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Abstract
Let H be a digraph possibly with loops. Let D be a digraph without loops. An H-coloring of D is a function c : A(D)→ V (H).
We say that D is an H-colored digraph whenever we are taking a fixed H-coloring of D. A trail W = (v0, e0, v1, e1, v2, . . . ,
vn−1, en−1, vn) in D is an H-trail if and only if (c(ei), c(ei+1)) is an arc in H for every i ∈ {0, . . . , n−2}. Whenever the vertices
of an H-trail are pairwise different, we say that it is an H-path. In this paper, we study the problem of finding s− t H-trail
in H-colored digraphs. First, we prove that finding an H-trail starting with the arc e and ending at arc f can be done in
polynomial time. As a consequence, we give a polynomial time algorithm to find the shortest H-trail from a vertex s to a
vertex t (if it exists). Moreover, we obtain a Menger-type theorem for H-trails. As a consequence, we show that the problem
of maximizing the number of arc disjoint s− t H-trails in D can be solved in polynomial time. Although finding an H-path
between two given vertices is an NP-problem, it becomes a polynomial time problem in the case when H is a reflexive and
transitive digraph.
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1. Introduction

For basic concepts, terminology, and notation not defined here, we refer the reader to [4]. Throughout this work, we will
consider finite digraphs. Let D be a digraph. The sets of vertices and arcs of D are denoted by V (D) and A(D), respectively.

A transition in a digraph D is a pair of adjacent arcs of D such that the head of one is the tail of the other one. A
transition system of a digraph D is a set of transitions in D. Let T be a transition system. We say that a transition is
permitted if it is in T and it is forbidden otherwise. We say that a walk is T -compatible whenever all its transitions are
permitted. For every vertex v ∈ V (D), the set of allowed transitions defines a digraph T (v), called transition digraph of v,
whose vertex set is the set of arcs incident with v, and there is an arc from e to f in T (v) if and only if {e, f} ∈ T , where v

is the head of e and the tail of f .
In [24], Szeider studied the computational complexity of finding T -compatible paths between two given vertices of an

undirected graph, with a transition system T , proved that the problem is in NP, and found a class of transition systems
that can be solved in linear time; for example, if T (v) is a complete graph for every v ∈ V (G). Several authors have studied
the existence of T -compatible trails, paths, and cycles in graphs with a given transition system, from an algorithmic point
of view (see [5,6]).

A particular class of T -compatibles walks that has been extensively studied, is the class of properly colored walks
(which are walks with no consecutive edges with the same color) in edge-colored graphs. Several authors have worked with
this concept in directed and undirected graphs; for example, see [3, 13, 19, 20]. Properly colored walks are of interest for
theoretical reasons; for example, they can be considered as a generalization of walks in undirected and directed graphs [4].
Such walks may also be useful in graph theory applications; for example, in genetic and molecular biology [11, 12, 23],
social science [8], and channel assignment in wireless networks [2,22].

In view of the relevance in applications of finding properly colored walks, the problem of finding properly colored trails
and paths, between two given vertices, has been studied from an algorithmic perspective. For example, in [1] Aboue-
laoualim et al. proved that finding the shortest properly colored trail between two vertices can be done in polynomial time.
In [24], Szeider proved that given a c-edge-colored graph, c ≥ 2, a properly colored path between two vertices can be found
in linear time on the size of the graph.

Theorem 1.1 (Abouelaoualim et al. [1]). Let G be a c-edge-colored graph with c ≥ 2. The problem of finding the shortest
properly colored trail in G (if any) can be solved in polynomial time.
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Theorem 1.2 (Szeider [24]). Let s and t be two vertices in a c-edge-colored graph G with c ≥ 2. Then, either we can find
a properly colored path between s and t or else decide that such a path does not exist in G in linear time on the size of the
graph.

Gourvès et al. [18] proved that deciding whether a planar c-arc-colored digraph with no properly colored cycle contains
a properly colored s − t path is NP-complete. However, they also proved that the problem of finding a directed properly
colored trail from a vertex s to a vertex t in a c-arc-colored digraph can be done in polynomial time. Moreover, they proved
that the problem of maximizing the number of arc disjoint properly colored trails between two vertices can be solved in
polynomial time.

Theorem 1.3 (Gourvès et al. [18]). Deciding whether a planar c-arc-colored digraph with no properly colored cycle contains
a properly colored s− t path is NP-complete.

