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Abstract

We obtain an explicit formula for the total number of descents and levels in (cyclic) tensor words of arbitrary dimension. We
also determine the maximal number of cyclic descents in cyclic tensor words. Furthermore, we establish a lower bound and
an upper bound on the maximal number of descents in tensor words.
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1. Introduction

Let k and n be two natural numbers and let [k] = {1, 2, . . . , k}. Recall that if w = w1 · · ·wn ∈ [k]n is a word over the
alphabet [k], then 1 ≤ i ≤ n − 1 is a descent (respectively, level) of w if wi > wi+1 (respectively, wi = wi+1). If the word
is cyclic, then also i = n is a descent (respectively, level) of w if wn > w1 (respectively, wn = w1). One possibility for a
generalization, that we pursue in this work, is to consider words in higher dimensions, thus regarding (standard) words
as one-dimensional words. For example, if m is an additional natural number, then two-dimensional words over [k] are
matrices w = (wi,j)1≤i≤m,1≤j≤n ∈ [k]mn. Here, a descent (respectively, level) of w is a pair of double indices ((i1, j1), (i2, j2))

such that wi1,j1 > wi2,j2 (respectively, wi1,j1 = wi2,j2 ) and either (i2, j2) = (i1 + 1, j1) or (i2, j2) = (i1, j1 + 1).
The primary purpose of this work is to establish a formula for the total number of descents (respectively, levels) in

multidimensional words of an arbitrary (but fixed) dimension. We refer to such words as tensor words, as formalized in
Definition 1.1.

Descents and levels in words were studied, for example, in [1,2]. Especially related to our work is the work of Mansour
and Shattuck [4], which studied common occurrences of patterns in matrix (i.e., two-dimensional) words. Nevertheless,
they have not considered vertical descents (respectively, levels), nor have they considered cyclic words. In contrast, Knopf-
macher et al. [3] considered cyclic words, but in a different context, namely that of staircase words.

Before we begin, let us introduce some notation. Vectors are written in bold font. We denote by N (respectively, R) the
set of natural (respectively, real) numbers. For n ∈ N, let [n] = {1, 2, . . . , n} and, for d ∈ N and j ∈ [d], we denote by ej

the jth vector in the standard basis of Rd. If p is a condition, then 1p equals 1 if p holds and 0 otherwise. Fix k, d ∈ N and
m(d) = (m1, . . . ,md) ∈ Nd, to be used throughout this work. We write pd =

∏
j∈[d]mj and, for i ∈ [d], we write

pd,i =
∏

j∈[d],j 6=i

mj .

Definition 1.1. An m(d)-tensor word over [k] is a function w : [m1]× · · · × [md]→ [k]. The set of all m(d)-tensor words over
[k] is denoted by T (m(d), k). A descent (respectively, level) of an m(d)-tensor word w is a pair (i, i′) ∈ ([m1] × · · · × [md])

2,
such that w(i) > w(i′) (respectively, w(i) = w(i′)) and i′ = i + ej , for some j ∈ [d]. We denote by des(w) (respectively,
lev(w)) the number of descents (respectively, levels) of w. If the word w is regarded as cyclic, then additional cyclic descents
(respectively, cyclic levels) are allowed, namely all (i, i′) ∈ ([m1] × · · · × [md])

2, where i = (i1, . . . , id) and i′ = (i′1, . . . , i
′
d),

such that there exists a unique j ∈ [d] with ij = n, i′j = 1, and w(i) > w(i′) (respectively, w(i) = w(i′)). Finally, we denote by
cycdes(w) (respectively, cyclev(w)) the number of descents and cyclic descents (respectively, levels and cyclic levels) of w.
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Example 1.1. Let

w =

3 1 2 1
2 2 2 2
1 2 3 3

 .

Then w is a (3, 4)-tensor word over [k], for every k ≥ 3. The set of descents of w is given by

{((1, 1), (1, 2)), ((1, 3), (1, 4)), ((1, 1), (2, 1)), ((2, 1), (3, 1))}

and the set of levels of w is given by

{((2, 1), (2, 2)), ((2, 2), (2, 3)), ((2, 3), (2, 4)), ((3, 3), (3, 4)), ((2, 2), (3, 2)), ((1, 3), (2, 3))} .

Thus, des(w) = 4 and lev(w) = 6. The set of cyclic descents of w is given by

{((3, 4), (3, 1)), ((3, 2), (1, 2)), ((3, 3), (1, 3)), ((3, 4), (1, 4))}

and the set of cyclic levels of w is given by {((2, 4), (2, 1))}. Thus, cycdes(w) = 8 and cyclev(w) = 7.

