v in V (G) \ A. We say that A has the H-dependency

property with respect to the vertex v if and only if for every subset {a, a′} of A, (v, a, a′) or (v, a′, a) is not an H-path in G.

Proposition 2.1 (see [14]). Suppose that for every x in V (G), Gx is a complete kx-partite graph for some kx in N. Let A be
a subset of V (G) and v be a vertex in V (G) \ A. If A has the H-dependence property with respect to the vertex v, then there
exists some vertex a in A such that:

1. kDa ≤
|A|+1

2 , where D = G[A].

2. If |A| ≥ 2, then a ∈ OH((v, a, a′)) for some a′ in ND(a).

Let H be a graph possibly with loops, G an H-colored complete graph, C = (x1, . . . , xl, x1) a cycle in G and v ∈ V (G) \
V (C). We say that C has increasing (decreasing) obstruction with respect to v if and only if for every i ∈ {1, . . . , l}, xi is an
obstruction of the path (v, xi, xi+1) ((v, xi, xi−1), respectively), where the indices are taken modulo l. In any case, we say
that C has obstruction with respect to v.

3. Main theorem

Theorem 3.1. Let G be an H-colored complete graph of order n, with n ≥ 3, such that for every x in V (G), Gx is a complete
kx-partite graph for some kx ≥ 2. Suppose that:

1. For any cycle C of length 3 in G, |OH(C)| ≤ 1.

2. For any cycle C of length 4 in G, |OH(C)| 6= 3.

3. For every x in V (G), kx ≥
n+ 1

2
.

Then, G is vertex H-pancyclic.

Proof. To prove that G is vertex H-pancyclic, it is sufficient to show that if a vertex is contained in an H-cycle of length l

in G, for some 3 ≤ l ≤ n − 1, then it is also contained in an H-cycle of length l + 1 in G. It follows from Theorem 1.3 that
the assertion is true for l = 3. So, in what follows we can assume that l ≥ 4 and n ≥ 5.

Proceeding by contradiction, suppose that there is a vertex v which is contained in an H-cycle of length l, for some
4 ≤ l ≤ n − 1, but is not contained in any H-cycle of length l + 1. Let C = (v = x1, x2, . . . , xl, x1) be an H-cycle of length l

containing v in G.
Let W1 = {w ∈ V (G) \ V (C) : {wxi : 1 ≤ i ≤ l} is an independent set in Gw}, meaning that for each vertex w ∈ W1,

all the wxi are in the same partite set of the kw-partition of V (Gw). Let W2 = V (G) \ (V (C) ∪W1), that is, W2 is the set
of vertices in V (G) \ V (C) such that, for every w ∈ W2, there exist xi and xj in V (C), i 6= j, such that wxi and wxj are in
different partite sets of the partition of V (Gw). Notice that every vertex of G is in one and only one of the sets V (C),W1

and W2. From now on, xi is the same vertex as xi+l and xi−l, for every i ∈ {1, . . . , l} (the indices are taken modulo l).

Claim 1. The cycle C has obstruction with respect to each vertex w in W2.

Proof of Claim 1. Let w in W2. It follows from the definition of W2 that w 6∈ V (C) and there exists i ∈ {1, . . . , l} such
that wxi and wxi+1 are in different partite sets of the partition of V (Gw). If c(xi−1xi)c(xiw) and c(wxi+1)c(xi+1xi+2)