Theorem 1.4 (Gourvès et al. [18]). Let D be a c-arc-colored digraph with c ≥ 2. The problem of finding a directed properly
colored trail in D (if any) can be solved in polynomial time.

Theorem 1.5 (Gourvès et al. [18]). The problem of maximizing the number of arc disjoint properly colored trails from s to
t in D can be solved in polynomial time.

Different kinds of edge-coloring in directed and undirected graphs have been studied by several researchers; for ex-
ample, in [21] the arcs of a tournament were colored with the vertices of a poset. We will consider the following arc-
coloring. Let H be a digraph possibly with loops and D a digraph without loops. An H-coloring of D is a function
c : A(D) → V (H). We will say that D is an H-colored digraph, whenever we are taking a fixed H-coloring of D. A di-
rected walk W = (v0, e0, v1, . . . , vk−1, ek−1, vk) in D, where ei = (vi, vi+1) for every i in {0, . . . , k − 1}, is an H-walk if and
only if (c(ei), c(ei+1)) ∈ A(H) for every i ∈ {0, . . . , k − 2}. Let W be an H-walk. If W is a trail (path) then W will be called
H-trail (H-path, respectively).

The concepts of H-coloring and H-walks were introduced, for the first time, by Linek and Sands in [21]. Such concepts
have also been studied in the context of kernel theory and related topics, see [9,10,16].

Galeana-Sánchez et al. [15] studied the existence of H-cycles in H-colored multigraphs, and reported a polynomial time
algorithm to decide whether an H-colored multigraph contains an H-cycle. In [14], they studied the existence of closed
Euler H-trails in H-colored graphs. In both cases, an auxiliary graph has been of significant importance and here we
include the digraph version of this auxiliary graph.

Definition 1.1. Let D be an H-colored digraph and u a vertex of D. We define the digraph Du as follows

1. V (Du) = {e ∈ A(D) | e is incident with u};

2. (a, b) ∈ A(Du), with a 6= b, if and only if u is the head of a and the tail of b, and (c(a), c(b)) ∈ A(H).

In [17], Galeana-Sánchez and Vilchis-Alfaro defined the auxiliary digraph LH
n (D), defined below, and proved that there

is a bijection between the set of closed H-trails in D and the set of directed cycles in LH
2 (D).

Definition 1.2. Let D be an H-colored digraph with |A(D)| = q. For n ≥ 2, LH
n (D) is the digraph with nq vertices, obtained

as follows: for each arc e = (u, v) ofD, we take two vertices f(e, u) and f(e, v) inLH
n (D), and add a directed path from f(e, u) to

f(e, v) with n−2 new intermediate vertices. The rest of the arcs of LH
n (D) are defined as follows: (f(e, u), f(g, u)) ∈ A(LH

n (D))

if and only if e = (x, u) and g = (u, y) for some x and y in V (D) and (c(e), c(g)) ∈ A(H).

Notice that the digraph LH
n (D) can be constructed as follows: take the disjoint union of Dx and change the label of the

vertices of Dx from e to f(e, x) for every x ∈ V (D), and for every e = (x, y) ∈ A(D), we add a directed path from f(e, u) to
f(e, v) with n− 2 new intermediate vertices.

Theorem 1.6 (Galeana-Sánchez and Vilchis-Alfaro [17]). Let D be an H-colored digraph. Then there is a bijection between
the set of closed H-trails in D and the set of directed cycles in LH

2 (D).

In Section 2, we study the problem of finding s − t H-trail in H-colored digraphs. We prove that determining (if there
exists) an H-trail starting with the arc e and ending at the arc f can be done in polynomial time. As a consequence, we
give a polynomial time algorithm to find (if there exists) the shortest H-trail from the vertex s to the vertex t. Moreover, we
show that the problem of maximizing the number of arc disjoint s− t H-trails in D can be solved in polynomial time. We
also study the computational complexity of finding H-path between two given vertices of an H-colored digraph in terms of
the digraph H.
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2. Main results

In this section, we are interested in the complexity of finding H-trails in H-colored digraphs. To achieve this, we use the
auxiliary graph LH

2 (D). The statements given in the following observation are direct consequences of the definition.

Observation 2.1. Let D be an H-colored digraph.

(a). For every e = (x, y) in A(D), d+(f(e, x)) = d−(f(e, y)) = 1 in LH
2 (D). Moreover, N+(f(e, x)) = {f(e, y)} and

N−(f(e, y)) = {f(e, x)}.