2. Main results

Our main results are as follows: Let ad (respectively, bd) denote the total number of descents (respectively, levels) of all
m(d)-tensor words over [k]. Then

ad =
1

2

dpd −∑
i∈[d]

pd,i

 (k − 1)kpd−1

and bd = 2ad/(k−1). Similarly, let fd (respectively, gd) denote the total number of descents and cyclic descents (respectively,
levels and cyclic levels) of all m(d)-tensor words over [k]. Then

fd =
1

2
dpd(k − 1)kpd−1

and gd = 2fd/(k − 1).
In the last subsection of this section, we establish the maximal number of cyclic descents in cyclic tensor words and

obtain a lower and an upper bound on the maximal number of descents in tensor words. Namely, we prove that, for every
w ∈ T (m(d), k), we have

cycdes(w) =
∑
i∈[d]

pd,i

⌊
mi(k − 1)

k

⌋
and

∑
i∈[d]

pd,i

(⌊
mi(k − 1)

k

⌋
− 1

)
≤ des(w) ≤

∑
i∈[d]

pd,i

⌊
mi(k − 1)

k

⌋
.

2.1. Noncyclic words
Let md+1 ∈ N and let ` be a nonnegative integer. Set m(d+1) = (m1, . . . ,md+1). We denote by Dm(d),md+1,`

the number of
m(d+1)-tensor words w such that des(w) = `. For w ∈ T (m(d), k), we denote by Dm(d),md+1,`

(w) the number of m(d+1)-
tensor words w′, such that des(w′) = ` and such that w′(i, 1) = w(i), for every i ∈ [m1]× · · · × [md]. Let

Fd+1(t, x) =
∑

md+1≥1

∑
`≥0

Dm(d),md+1,`
t`xmd+1

be the generating function for the numbers Dm(d),md+1,`
, and, for w ∈ T (m(d), k), we denote by

Fd+1(t, x, w) =
∑

md+1≥1

∑
`≥0

Dm(d),md+1,`
(w)t`xmd+1

the generating function for the numbers Dm(d),md+1,`
(w). Notice that

Fd+1(1, x, w) =
x

1− kpdx
.

Lemma 2.1.1. For w ∈ T (m(d), k), we have

Fd+1(t, x, w) =
xtdes(w)

1− xtdes(w)

1 +
∑

w′∈T (m(d),k),w′ 6=w

t
∑

i∈[m1]×···×[md] 1w(i)>w′(i)Fd+1(t, x, w
′)

 .
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Proof. It suffices to show that the generating function Fd+1(t, x, w) satisfies the equation

Fd+1(t, x, w) = tdes(w)x+ x
∑

w′∈T (m(d),k)

t
des(w)+

∑
i∈[m1]×···×[md] 1w(i)>w′(i)Fd+1(t, x, w

′). (1)

Indeed, let v ∈ T (m(d+1), k) such that v(i, 1) = w(i), for every i ∈ [m1]× · · · × [md]. If md+1 = 1 then there are no descents
in the direction of ed+1. This case corresponds to the first term on the right-hand side of (1). Assume that md+1 > 1 and
let w′ ∈ T (m(d), k) such that v(i, 2) = w′(i), for every i ∈ [m1]× · · · × [md]. Then u, defined by u(i, j) = v(i, j + 1) for every
i ∈ [m1]× · · · × [md] and j ∈ [md+1 − 1], is an m(d+1)-tensor word, such that u(i, 1) = w′(i), for every i ∈ [m1]× · · · × [md].
Now, for ` ≥ 0, we have des(v) = ` if and only if

` = des(w) +
∑

i∈[m1]×···×[md]

1w(i)>w′(i) + des(u).

This corresponds to the second term on the right-hand side of (1) and the proof is complete.

Theorem 2.1.1. Define ad =
∑
w∈T (m(d),k) des(w) and let Ad(x) be the corresponding generating function. Then

ad =
1

2

dpd −∑
i∈[d]

pd,i

 (k − 1)kpd−1 (2)

and
Ad+1(x) =

adx+ 1
2 (k − 1)k2pd−1pdx

2

(1− kpdx)2
. (3)

Proof. We proceed by induction on d. The case d = 1 is similar to the general case and the details are omitted. Assume
that (2) holds for d. In order to prove that it holds for d+1, we first prove (3). To this end, let w ∈ T (m(d), k). Differentiating
(1) with respect to t and substituting t = 1, we obtain

Ad+1(x,w) = des(w)x+ x
∑

w′∈T (m(d),k)

Ad+1(x,w
′) +

des(w) +
∑

i∈[m1]×···×[md]

1w(i)>w′(i)

F (1, x, w′)


= des(w)x+ xAd+1(x) +

kpddes(w) +
∑

w′∈T (m(d),k)

∑
i∈[m1]×···×[md]

1w(i)>w′(i)

 x2

1− kpdx
. (4)

Summing (4) over w ∈ T (m(d), k) and solving for Ad+1(x), we obtain

Ad+1(x) =
adx

1− kpdx
+

adkpd +
∑

w,w′∈T (m(d),k)

∑
i∈[m1]×···×[md]

1w(i)>w′(i)

 x2

(1− kpdx)2
.