are edges in H, then (w, xi+1) ∪ (xi+1, C, xi) ∪ (xi, w) is an H-cycle of length l + 1 containing v, a contradiction. Hence,
c(xi−1xi)c(xiw) is not in E(H) or c(wxi+1)c(xi+1xi+2) is not in E(H). By symmetry, suppose without loss of generality
that c(wxi+1)c(xi+1xi+2) is not in E(H). Then, xi+1 ∈ OH(C ′), where C ′ = (xi+1, xi+2, w, xi+1), and since |OH(C ′)| ≤ 1 (by
hypothesis), we conclude that xi+2 /∈ OH(C ′) and w /∈ OH(C ′), that is, c(xi+1w)c(wxi+2) and c(wxi+2)c(xi+2xi+1) are edges
in H. Now, as c(wxi+1)c(xi+1xi+2) is not in E(H), we have that (w, xi+1, xi+2) is not an H-path, and by Observation 2.3,
(xi, xi+1, w) is an H-path (since (xi, xi+1, xi+2) is an H-path). Notice that if c(wxi+2)c(xi+2xi+3) is an edge in H, then
(w, xi+2)∪(xi+2, C, xi+1)∪(xi+1, w) is anH-cycle of length l+1 containing v, a contradiction. Therefore, c(wxi+2)c(xi+2xi+3)

is not in E(H). Applying the same reasoning, it follows that for every j ∈ {1, . . . , l} \ {i}, c(wxj)c(xjxj+1) is not in E(H),
that is, xj is an obstruction of the path (w, xj , xj+1). It remains to prove that xi ∈ OH((w, xi, xi+1)).
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Recall that for every j ∈ {1, . . . , l} \ {i}, Gxj is a complete kj-partite graph, so c(wxj)c(xjxj−1) is an edge in H. In
particular, when j = i − 1 we have that xi−1 ∈ OH(C ′′), where C ′′ = (w, xi−1, xi, w). Since |OH(C ′′)| ≤ 1 (by hypothesis),
we have that xi /∈ OH(C ′′) and w /∈ OH(C ′′), thus c(xi−1w)c(wxi) is an edge in H. If c(wxi)c(xixi+1) is an edge in H, then
(w, xi) ∪ (xi, C, xi−1) ∪ (xi−1, w) is an H-cycle of length l + 1 containing v, a contradiction. Hence, c(wxi)c(xixi+1) is not an
edge in H, that is, xi is an obstruction of the path (w, xi, xi+1). Thus, C has increasing obstruction with respect to w.

Claim 2. C has increasing obstruction with respect to each vertex in W2 or C has decreasing obstruction with respect to
each vertex in W2.

Proof of Claim 2. It follows from Claim 1 that C has obstruction with respect to each vertex in W2. Proceeding by
contradiction, suppose that there existw1 andw2 inW2 such thatC has increasing obstruction with respect tow1 andC has
decreasing obstruction with respect to w2. Hence, for every i ∈ {1, . . . , l}, c(w1xi)c(xixi+1) /∈ E(H) and c(w2xi)c(xixi−1) /∈
E(H). Since Gxi is a complete kxi -partite graph and (xi−1, xi, xi+1) is an H-path, we have that c(w1xi)c(xiw2) is an edge in
H, that is, c(w1xi) and c(xiw2) are in different partite sets of the partition of V (Gxi).

Case 1. There exists xi ∈ V (C) \ {xl} such that (xi, w1, xi+2) is an H-path.
Consider the cycle T = (xi+2, w2, xi+3, xi+2), since C has decreasing obstruction with respect to w2, we have that xi+3 ∈
OH(T ). Hence, xi+2 /∈ OH(T ) and w2 /∈ OH(T ), otherwise |OH(T )| ≥ 2, a contradiction. Therefore, (w1, xi+2, w2, xi+3) ∪
(xi+3, C, xi) ∪ (xi, w1) is an H-cycle of length l + 1 containing v, which is impossible.

Case 2. For every xi ∈ V (C) \ {xl}, (xi, w1, xi+2) is not an H-path, that is, w1 ∈ OH((xi, w1, xi+2)).
Consider the cycleC ′ = (xi, w1, xi+2, xi), for some xi ∈ V (C)\{xl}, by the assumption of this case, we have thatw1 ∈ OH(C ′).
Hence, xi /∈ OH(C ′) and xi+2 /∈ OH(C ′), otherwise |OH(C ′)| ≥ 2, which is not possible. In particular, (w1, x2, x4) is an H-
path in G.

