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Abstract

Let the vertices of two disjoint and equal length cycles be denoted u0, u1, . . . , un−1 in the first cycle and v0, v1, . . . , vn−1 in
the second cycle for n ≥ 4. The superprism P̆n is defined as the graph obtained by adding to these disjoint cycles all edges
of the form uivi and uivi+2 (mod n). In this paper, it is proved that the number of spanning trees in P̆n is n · 23n−2.
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1. Introduction

In this paper, by a graph G = (V,E), we mean an undirected graph without loops and parallel edges. Also, throughout
this paper, the number of spanning trees in G, which represent the total number of distinct trees on all vertices of V (G),
is denoted by t(G). Let the vertices of two disjoint and equal length cycles be denoted u0, u1, . . . , un−1 in the first cycle
and v0, v1, . . . , vn−1 in the second cycle for n ≥ 4. The 4-regular, superprism P̆n on 2n ≥ 8 vertices is defined as the graph
obtained by adding to these disjoint cycles all edges of the form uivi and uivi+2 (mod n). We prove that the number of
spanning trees in P̆n is n · 23n−2. Prism and antiprism are well-known graphs, which are closely related to superprism.

The prism Pn of order 2n is the cubic graph obtained from the cycles (u0, u1, . . . , un−1) and (v0, v1, . . . , vn−1) by adding
all edges of the form uivi. The graph Pn can also be defined as a Cartesian product of the cycle Cn on n vertices and path
K2 on 2 vertices, denoted by Cn�K2 [3,4]. The number of spanning trees in Pn that we established in [3] is

t(Pn) =
n

2
[(2 +

√
3)n + (2−

√
3)n − 2].

The antiprism P̄n of order 2n, for n ≥ 3, is the quartic graph obtained from the cycles (u0, . . . , un−1) and (v0, . . . , vn−1)

by adding all edges of the form uivi and uivi+1 (mod n) [8,11]. The following is known about P̄n:

Theorem 1.1 (see [11]). Let Ci2n(1, 2) be a circulant of order 2n. Then, P̄n ' Ci2n(1, 2).

Circulant Cin(1, 2) is also called the square of a cycle [1]. The following is also known:

Theorem 1.2 (see [1]). The number of spanning trees in the square of cycle for n ≥ 5 is given by n
5 [( 3+

√
5

2 )n−( 3−
√
5

2 )n−2(−1)n].

Based on Theorems 1.1 and 1.2, we obtain the number of spanning trees in P̄n for n ≥ 3, which is not explicitly published
in literature, by substituting n with 2n in t(Ci2n(1, 2)). So, we have, t(P̄n) = 2n

5 [( 3+
√
5

2 )2n − ( 3−
√
5

2 )2n − 2].

Figure 1.1: Smallest superprism, i.e., P̆4.

Note that the superprism is not planar, as opposed to either a prism or an antiprism. In Figure 1.1, we illustrate the
smallest example of the superprism, i.e., P̆4. It is easy to verify that P̆4 is not planar.
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In general, the number of spanning trees can be determined for any graph based on the Kirchhoff Matrix Tree Theorem
[9], as opposed to other parameters, e.g., the number of cycles, which cannot be determined as easily. The Kirchhoff
characteristic matrix Ak of graph of order k with vertices V (G) = {v1, v2, . . . , vk} is k× k symmetric matrix [ai,j ], where (1)
ai,j = −1 if vi, vj are adjacent, (2) ai,i equals the degree of vi, and (3) vi,j = 0 in all other cases. The Kirchhoff matrix tree
theorem states that for any graph G with at least two vertices, all the cofactors of Ak are equal, and they are equal to t(G).
Nevertheless, for the special family of graphs knowing the number of spanning trees based on an explicit formula turned
out to be quite useful in many instances, because the Kirchhoff matrix tree theorem requires calculation of a determinant
of the Kirchhoff characteristic matrix. This might become problematic for very large matrices. One of the first and simplest
derived formulas for the number of spanning trees is due to Cayley [5]. It states that the complete graph Kn on n vertices
has nn−2 number of spanning trees. In this paper, we derive a simple formula for the number of spanning trees of the
superprism P̆n. This formula is almost as simple as Cayley’s formula for t(Kn) and it is much simpler than the formulas
for prism and antiprism described above. Other explicit formulas for the special families of graphs can be found in the
number of publications, e.g., [2,6,7,10,13–17]. In particular, there are many papers covering the number of spanning trees
in the circulant graphs [1,4,6,8,10,16,17], which are related to our superprism through antiprism, as we indicated above.