Now, due to symmetry, ∑
w,w′∈T (m(d),k)

∑
i∈[m1]×···×[md]

1w(i)>w′(i) = pd
∑

w′∈T (m(d),k)

∑
w∈T (m(d),k)

1w(1,...,1)>w′(1,...,1)

= pdk
pd−1

∑
w′∈T (m(d),k)

(k − w′(1, . . . , 1))

= pdk
2pd−2

k∑
w′(1,...,1)=1

(k − w′(1, . . . , 1))

=
1

2
(k − 1)k2pd−1pd.

It follows that
Ad+1(x) =

adx

1− kpdx
+

(
adk

pd +
1

2
(k − 1)k2pd−1pd

)
x2

(1− kpdx)2
,

from which (3) immediately follows.
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Now, we can prove that (2) holds for d+ 1. Indeed, by (3), we have

Ad+1(x) =
adx+ 1

2 (k − 1)k2pd−1pdx
2

(1− kpdx)2

=

(
adx+

1

2
(k − 1)k2pd−1pdx

2

) ∑
md+1≥1

md+1k
(md+1−1)pdxmd+1−1

=
∑

md+1≥1

1

2

dpd −∑
i∈[d]

pd,i

md+1 + pd(md+1 − 1)

 (k − 1)kpd+1−1xmd+1

=
∑

md+1≥1

1

2

(d+ 1)pd+1 −
∑

i∈[d+1]

pd+1,i

 (k − 1)kpd+1−1xmd+1 .

Thus,

ad+1 =
1

2

(d+ 1)pd+1 −
∑

i∈[d+1]

pd+1,i

 (k − 1)kpd+1−1

and the proof is complete.

Remark 2.1.1. For the proof of the result regarding the total number of levels, only a few minor modifications are necessary.
First, Equation (1) needs to be replaced with

Fd+1(t, x, w) = tlev(w)x+ x
∑

w′∈T (m(d),k)

t
lev(w)+

∑
i∈[m1]×···×[md] 1w(i)=w′(i)Fd+1(t, x, w

′).

Second, it is not hard to see that ∑
w,w′∈T (m(d),k)

∑
i∈[m1]×···×[md]

1w(i)=w′(i) = k2pd−1pd.

2.2. Cyclic tensor words
Let md+1 ∈ N and let ` be a nonnegative integer. Set m(d+1) = (m1, . . . ,md+1). We denote by Dm(d),md+1,`

the number of
m(d+1)-tensor words w such that cycdes(w) = `. For w1, w2 ∈ T (m(d), k), we denote by Dm(d),md+1,`

(w1, w2) the number of
m(d+1)-tensor words w′, such that cycdes(w′) = ` and such that w′(i, j) = wj(i), for every i ∈ [m1]× · · · × [md] and j = 1, 2.
Let

Fd+1(t, x) =
∑

md+1≥1

∑
`≥0

Dm(d),md+1,`
t`xmd+1

be the generating function for the numbers Dm(d),md+1,`
, and, for w1, w2 ∈ T (m(d), k), we denote by

Fd+1(t, x, w1, w2) =
∑

md+1≥1

∑
`≥0

Dm(d),md+1,`
(w)t`xmd+1

the generating function for the numbers Dm(d),md+1,`
(w1, w2). Notice that

Fd+1(1, x, w1, w2) =
x2

1− kpdx
.

The following lemma and theorem are the analogues of Lemma 2.1.1 and Theorem 2.1.1, respectively. We state them
without proof.

Lemma 2.2.1. For w1, w2 ∈ T (m(d), k), the generating function F (t, x, w1, w2) satisfies the equation

Fd+1(t, x, w1, w2) = tcycdes(w1w2)x2+x
∑

w′∈T (m(d),k)

t
∑

i∈[m1]×···×[md](1w1(i)>w2(i)+1w2(i)>w′(i)−1w1(i)>w′(i))+cycdes(w′)
Fd+1(t, x, w1, w

′),

where w1w2 is the tensor word w′ ∈ T (m(d+1), k), withmd+1 = 2 and w′(i, j) = wj , for every i ∈ [m1]×· · ·× [md] and j = 1, 2.