Consider the cycle C ′′ = (xj , w1, xj+1, xj), where xj ∈ V (C). Since C has increasing obstruction with respect to w1, we
have that xj ∈ OH(C ′′). So, w1 /∈ OH(C ′′) and xj+1 /∈ OH(C ′′), otherwise |OH(C ′′)| ≥ 2, which is impossible. Similarly, we
have that w2 /∈ OH((xj , w2, xj+1, xj)), for every xj ∈ V (C). In particular, (x1, w1, x2) and (x4, w2, x5) are H-paths in G.

Subcase 2.1 (x2, x4, w2) is an H-path.
Note that (w1, x2, x4, w2, x5) ∪ (x5, C, x1) ∪ (x1, w1) is an H-cycle of length l + 1 containing v, a contradiction.

Subcase 2.2 (x2, x4, w2) is not an H-path.
Consider the cycle T = (w2, x2, x4, w2), by the assumption of this subcase, we have that x4 ∈ OH(T ). So, w2 /∈ OH(T ),
otherwise |OH(T )| ≥ 2, which is impossible.

We have that {w1x2, x2x3} and {w2x2, x2x1} are independent sets inGx2
, sinceC has increasing obstruction (respectively

decreasing) with respect to w1 (w2). Moreover, since Gx2 is a complete kx2 -partite graph and the vertices x1x2 and x2x3 are
adjacent in Gx2 , we have that w2x2 and x2w1 are adjacent in Gx2 . Therefore, (w2, x2, w1) is an H-path in G.

Now, we can conclude that (w1, x2, w2, x4)∪(x4, C, x1)∪(x1, w1) is anH-cycle of length l+1 containing v, a contradiction.
Therefore, Claim 2 holds.

Suppose, without loss of generality, that C has increasing obstruction with respect to each vertex in W2.

Claim 3. Let w ∈W2 and xa and xb be two distinct vertices of C, with a < b, such that wxa and wxb are not adjacent in Gw.
Then, wxa−i and wxb−i are not adjacent in Gw, for every i ∈ {0, . . . , l − 1}. Moreover, wxy and wxy+k(b−a) are not adjacent
in Gw for every xy ∈ V (C) and for every nonnegative integer k.

Proof of Claim 3. Since the result follows for i = 0, proceeding by the strong inductive method, it is sufficient to show
that if k is an index with 0 ≤ k ≤ l − 2, and i ∈ {0, . . . , k} are such that wxa−i and wxb−i are not adjacent in Gw, then
wxa−(k+1) and wxb−(k+1) are not adjacent in Gw.

Since wxa−k and wxb−k are not adjacent in Gw and |OH(C ′)| ≤ 1 for every cycle C ′ of length 3 in G, we have that
w /∈ OH((xa−k, w, xb−k, xa−k)). Hence, xa−kxb−k and xa−kw are adjacent in Gxa−k

and xa−kxb−k and xb−kw are adjacent
in Gxb−k

. Moreover, since Gxa−k
is a complete kxa−k

-partite graph and C has increasing obstruction with respect to w, we
have that xa−kxb−k and xa−kxa−k+1 are adjacent in Gxa−k

. Similarly, xa−kxb−k and xb−kxb−k+1 are adjacent in Gxb−k
.

If xa−k−1w and wxb−k−1 are adjacent in Gw, then (w, xb−k−1) ∪ (xb−k−1, C
−1, xa−k) ∪ (xa−k, xb−k) ∪ (xb−k, C, xa−k−1) ∪

(xa−k−1, w) is an H-cycle of length l + 1 containing v, a contradiction. Hence, xa−(k+1)w and wxb−(k+1) are not adjacent in
Gw.