In Section 2, a set of matrices is defined, and the relations between determinants of these matrices are derived. Based
on these relations, in Section 3, a recurrence relationship for t(P̆n) is derived, which proves the main result (Theorem 3.1).

2. Preliminary results

Let t(G) denote the number of spanning trees in G. In order to derive the number of spanning trees t(P̆n), we establish a
recursion that is satisfied by the Kirchhoff cofactor of P̆n.

Based on the definition of P̆n , we first assign labels to the vertices of P̆n as follows: (1) assign odd numbers 1, 3, . . . , 2n−1

to u0, u1, . . . , un−1, and (2) assign even numbers 2, 4, . . . , 2n to v0, v1, . . . , vn−1. We then form the Kirchhoff characteristic
matrix A2n based on these labels, and focus our attention on the principal (2n − 1) × (2n − 1) submatrix of A2n obtained
by canceling its last row and column corresponding to vertex vn−1 (e.g., vertex v3 in Figure 1.1) labeled with 2n. So, the
number of spanning trees of P̆n equals t(P̆n) = det(A2n−1), where A2n−1 = [ai,j ] is defined as follows:

ai,j =



4 for i = j,
−1 for |i− j| = 2,
−1 if |i− j| = 1 or |i− j| = 5, and (i+ j + 1) ≡ 0 (mod 4),
−1 if i = 1 and j = 2n− 1, or i = 2n− 1 and j = 1,
−1 if i = 2 and j = 2n− 3, or i = 2n− 3 and j = 2,
−1 if i = 4 and j = 2n− 1, or i = 2n− 1 and j = 4,

0 otherwise

Our matrix A2n−1 is given as follows:

A2n−1 =



4 −1 −1 0 0 −1 0 0 0 0 −1
−1 4 0 −1 0 0 0 0 −1 0 0
−1 0 4 −1 −1 0 0 −1 0 0 0

0 −1 −1 4 0 −1 0 0 . . . 0 0 −1
0 0 −1 0 4 −1 −1 0 0 0 0
−1 0 0 −1 −1 4 0 −1 0 0 0

0 0 0 0 −1 0 4 −1 0 0 0
0 0 −1 0 0 −1 −1 4 0 0 0
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 −1 0 0 0 0 0 0 4 −1 −1
0 0 0 0 0 0 0 0 . . . −1 4 0
−1 0 0 −1 0 0 0 0 −1 0 4



.

For convenience and clarity of the proofs, we define the following two matrices associated with A2n−1. First, matrix
B2n−1 is obtained from A2n−1 by subtracting the fourth row from the first row, followed by subtracting the fourth column
from the first column. Let det(A2n−1) = a2n−1 and det(B2n−1) = b2n−1. Second, matrix C2n−1 is obtained from A2n−1 by
replacing six unity elements a1,2n−1, a2,2n−3, a4,2n−1, a2n−1,1, a2n−3,2, a2n−1,4 by 0. Let C2k−1 = C2n−1 for n = k, and let
C2k−3 be obtained from C2k−1 by cancelling first two rows and first two columns of C2k−1 for n ≥ k ≥ 4. This recursion
defines matrices C2n−1, C2n−3, C2n−5, . . . , C7, C5:
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B2n−1 =



8 0 0 −4 0 0 0 0 0 0 0
0 4 0 −1 0 0 0 0 −1 0 0
0 0 4 −1 −1 0 0 −1 0 0 0
−4 −1 −1 4 0 −1 0 0 . . . 0 0 −1