(b). For every u ∈ V (D), Du is a bipartite digraph with partition {A+
u , A

−
u }, where A+

u (respectively, A−u ) is the set of arcs in
D with head u (respectively, with tail u). Moreover, every arc in Du has tail in A−u and head in A+

u .

(c). LH
2 (D) is a bipartite digraph.

Algorithm 1 is a linear time algorithm that, starting with a path in LH
2 (D), obtains an H-trail in D.

Algorithm 1 Path to H-trail
Require: A path T = (f(e1, x1), f(e2, x2), . . . , f(ek, xk)) in LH

2 (D) such that x1 6= x2 and xk−1 6= xk.
Ensure: An H-trail in D.

i← 1
P
while i 6= k/2 + 1 do

if i = 1 then
P ← P = (x1, e1, x2)

else
P ← P = P ∪ (x2i−1, e2i−1, x2i).

end if
end while

Lemma 2.1. Let D be an H-colored digraph. Given a path T = (f(e1, x1), f(e2, x2), . . . , f(ek, xk)) in LH
2 (D) such that x1 6= x2

and xk−1 6= xk, Algorithm 1 returns an x1 − xk H-trail in G.

Proof. Let T = (f(e1, x1), f(e2, x2), . . . , f(ek, xk)) be a path in LH
2 (D) such that x1 6= x2 and xk−1 6= xk. By the definition

of LH
2 (D) and the fact that x1 6= x2, we have that (f(e1, x1), f(e2, x2)) 6∈ A(Gx1

). So, by Observation 2.1(a), it follows that
e1 = e2 and e1 = (x1, x2). Hence, P = (x1, e1, x2) is an H-path in D. By the definition of LH

2 (D) and Observation 2.1(a),
we have that x2 = x3 and (f(e2, x2), f(e3, x3)) ∈ A(Gx2), that is, (c(e1), c(e3)) ∈ A(H). By Observation 2.1(a), it follows that
x3 6= x4. Hence, e3 = e4 and e3 = (x3, x4). Consequently, P = (x1, e1, x2 = x3, e3, x4) is an H-trail (notice that e1 6= e3,
otherwise f(e1, x1) = f(e3, x3), which is impossible since x1 6= x2 and x2 = x3).

By the definition of LH
2 (D) and Observation 2.1(a), we have that x4 = x5 and (f(e4, x4), f(e5, x5)) ∈ A(Gx4

), that is,
(c(e3), c(e5)) ∈ A(H). By Observation 2.1(a), it follows that x5 6= x6, hence e5 = e6 and e5 = (x5, x6). Hence, P = (x1, e1, x2 =

x3, e3, x4 = x5, e5, x6) is an H-trail (notice that e5 6∈ {e1, e3}, otherwise T is not a path).
Following this reasoning, we have that x2i = x2i+1, x2i+1 6= x2i+2, (c(e2i−1), c(e2i+1)) ∈ A(H) and e2i+1 = (x2i+1, x2i+2),

for every i ∈ {1, . . . , k/2− 1}. (Notice that k is even since xk−1 6= xk).
Hence, P = (x1, e1, x2 = x3, e3, x4 = x5, . . . , xk−1, ek−1, xk) is an H-walk in D. Moreover, since T is a path, it follows that

P is an H-trail.
Therefore, Algorithm 1 returns an H-trail in D in linear time.

Lemma 2.2. Let D be an H-colored digraph. Let e = (x1, y1) and g = (x2, y2) be different arcs of D. If there is no
f(e, y1)− f(g, x2) path in LH

2 (D), then there is no H-trail in D starting with e and ending with g.

Proof. Proceeding by contradiction, assume that there exists an H-trail in D starting with e and ending with g; namely,
P = (x1, e, y1, e1, y2, . . . , yk, ek, x2, g, y2). Hence, T = (f(e, x1), f(e, y1), f(e1, y2), . . . , f(ek, yk), f(ek, x2), f(g, x2), f(g, y2)) is a
path in LH

2 (D). Therefore, there exist an f(e, y1)− f(g, x2) path in LH
2 (D), which is a contradiction.

Theorem 2.1. Given an arbitrary H-colored digraph D, finding an H-trail starting with the arc e and ending with the arc
g (if any) can be done in polynomial time.