Therefore, for every i ∈ {0, . . . , l − 1}, wxa−i and wxb−i are not adjacent in Gw.
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Notice that for any two vertices xp and xq in V (C) such that q − p = b − a, we have that {wxq, wxp} is an independent
set in Gw. Consequently, since Gw is a complete kw-partite graph, it follows that for every vertex xq ∈ V (C) and for every
positive integer k, we have that {wxq, wxq+(b−a), . . . , wxq+k(b−a)} is an independent set in Gw.

Claim 4. If |W2| ≥ 2, then:

1. For every vertex w ∈ W2 and for every pair of different vertices xi and xj in V (C), we have that wxi and wxj are
adjacent in Gw.

2. For each w ∈W2, V (C) has the H-dependence property with respect to w.

Proof of Claim 4. 1. Proceeding by contradiction, suppose that there exist different vertices xp and xq in V (C), with
1 ≤ p < q ≤ l, such that wxp and wxq are not adjacent in Gw and xp and xq are chosen in a way q− p is as small as possible.

Let l = k(q − p) + r, where 0 ≤ r < q − p < l. Recall that xp and xp+l are the same vertex in C. Hence, by Claim 3, we
have that wxp+r and wxp+k(q−p)+r are not adjacent in Gw, where xp+k(q−p)+r = xp+l = xp, that is, wxp+r and wxp are not
adjacent in Gw. Notice that r = 0, otherwise wxp and wxp+r are not adjacent in Gw, where (p+r)−p = r < q, contradicting
the choice of p and q.

Again, by Claim 3 we have that wxp+2 and wxp+(k−1)(q−p)+2 are not adjacent in Gw, where

xp+(k−1)(q−p)+2 = xp+l−(q−p)+2 = xp−(q−p)+2.

Thus, wxp+2 and wxp−(q−p)+2 are not adjacent in Gw, that is, w ∈ OH(C ′), where C ′ = (w, xp+2, xp−(q−p)+2, w). By hypothe-
sis, |OH(C ′)| ≤ 1, hence xp+2 /∈ OH(C ′), implying that wxp+2 and xp+2xp−(q−p)+2 are in different partite sets of the partition
of V (Gxp+2); also since xp−(q−p)+2 /∈ OH(C ′), we get wxp+(q−p)+2 and xp−(q−p)+2xp+2 are in different partite sets of the parti-
tion of V (Gxp−(q−p)+2

). Recall thatC has increasing obstruction with respect tow, thus we have thatwxp+2 and xp+2xp+3 are
in the same partite set of V (Gxp+2

), and wxp−(q−p)+2 and xp−(q−p)+2xp−(q−p)+3 are in the same partite set of V (Gxp−(q−p)+2
).

Therefore, xp+2xp+3 and xp+2xp−(q−p)+2 are in different partite sets of the partition of V (Gxp+2
), and xp+2xp−(q−p)+2 and

xp−(q−p)+2xp−(q−p)+3 are in different partite sets of the partition of V (Gxp−(q−p)+2
), that is, xp+2xp−(q−p)+2 and xp+2xp+3

are adjacent in Gxp+2 , and xp+2xp−(q−p)+2 and xp−(q−p)+2xp−(q−p)+3 are adjacent in Gxp−(q−p)+2
. Since wxp and wxq are not

adjacent in Gw, by Claim 3 we have that wxp+1
and wxq+1

are not adjacent in Gw, and following the same reasoning we
obtain that xp+3xp+1−(q−p)+2 and xp+3xp+4 are not adjacent in Gxp+3

, and xp+3xp+1−(q−p)+2 and xp+1−(q−p)+2xp+1−(q−p)+3

are not adjacent in Gxp+1−(q−p)+2
.