0 0 −1 0 4 −1 −1 0 0 0 0
0 0 0 −1 −1 4 0 −1 0 0 0
0 0 0 0 −1 0 4 −1 0 0 0
0 0 −1 0 0 −1 −1 4 0 0 0
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 −1 0 0 0 0 0 0 4 −1 −1
0 0 0 0 0 0 0 0 . . . −1 4 0
0 0 0 −1 0 0 0 0 −1 0 4



,

where a2n−1 = b2n−1,

C2k−1 =



4 −1 −1 0 0 −1 0 0 0 0 0
−1 4 0 −1 0 0 0 0 0 0 0
−1 0 4 −1 −1 0 0 −1 0 0 0

0 −1 −1 4 0 −1 0 0 . . . 0 0 0
0 0 −1 0 4 −1 −1 0 0 0 0
−1 0 0 −1 −1 4 0 −1 0 0 0

0 0 0 0 −1 0 4 −1 0 0 0
0 0 −1 0 0 −1 −1 4 0 0 0
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 0 0 0 0 0 0 4 −1 −1
0 0 0 0 0 0 0 0 . . . −1 4 0
0 0 0 0 0 0 0 0 −1 0 4



.

In addition, in order to derive the recurrence relationships in the supporting lemmas, presented in the next section, we
also define auxiliary matrices as follows:
1. Matrix D2n−2 is obtained by canceling the first row and first column in A2n−1.

D2n−2 =



4 0 − 1 −1 0 0
0 4 − 1 − 1 0 0 − 1 0
− 1 − 1 4 0 − 1 −1

−1 0 . . . . . . . . . . .
0 −1 .
0 .
−1 .

. C2n−5

.

.
−1 .

0 .
0 0 −1 .



.

2. Matrix E2n−3 is obtained by canceling first and fourth rows, followed by canceling first and fourth columns in A2n−1.

E2n−3 =



4 0 −1 0 0
0 4 − 1 0 0 −1
−1 . . . . . . . . . . . . .

0 .
0 .
−1 .

. C2n−5

.

.
−1 .

0 .
0 .



.
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3. Matrix F2k−2 is obtained by canceling first row and first column in C2k−1, where k ≤ n.
4. Matrix G2k−2 is obtained by canceling last row and last column in C2k−1, where k ≤ n.
5. Matrix H2k−2 is obtained by appending first row and first column to C2k−3 as follows:

H2k−2 =


8 0 −4
0 . . . . . .
−4 .

. C2k−3

.

.

 .

6. Matrix M2k−1 is obtained by appending first row and first column to G2k−2 as follows:

M2k−1 =


8 0 −4
0 . . . . . .
−4 .

. G2k−2

.

.

 .

Lemma 2.1. Let b2n−1, c2k−1, d2n−2, e2n−3, f2k−2, g2k−2, h2k−2,m2k−3 be respective determinants of matrices B2n−1, C2k−1,
D2n−2, E2n−3, F2k−2,G2k−2,H2k−2,M2k−3 for k ≤ n. Then the following relations hold: (i) a2n−1 = b2n−1 = 8d2n−2−16e2n−3,
(ii) d2n−2 =8c2n−3−8h2n−4−16g2n−4, (iii) e2n−3 =8h2n−4−16m2n−5, (iv) h2k−2 =8c2k−3−16h2k−4, (v)m2k−1 =8g2k−2−16m2k−3.

Proof. (i). By the definition of B2n−1, a2n−1 = b2n−1. Also, by expanding B2n−1 with respect to the first row, we obtain
b2n−1 = 8d2n−2 − 16e2n−3.
(ii). We subtract the last row from the first row, and then we subtract the last column from the first column inD2n−2, which
results in the following matrix D′2n−2 :

D2n−2 → D′2n−2 =



8 − 4
. . . . . . . 0
. . 0
. . −1
. G2n−4 .
. .
. . −1
. . . . . . . 0

−4 − 1 0 4


.