8



C. Vilchis-Alfaro and H. Galeana-Sánchez / Discrete Math. Lett. 13 (2024) 6–12 9

Proof. Let D be an H-colored digraph. Let e = (x1, y1) and g = (xq, yq) be two arcs in D. Construct the auxiliary digraph
LH
2 (D). Consider the vertices f(e, y1) and f(g, xq) in LH

2 (D). Find a path from f(e, y1) to f(g, xq), namely P . (If there is no
f(e, y1)− f(g, xq) path in LH

2 (D), then there is no H-trail starting with e and ending with g in D). Then, it follows directly
from Observation 2.1(a) that P ′ = (f(e, x1), f(e, y1), P, f(g, xq), f(g, yq)) is also a path in LH

2 (D). Therefore, by Algorithm 1,
there is an H-trail in D starting with the arc e and finishing with the arc g. Notice that each step can be done in polynomial
time.

Corollary 2.1. Given an arbitrary H-colored digraph D, finding a closed H-trail containing the arc e (if any) can be done
in polynomial time.

Proof. Let D be an H-colored digraph and e = (x, y) an arc in A(D). Construct the auxiliary digraph LH
2 (D). Consider

the vertices f(e, y) and f(e, x) in LH
2 (D). Find a path from f(e, y) to f(e, x), namely C. (If there is no f(e, y)− f(e, x) path

in LH
2 (D), then there is no closed H-trail containing the arc e in D). Then, it follows directly from Observation 2.1(a) that

C ′ = (f(e, y), C, f(e, x), f(e, y)) is a cycle in LH
2 (D). Therefore, by Theorem 1.6, there is a closed H-trail in D that contains

the arc e.

Theorem 2.2. Let D be an H-colored digraph. The shortest H-trail (if it exists) between any pair of arcs can be found in
polynomial time.

Proof. Let D be an H-colored digraph. Let e = (x1, y1) and g = (xq, yq) be two arcs in D. Construct the auxiliary
digraph LH

2 (D). Consider the vertices f(e, y1) and f(g, xq) in LH
2 (D). Find the shortest path from f(e, y1) to f(g, xq), say

P . (If there is no f(e, y1) − f(g, xq) path in LH
2 (D), then there is no H-trail starting with e and ending with g). Then,

P ′ = (f(e, x1), f(e, y1), P, f(g, xq), f(g, yq)) is also a path in LH
2 (D) because of Observation 2.1(a). Therefore, by Algorithm

1, there is an H-trail in D starting with the arc e and finishing with the arc g, namely T . Notice that each step can be done
in polynomial time.

Notice also that if there is a shorter H-trail from e to g in D than T , namely

Q = (v1 = x1, g1 = e, v2 = y1, g2, v3, . . . , vj−1 = xq, gj−1 = g, vj = yq),

then W = (f(g1, v2), f(g2, v2), f(g2, v3), . . . , f(gj−1, vj−1)) is a shorter f(e, y1) − f(g, xq) path than P in LH
2 (D), which is a

contradiction.

It follows from Theorem 2.1 that finding an s− t H-trail in D (if any) can be done in polynomial time. This can be done
using Theorem 2.1 with all the possible pairs of arcs, one with tail s and the other one with head t. This method can be
improved using the following variation of the auxiliary digraph LH

2 (D).

Definition 2.1. Let D be an H-colored digraph. Let s, t, be a pair of distinct vertices in V (D). The digraph LH
2 (s, t) is the

digraph with the vertex set V (LH
2 (s, t)) = V (LH

2 (D) ∪ {xs, xt} and the arc set

A(LH
2 (s, t)) = A(LH

2 (D)) ∪ {(xs, f(e, s)) : e = (u, s) ∈ A(D)} ∪ {(f(e, t), xt) : e = (u, t) ∈ A(D)}.

Theorem 2.3. Given an arbitrary H-colored digraph D, finding an s − t H-trail in D (if any) can be done in polynomial
time.

Proof. Let D be an H-colored digraph. Let s and t be two vertices in D. Construct the auxiliary digraph LH
2 (s, t). Find a

path from xs to xt in the digraph LH
2 (s, t) (if any), namely P . (If there is no xs − xt path in LH

2 (s, t), then there is no s − t

H-trail in D). Hence, P ′ = P \ {xs, xt} is a path in LH
2 (D), and by Algorithm 1, there is an s− t H-trail in D.

Corollary 2.2. Let D be an H-colored digraph. The shortest H-trail (if it exists) between any pair of distinct vertices can
be found in polynomial time.