Let w′ be a vertex in W2 \ {w} (w′ exists because |W2| ≥ 2). By Claim 2, we have that for every xi ∈ V (C), wxi and
xixi+1 (respectively w′xi and xixi+1) are not adjacent in Gxi

. Since Gxi
is a complete kxi

-partite graph, we have that
wxi,xixi+1 and w′xi are in the same partite set of the partition of V (Gxi

), in particular, wxi and xiw
′ are not adjacent

in Gxi
. Hence, xi ∈ OH(C ′′), where C ′′ = (w, xi, w

′, w), and by hypothesis, w /∈ OH(C ′′) and w′ /∈ OH(C ′′). Therefore,
for every xi ∈ V (C), ww′ and w′xi are not adjacent in Gw′ , and w′w and wxi are not adjacent in Gw. Hence, (w, xp) ∪
(xp, C

−1, xp−(q−p)+2)∪(xp−(q−p)+2, xp+2)∪(xp+2, C, xp−(q−p)+1)∪(xp−(q−p)+1, w
′, w) and (w, xp+1)∪(xp+1, C

−1, xp+1−(q−p)+2)∪
(xp+1−(q−p)+2, xp+3) ∪ (xp+3, C, xp+1−(q−p)+1) ∪ (xp+1−(q−p)+1, w

′, w) are H-cycles of length l+ 1, where at least one of them
contains v, a contradiction.

Therefore, for every vertex w ∈ W2 and every pair of distinct vertices xi and xj in V (C), we have wxi and wxj are
adjacent in Gw.

2. Proceeding by contradiction, suppose that there exists w inW2 such that V (C) does not haveH-dependence property
with respect to the vertex w, that is, there exist two vertices xi and xj in V (C) such that wxi and xixj are adjacent in
Gxi

, and wxj and xixj are adjacent in Gxj
. Since C has increasing obstruction with respect to w, we have that wxi and

xixi+1 are not adjacent in Gxi . Given that Gxi is a complete kxi -partite graph, we have that xixi+1 and xixj are adjacent in
Gxi

. Similarly, xjxj+1 and xixj are adjacent in Gxj
. By item 1, we have that wxi−1 and wxj−1 are adjacent in Gw. Hence,

(w, xj−1) ∪ (xj−1, C
−1, xi) ∪ (xi, xj) ∪ (xj , C, xi−1) ∪ (xi−1, w) is an H-cycle of length l + 1 containing v, a contradiction.

Therefore, Claim 4 holds.

Recall that W1 is the set of all w in V (G) \ V (C) such that all the wxi are in the same partite set of the kw-partition of
V (Gw).

Claim 5. If |W1| ≥ 2, then W1 has the H-dependence property with respect to the vertex v.
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Proof of Claim 5. Suppose by contradiction that W1 has no H-dependence property with respect to the vertex v = x1,
that is, there exists w1 and w2 in W1 such that vw1 and w1w2 are adjacent in Gw1

(vw2 and w1w2 are adjacent in Gw2
,

respectively). Given thatGw1
is a complete kw1

-partite graph and x1w1 and w1x2 are in the same partite set of the partition
of V (Gw1

), we have that w1w2 and w1x2 are adjacent in Gw1
, that is, (w2, w1, x2) is an H-path in G. Now, consider the cycle

C ′ = (w1, x3, x4, w1), since w1 is in W1, it follows that w1 ∈ OH(C ′). Thus, by hypothesis x3 /∈ OH(C ′) and x4 /∈ OH(C ′), in
particular, (w1, x3, x4) is anH-path inG. Similarly, (w2, x1, xl) is anH-path inG. Therefore, (x1 = v, w2, w1, x3)∪ (x3, C, x1)
is an H-cycle of length l + 1 containing v, a contradiction. So Claim 5 follows.

Recall that l ≤ n− 1, so W1 6= ∅ or W2 6= ∅. We consider the following three cases.

Case 1. W1 6= ∅ and W2 = ∅.
If |W1| = 1, then kx = 1 ≤ n+1

2 , where x is the only vertex in W1, which is impossible. Hence, |W1| ≥ 2. It follows from
Claim 5 and Proposition 2.1 that there exists a vertex w in W1 such that

kG[W1]
w ≤ |W1|+ 1

2
.