So, d′2n−2 = d2n−2 and there are exactly two nonzero elements in the first row and first column of D′2n−2. Expanding D′2n−2
with respect to the first row, we have

d2n−2 = 8


c2n−3 − det



4 −1 0 0 −1
−1 . . . . . . . .

0 .
0 .
−1 . C2n−5

.

.

.

.




−16g2n−4.

By subtracting the third row from the first row, followed by subtracting the third column from the first column, we obtain

d2n−2 = 8


c2n−3 − det



8 0 −4
0 . . . . . . . .
−4 .

.

. C2n−5

.

.

.

.




− 16g2n−4 = 8c2n−3 − 8h2n−4 − 16g2n−4.

(iii). We subtract the last row from the first row, and then we subtract the last column from the first column in E2n−3.
Subsequently, we subtract the fourth row from the second row, and finally, we subtract the fourth column from the second
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column, which results in the following matrix E′2n−3.

E2n−3 → E′2n−3 =



8 − 4
8 0 − 4
0 . . . . . . . . . . . . .
−4 .

.

.

. C2n−5

.

.

.

.
−4 .



.

Clearly, e′2n−3 = e2n−3 and there are exactly two nonzero elements in the first row and first column of E′2n−3. Expanding
E′2n−2 with respect to the first row results in the following:

e2n−3 = 8 · det


8 0 −4
0 . . . . . .
−4 .

. C2n−5

.

.

− 16 · det


8 0 −4
0 . . . . . .
−4 .

. G2n−6

.

.

 = 8h2n−4 − 16m2n−5.

(iv). By subtracting the fourth row from the second row, followed by subtracting the fourth column from the second column
in H2k−2, and followed by expanding H2k−2 with respect to the first row, we obtain the following:

h2k−2 = 8 · c2k−3 − 16 · det


8 0 −4
0 . . . . . .
−4 .

. C2k−5

.

.

 = 8c2k−3 − 16h2k−4.

(v). By subtracting the fourth row from the second row, followed by subtracting the fourth column from the second column
in M2k−1, and followed by expanding M2k−1 with respect to the first row, we obtain the following:

m2k−1 = 8 · g2k−2 − 16 · det


8 0 −4
0 . . . . . .
−4 .

. G2k−4

.

.

 = 8g2k−2 − 16m2k−3.

3. Main result

Before presenting our main result, we need additional lemmas that explore linear recurrence relations with constant
coefficients. To this end, we use the following notation. For a sequence {fi} and the recurrence relation with constant
coefficients α0, α1, . . . , αk given by αkfi+k +αk−1fi+k−1 + · · ·+α0fi = 0, we say that the sequence {fi} satisfies the equation
αkx

k + αk−1x
k−1 + · · ·+ α0x

0 = 0, which is called the characteristic equation [12], where x is the shift operator satisfying
x · fi−1 = fi and x0 = 1.

Lemma 3.1. Let ĉk = c2k−1 and k ≥ 4. The sequence {ĉk} satisfies the characteristic equation (x− 8)2 = 0.

Proof. Let ri, ci be i-th row and i-th column in C2k−1 respectively for k ≥ 4. We obtain matrix Q2k−1 from matrix C2k−1 by
subtracting r2i from r2i−3 followed by subtracting c2i from c2i−3 obtaining new row r2i−3 and new column c2i−3, for every
integer i, where 2 ≤ i ≤ k − 1. Hence, c2k−1 = det(Q2k−1) = q2k−1, where Q2k−1 = [qi,j ] is defined as follows:

qi,j =



8 for i = j, i odd, and 2i ≤ 2k − 5,
4 for i = j, and either i even or 2i > 2k − 5,
−1 for |i− j| = 2 and (i+ j − 2) ≡ 0 (mod 4),
−1 if i = 2k − 3 and either j = 2k − 2 or j = 2k − 1,
−1 if j = 2k − 3 and either i = 2k − 2 or i = 2k − 1,
−4 for |i− j| = 3 and (i+ j − 1) ≡ 0 (mod 4),