Let D be a digraph. Let s, t, be a pair of different vertices in V (D). An (s, t)-separator is a subset X ⊆ V (D) \ {s, t} with
the property that D − X has no s − t paths. If D is an H-colored digraph, an (s, t)-H-trails-separator by arcs is a subset
X ⊆ A(D) with the property that D −X has no s− t H-trails.
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(a) D is an H-colored digraph

f(e1, s)

f(e5, s)
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f(e1, v1) f(e2, v1)

f(e6, v1)

Dv1
f(e2, v2) f(e3, v2)

f(e7, v2)

f(e4, v2)

Dv2

f(e5, v3)

f(e7, v3)

f(e9, v3)

f(e10, v3)

Dv3

f(e10, v4)

f(e4, v4) f(e11, v4)

Dv4

f(e11, t)

f(e3, t)

Dt

(b) LH
2 (D)

Figure 2.1: P = (s, e1, v1, e2, v2, e4, v4, e8, v3, e7, v2, e3, t) is an s − t H-trail in D. But, there is no H-path from s to t in G.
Moreover, P is obtained by applying Algorithm 1 to the dashed path of LH

2 (D)

Theorem 2.4. Let D be an H-colored digraph. Let s, t, be a pair of different vertices in V (D). Then, the following assertions
are equivalent.

(a). The maximum number of arc-disjoint s− t H-trails in D is equal to k.

(b). The maximum number of internally disjoint xs − xt-paths in LH
2 (s, t) is equal to k.

(c). The minimum number of vertices in an (xs, xt)-separator in LH
2 (s, t) is equal to k.

(d). The minimum number of arcs in an (s, t)-H-trails-separator by arcs in D is equal to k.

Proof. Let k1 be the maximum number of arc-disjoint s − t H-trail in D, k2 the maximum number of internally disjoint
xs − xt-paths in LH

2 (s, t), k3 the minimum number of vertices in an (xs, xt)-separator in LH
2 (s, t), and k4 the minimum

number of arcs in an (s, t)-H-trails-separator by arcs in D. We will prove that k1 = k2 = k3 = k4.

Claim 1. k1 = k2.
It follows by Algorithm 1 that k2 ≤ k1. Let {P1, . . . , Pk1

} be a set of k1 arc-disjoint s − t H-trails in D. For each i in
{1, . . . , k1}, we can construct an xs − xt-path in LH

2 (s, t) from Pi as follows: Let Pi = (s, ei0, x
i
1, e

i
1, x

i
2, . . . , x

i
ji
, eiji , t). Then,

T1 = (xs, f(e
i
0, s), f(e

i
0, x

i
1), f(e

i
1, x

i
1), f(e

i
1, x

i
2), . . . , f(e

i
ji
, xi

ji
), f(eiji , t), xt) is a path in LH

2 (s, t). It follows from the construction
of each Ti and Observation 2.1(a) that Ti and Tj are internally disjoint xs−xt-paths in LH

2 (s, t), for every {i, j} ⊆ {1, . . . , k1}.
Thus, k1 ≤ k2 and hence the claim holds.

Claim 2. k3 ≤ k4.
Let A = {ei = (xi, yi) ∈ A(D) : i ∈ {1, . . . , k4}} be an (s, t)-H-trails-separator by arcs in D with k4 arcs. Consider
B = {f(ei, yi) ∈ LH

2 (s, t)}. Suppose that there exists an xs−xt-path in LH
2 (s, t)\B, namely P . Hence, by applying Algorithm

1 to the path P , we conclude that there is T , an H-trail from s to t in D, such that ei 6∈ A(T ), which is a contradiction.
Therefore, B is an (xs, xt)-separator in LH

2 (s, t) with k4 vertices, and hence the claim holds.

Claim 3. k4 ≤ k3.
Let A = {f(ei, xi) : i ∈ {1, . . . , k3}} be an (xs, xt)-separator in LH

2 (s, t). It follows from Observation 2.1(a) that for every
e = (x, y) ∈ A(D), at most one of the vertices f(e, x) and f(e, y) is in a minimum (xs, xt)-separator in LH

2 (s, t). Hence,
B = {ei ∈ A(D) : f(ei, xi) ∈ A} has k3 arcs. Notice that B is an (s, t)-H-trails-separator by arcs in D. Otherwise, there is
an (s, t) H-trail in D, say P , and we can find T , an xs − xt-path in LH

2 (s, t) from P (as in Claim 1), such that V (T ) ∩A = ∅,
which is a contradiction. Therefore, k4 ≤ k3 and hence the claim holds.
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Notice that k2 = k3 follows from Menger’s Theorem. Therefore, k1 = k2 = k3 = k4.