In this case, V (G) = V (C) ∪W1, so |W1| ≤ n− 4. Therefore,

kw ≤ kG[W1]
w + kG[V (C)∪{w}]

w = kG[W1]
w + 1 ≤ n− 4 + 1

2
+ 1 =

n− 1

2
<
n+ 1

2
,

which is a contradiction. Therefore, this case is not possible.

Case 2. W1 6= ∅ and W2 6= ∅.
Let w1 in W1 and w2 in W2. Given that w1 ∈ W1, we have that w1 ∈ OH(C ′), where C ′ = (w1, xi, xi+1, w1) and, by
hypothesis, it follows that xi /∈ OH(C ′), that is, (w1, xi, xi+1) is an H-path in G, for every i ∈ {1, . . . , l}. Recall that C has
increasing obstruction with respect to w2, so (w2, xi, xi−1) is an H-path in G and (w2, xi, xi+1) is not an H-path in G, for
every i ∈ {1, . . . , l}. In particular, for i = 1 we have that x1 ∈ OH(C ′′), where C ′′ = (w2, x1, x2, w2) and, by hypothesis,
w2 /∈ OH(C ′′). So, (x1, w2, x2) is an H-path in G and, by Observation 2.3, (x1, w2, w1) or (x2, w2, w1) is an H-path in G.
We claim that {w1w2} ∪ {w1xi : xi ∈ V (C)} is an independent set in Gw1

. Otherwise, (x1, w2, w1, x3) ∪ (x3, C, x1) or
(x2, w2, w1, x4)∪(x4, C, x2) is anH-cycle of length l+1 containing v, a contradiction. Therefore, {w1w2}∪{w1xi : xi ∈ V (C)}
is an independent set in Gw1 , for every w2 in W2.

If |W1| = 1, then kx = 1 ≤ n+1
2 , where x is the only vertex in W1, which is impossible. Hence, |W1| ≥ 2. It follows from

Claim 5 and Proposition 2.1 that there exists a vertex w1 in W1 such that

kG[W1]
w1

≤ |W1|+ 1

2
.

In this case V (G) = V (C) ∪W1 ∪W2, so |W1| ≤ n− 4. Therefore,

kw1
≤ kG[W1]

w1
+ kG[V (C)∪W2∪{w}]

w1
= kG[W1]

w1
+ 1 ≤ n− 4 + 1

2
+ 1 =

n− 1

2
<
n+ 1

2
,

which is a contradiction.

Case 3. W1 = ∅ and W2 6= ∅.
If |W2| ≥ 2, then by Claim 4 we have that C has H-dependence property with respect to the vertex w, for every w ∈W2. It
follows from Proposition 2.1 that there exists a vertex xi ∈ V (C) such that

kG[V (C)]
xi

≤ |V (C)|+ 1

2
<
n+ 1

2
.

Recall that for every vertex w ∈W2, C has increasing obstruction with respect to w, that is, wxi and xixi+1 are in the same
partite set of the partition of V (Gxi

). Therefore,

kxi = kG[V (C)]
xi

<
n+ 1

2
,

which is a contradiction. Hence, |W2| = 1 and |V (C)| = n− 1.
Notice that if there exists a pair of different vertices xa and xb, with a < b, in V (C) such that wxa and wxb are not

adjacent in Gw, then by Claim 3 we have that wxy and wxy+k(b−a) are in the same partite set of the partition of V (Gw), for
every positive integer k. Thus, kw ≤ n−1

2 < n+1
2 , a contradiction (observe that when b− a = n−1

2 , we have that kw = n−1
2 ).