0 otherwise.
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So, we have,

Q2k−1 =



8 0 0 −4 0 0 0 0 0 0 0
0 4 0 −1 0 0 0 0 0 0 0
0 0 8 0 0 −4 0 0 0 0 0
−4 −1 0 4 0 −1 0 0 . . . 0 0 0

0 0 0 0 8 0 0 −4 0 0 0
0 0 −4 −1 0 4 0 −1 0 0 0
0 0 0 0 0 0 8 0 0 0 0
0 0 0 0 −4 −1 0 4 0 0 0
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 0 0 0 0 0 0 4 −1 −1
0 0 0 0 0 0 0 0 . . . −1 4 0
0 0 0 0 0 0 0 0 −1 0 4



.

Let matrix R2k−2 be obtained by canceling the first row and first column in matrix Q2k−1, and let r2k−2 = det(R2k−2).
Expanding Q2k−1 with respect to the first row, we get

q2k−1 = 8 · r2k−2 − 64 · det


8 0 −4
0 . . . . . .
−4 .

. Q2k−5

.

.

 = 8r2k−2 − 64s2k−4, where

S2k−2 =


8 0 −4
0 . . . . . .
−4 .

. Q2k−3

.

.

 and s2k−2 = det(S2k−2).

Expanding R2k−2 with respect to the first row, we get

r2k−2 = 4 · q2k−3 − det


8 0 −4
0 . . . . . .
−4 .

. Q2k−5

.

.

 = 4q2k−3 − s2k−4.

Expanding S2k−2 with respect to the first row, we get s2k−2 = 8q2k−3 − 16s2k−4. Consequently, solving the following three
relations q2k−1 = 8r2k−2 − 64s2k−4, r2k−2 = 4q2k−3 − s2k−4, 8q2k−1 = s2k + 16s2k−2, we obtain s2k − 16s2k−2 + 64s2k−4 = 0.
This means that sequence {ŝk}, where ŝk = s2k, satisfies the characteristic equation (x − 8)2 = 0. Furthermore, since
q2k−1 = c2k−1 = ĉk then relation 8q2k−1 = s2k + 16s2k−2 together with sequence {ŝk} satisfying (x − 8)2 = 0 imply that
sequence {ĉk} also satisfies (x− 8)2 = 0.

Lemma 3.2. Let ĝk = g2k−2 and k ≥ 4. The sequence {ĝk} satisfies the characteristic equation (x− 8)2 = 0.

Proof. Let matrix Q′2k−2 be obtained from Q2k−1, defined in Lemma 3.1, by deleting the last row and last column. Let
q′2k−2 = det(Q′2k−2). Let matrix R′2k−3 be obtained by canceling the first row and first column in matrix Q′2k−2, and let
r′2k−3 = det(R′2k−3). Expanding Q′2k−2 with respect to the first row, we get

q′2k−2 = 8 · r′2k−3 − 64 · det


8 0 −4
0 . . . . . .
−4 .

. Q′2k−6

.

.

 = 8r′2k−2 − 64s′2k−5, where

S′2k−1 =


8 0 −4
0 . . . . . .
−4 .

. Q′2k−2

.

.

 and s′2k−1 = det(S′2k−1).
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Expanding R′2k−3 with respect to the first row, we get

r′2k−3 = 4 · q′2k−4 − det


8 0 −4
0 . . . . . .
−4 .

. Q′2k−6

.

.

 = 4q′2k−4 − s′2k−5.

Expanding S′2k−3 with respect to the first row, we get

s′2k−3 = 8q′2k−4 − 16s′2k−5.

Consequently, solving the relations
q′2k−2 = 8r′2k−3 − 64s′2k−5,

r′2k−3 = 4q′2k−4 − s′2k−5,

8q′2k−2 = s′2k−1 + 16s′2k−3,

we obtain
s′2k−1 − 16s′2k−3 + 64s′2k−5 = 0.