Corollary 2.3. The problem of maximizing the number of arc disjoint s− t H-trails in D can be solved in polynomial time.

Recall that if H is a complete digraph without loops, then every H-trail is a properly colored trail.

Corollary 2.4. Given an arbitrary c-arc-colored digraph D, finding a properly colored trail starting with the arc e and
ending with the arc f (if any) can be done in polynomial time.

Corollary 2.5. Given an arbitrary c-arc-colored digraph D and two vertices s, t, of D, finding a properly colored s− t trail
in D (if any) can be done in polynomial time.

Corollary 2.6. The problem of maximizing the number of arc disjoint properly colored s − t trails in D can be solved in
polynomial time.

Recall that if H is a complete digraph without loops, then every H-path is a properly colored path. Hence, the next
result follows immediately from Theorem 1.3.

Corollary 2.7. Deciding whether an H-colored digraph contains an s− t H-path is NP-complete.

Benı́tez-Bobadilla et al. [7] gave a characterization of digraphs H such that for every digraph D and every H-coloring
of D, every H-walk between two vertices in D contains an H-path with the same endpoints.

Theorem 2.5 (Benı́tez-Bobadilla et al. [7]). Let H be a reflexive digraph. Then, H is transitive if and only if for every
H-colored digraph D, and every pair of different vertices s and t of D, every s− t H-walk in D contains an s− t H-path in
D.

The following result is a direct consequence of Corollary 2.3 and Theorem 2.5.

Corollary 2.8. Let H be a transitive and reflexive digraph. Given an arbitrary H-colored digraph D, finding an s − t

H-path in D (if any) can be done in polynomial time.

Corollary 2.9. Given an arc-colored digraph D, finding a monochromatic s− t path in D (if any) can be done in polynomial
time.

In what follows, we note that H-walks in H-colored digraphs and T -compatibles walks in a digraph with a transition
system T are equivalent.

Let D be an H-colored digraph. We define the transition system of v ∈ V (D) as the set

T (v) = {(e, f) : e = (x, v), f = (v, y), for some x, y ∈ V (D) and (c(e), c(f)) ∈ A(H)}.

Hence, if T = {T (v) : v ∈ V (D)}, then every T -compatible walk is an H-walk.
Let D be a digraph with arc set A(D) = {f1, . . . , fm}. Let T = {T (v) : v ∈ V (D)} be a transition system of D. Consider

the digraph H with the vertex set V (H) = {c1, . . . , cm} such that (ci, cj) ∈ A(H) if and only if {fi, fj} ∈ T . If we color the
arc fi with the vertex ci, then every H-walk is a T -compatible walk.

The following problem arises in a natural way. Given a digraph D with transition system T , find a digraph H with the
minimum number of vertices such that there exists an H-coloring of D, where a walk is an H-walk if and only if it is a
T -compatible walk. Notice that such a digraph H exists and |V (H)| ≤ |A(D)|.

From the above discussion, we can conclude that all the results presented in this section can be stated in terms of
T -compatible walks. It is important to note that transition systems provide local information about allowed transitions at
every vertex; on the other hand, H-coloring provides global information about allowed transitions.

Acknowledgments

The authors wish to emphatically thank the anonymous referees for their thorough review. This research was supported
by CONACYT FORDECYT-PRONACES/ 39570/2020 and UNAM DGAPA-PAPIIT IN102320. The first author received a
fellowship from CONACYT under grant number 782239.

11



C. Vilchis-Alfaro and H. Galeana-Sánchez / Discrete Math. Lett. 13 (2024) 6–12 12

References
[1] A. Abouelaoualim, K. C. Das, L. Faria, Y. Manoussakis, C. Martinhon, R. Saad, Paths and trails in edge-colored graphs, Theoret. Comput. Sci. 409 (2008) 497–510.
[2] S. K. Ahuja, Algorithms for Routing and Channel Assignment in Wireless Infrastructure Networks, Ph.D. Thesis, The University of Arizona, Tucson, 2010.
[3] J. Bang-Jensen, T. Bellitto, A. Yeo, On supereulerian 2-edge-coloured graphs, Graphs Combin. 37 (2021) 2601–2620.
[4] J. Bang-Jensen, G. Z. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2009.
[5] T. Bellitto, B. Bergougnoux, On minimum connecting transition sets in graphs, In: A. Brandstädt, E. Köhler, K. Meer (Eds.), Graph-Theoretic Concepts in Computer
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