Therefore, for every pair of different vertices xa and xb in V (C), we conclude that wxa and wxb are not adjacent in Gw.
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If V (C) has no the H-dependence property with respect to the vertex w, then there exist xi and xj , with i < j, in
V (C) such that xi /∈ OH((w, xi, xj , w)) and xj /∈ OH((w, xi, xj , w)), in particular, wxi and xixj are adjacent in Gxi

. Since
C has increasing obstruction with respect to w, we have that (w, xi, xi+1) is not an H-path, that is, wxi and xixi+1 are
not adjacent in Gxi

. Moreover, since Gxi
is a complete kxi

-partite graph, it follows that xi+1xi and xixj are adjacent in
Gxi , that is, (xi+1, xi, xj) is an H-path in G. Applying the same reasoning, we have that (xi, xj , xj+1) is an H-path in G.
So, (w, xj−1) ∪ (xj−1, C

−1, xi) ∪ (xi, xj) ∪ (xj , C, xi−1) ∪ (xi−1, w) is an H-cycle of length l + 1 containing v, a contradiction.
Therefore, V (C) has the H-dependence property with respect to the vertex w and, by Proposition 2.1, there exists a vertex
xi in V (C) such that

kxi = kG[V (C)]
xi

≤ |V (C)|+ 1

2
=

(n− 1) + 1

2
<
n+ 1

2
,

which is a contradiction. Hence, we conclude that the case under consideration is not possible.
Since Cases 1, 2, and 3 are impossible, we conclude that there exists a cycle of length l + 1 containing v. Therefore, G

is vertex H-pancyclic. This completes the proof of Theorem 3.1.

Notice that, given a graph H possibly with loops and a complete H-colored graph G, we can check in polynomial time
whether Gx is a complete multipartite graph for each x in V (G) (see [10]); whether a vertex is an obstruction of a given
cycle (by Observations 2.1 and 2.2); and whether |OH(C)| ≤ 1 for every cycle C of length 3 in G and |OH(C ′)| 6= 3 for every
cycle C ′ of length 4 in G (as there exists

(
n
3

)
cycles of length three and 3

(
n
4

)
cycles of length four in G). Therefore, it is

possible to verify in polynomial time whether the hypotheses of Theorem 3.1 are satisfied.
In the particular case, when H is a complete graph without loops, we obtain as a direct consequence of Theorem 3.1 the

following result.

Corollary 3.1 (see [9]). LetG be an k-edge-colored complete graph on n vertices, n ≥ 3, such that δc(G) ≥ n+1
2 . IfG contains

no monochromatic cycles of length 3, then G is properly vertex panclycic.

The following construction given by Fujita and Magnant in [13] can be used to show that the degree condition on
Corollary 3.1 cannot be improved or dropped, and therefore, the condition on kx of Theorem 3.1 cannot be improved or
dropped either.

Construction 3.1 (see [13]). Consider a complete graph G = K2m with set of vertices {x, v1, . . . , v2m−1}. Color the edge xvi
with color i, for all i ∈ {1, . . . , 2m− 1}. Let H = G−{x} and arbitrarily partition E(H) into m− 1 Hamiltonian cycles. Also,
we arbitrarily orient these Hamiltonian cycles in such a way every Hamiltonian cycle is a directed cycle. Color the edge vivj
of G with color j if (vi, vj) is an arc of one of the oriented Hamiltonian cycles. This provides an edge-coloring of G such that
δc(G) = n

2 and x is not contained in an properly colored cycle in G.

Let n be a positive integer, n ≥ 3, and k =
(
n−1
2

)
+1. ConsiderG a complete graph of order nwith V (G) = {v1, . . . , vn−1, x}.

Color the edges of the graphG−x in such a way every two different edges have different color; and color every edge incident
with x with color k. Hence, G is a k-edge-colored complete graph. Notice that G is not a properly vertex-pancyclic graph,
since x is contained in no properly colored cycle. Nevertheless, if we see G as an H-colored graph, where H is the complete
graph with vertex set Ik = {1, . . . , k}, with a loop in the vertex k, then G fulfills the hypotheses of Theorem 3.1, and G is a
vertex H-pancyclic graph.

The above discussion shows that Theorem 3.1 is more general than Theorem 1.2.
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