So, our sequence {ŝ′k}, where ŝ′k = s′2k−1, satisfies the characteristic equation (x − 8)2 = 0. Furthermore, since q′2k−2 =

g2k−2 = ĝk then relation 8q′2k−2 = s′2k−1 + 16s′2k−3 together with sequence {ŝ′k} satisfying (x− 8)2 = 0 imply that sequence
{ĝk} also satisfies (x− 8)2 = 0.

Lemma 3.3. Let ân = a2n−1 and n ≥ 4. The sequence {ân} satisfies the characteristic equation

(x− 8)2 = 0.

Proof. By Lemma 2.1(v), m2k−1 + 16m2k−3 = 8g2k−2, and by Lemma 3.2, sequence {ĝk} satisfies P (x) = (x− 8)2 = 0. This
implies that sequence {m̂i}, where m̂i = m2i−1, also satisfies P (x) = 0.

Since by Lemma 3.1 sequence {ĉk} satisfies P (x) = (x− 8)2 = 0, and by Lemma 2.1(iv), h2k−2 + 16h2k−4 = 8c2k−3 then
sequence {ĥi}, where ĥi = h2i, also satisfies P (x) = 0.

Because sequences {m̂i}, {ĥi} satisfy P (x) = (x − 8)2 = 0, and by Lemma 2.1(iii), e2n−3 = 8h2n−4 − 16m2n−5 then
sequence {êi}, where êi = e2i−1, also satisfies P (x) = 0.

Because sequences {ĉi}, {ĥi}, {ĝi} satisfy P (x) = (x− 8)2 = 0, and by Lemma 2.1(ii), d2n−2 = 8c2n−3 − 8h2n−4 − 16g2n−4

then sequence {d̂i}, where d̂i = d2i, also satisfies P (x) = 0.
Because sequences {d̂i}, {êi} satisfy P (x) = (x− 8)2 = 0, and by Lemma 2.1(i), a2n−1 = 8d2n−2 − 16e2n−3 then sequence

{âi}, where âi = a2i−1, also satisfies P (x) = 0.

We can now state and prove the (following) main result of this paper.

Theorem 3.1. Let n ≥ 4. The number of spanning trees in P̆n is

t(P̆n) = n · 23n−2.

Proof. Let g(n) be defined as
g(n) = n · 23n−2.

By direct calculation, we verify that g(n) satisfies the characteristic equation

(x− 8)2 = 0,

where x is the shift operator such that g(n) = x · g(n − 1) and x0 = 1. According to Lemma 3.3, ân = a2n−1 satisfies the
same characteristic equation. Based on the Kirchhoff matrix tree theorem, by numerically evaluating the determinants
a2n−1 for n = 4, 5, and 6, we obtain that g(n) = ân for n = 4, 5, 6. This implies that g(n) = ân for n ≥ 4, which proves the
theorem.

We point out that our formula t(P̆n) = n · 23n−2 is much simpler than the ones for prism and antiprism, both of which
involve

√
3 and

√
5, respectively. This is quite surprising and counterintuitive because both prism and antiprism are planar

graphs. On the other hand, based on Kuratowski’s celebrated theorem, it’s easy to verify that our t(P̆4) in Figure 1.1 is not
planar, because it contains induced K3,3. In fact, we derived in this paper one of the simplest formulas in graph theory. It
suggests that this superprism might be of interest in other respects as well.
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Finally, let P̂n be defined as P̆n but for n ≥ 1. That is, a loop is considered as a cycle on a single vertex, and a cycle on
two vertices is considered as two parallel edges. Then we can state the following:

Corollary 3.1. Let n ≥ 1. The number of spanning trees in P̂n is

t(P̂n) = n · 23n−2.

Proof. It is directly verified that t(P̂1) = 2, t(P̂2) = 32, and t(P̂3) = 384, which satisfy the formula. In addition, based on
Theorem 3.1, t(P̂n) is also satisfied for n ≥ 4.

Note that for n = 1 we have a multigraph with two loops, for n = 2 we have a multigraph with four pairs of parallel
edges, and for n = 3 we have P̂n ' P̄n.
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