Theorem 2.2.1. Define gd =
∑
w∈T (m(d),k) cycdes(w) and let Gd(x) be the corresponding generating function. Then

gd =
1

2
dpd(k − 1)kpd−1

and
Gd+1(x) =

2
(
1
2 (k − 1)k2pd−1pd + kpdgd

)
(1− kpdx)2

x2 −
(
1
2 (k − 1)k3pd−1pd + k2pdgd

)
(1− kpdx)2

x3.

47



S. Fried and T. Mansour / Discrete Math. Lett. 13 (2024) 44–49 48

2.3. The maximal number of descents
In this subsection, we establish the maximal number of cyclic descents in cyclic tensor words. This yields an upper bound
on the maximal number of descents in tensor words, which we prove to be tight. First, we state the following results,
concerning descents and cyclic descents in (standard) words.

Lemma 2.3.1. We have

max {des(x) : x ∈ [k]n} = max {cycdes(x) : x ∈ [k]n} =
⌊
n(k − 1)

k

⌋
.

Proof. Let C(n, k) denote the set of all binary sequences of length n having at most k consecutive 1s. For y ∈ C(n, k) let
us denote by |y| the number of 1s in y. We first show that

max {|y| : y ∈ C(n, k)} =
⌊
(n+ 1)k

k + 1

⌋
(5)

(see A182210 in [5]). Write n = σ(k + 1) + ρ, where 0 ≤ ρ < k + 1. We then have the sequence

y =

σ times︷ ︸︸ ︷
k times︷ ︸︸ ︷
1 · · · 1 0 · · ·

k times︷ ︸︸ ︷
1 · · · 1 0

ρ times︷ ︸︸ ︷
1 · · · 1 ∈ C(n, k),

satisfying
|y| = n− σ = n−

⌊
n

k + 1

⌋
=

⌊
(n+ 1)k

k + 1

⌋
.

If σ = 0 then n ≤ k and y consists solely of n 1s, which is obviously maximal. Assume that σ ≥ 1. Then, treating the 0s as
separators between pigeonholes and the 1s as pigeons, for every t ∈ [σ], we have

n− (σ − t) = (σ − t+ 1)k +

≥1︷ ︸︸ ︷
(t− 1)k + ρ+ t .

By the pigeonhole principle, in any binary sequence consisting of σ − t 0s and n − (σ − t) 1s, there exists at least one
subsequence of k + 1 consecutive 1s.

Having proved (5), we now show the connection to descents in words. To this end, we construct maps

ϕ : [k]n → C(n− 1, k − 1) and θ : C(n− 1, k − 1)→ [k]n

such that |ϕ(x)| = des(x) and des(θ(y)) = |y|. Let x = x1 · · ·xn ∈ [k]n and define a binary sequence ϕ(x) = y = y1 · · · yn−1
of length n− 1 as follows: For i ∈ [n− 1] we set yi = 1xi>xi+1

. Clearly, y ∈ C(n− 1, k − 1) and des(x) = |y|. Conversely, let
y = y1 · · · yn−1 ∈ C(n− 1, k − 1) and let zi (respectively, oi) be the length of the ith sequence of consecutive 0s (respectively,
1s) in y, where i ∈ [r] for some r ∈ N. We define θ(y) = x = v1 · · · vr, where

vi =


z1+1 times︷ ︸︸ ︷

o1 + 1, . . . , o1 + 1, o1, o1 − 1, . . . , 1 if i = 1;

zi times︷ ︸︸ ︷
oi + 1, . . . , oi + 1, oi, oi − 1, . . . , 1 otherwise.

First, we notice that v1 is of length z1 + o1 + 1 and vi is of length zi + oi, for 2 ≤ i ≤ r. Thus, x is of length n, since∑
i∈[r](zi + oi) = n− 1. Second. 0 ≤ oi ≤ k − 1, for every i ∈ [r]. Thus, x ∈ [k]n. Finally, since zi > 0 for every 2 ≤ i ≤ r, the

number of descents occurring in vi is oi. Notice that every vi ends with 1, so no descents occur in the transition between
vi and vi+1. It follows that des(x) =

∑
i∈[r] oi = |y|. We have thus proved that max {des(x) : x ∈ [k]n} = bn(k − 1)/kc.

Trivially, max {des(x) : x ∈ [k]n} ≤ max {cycdes(x) : x ∈ [k]n}. On the other hand, let x ∈ [k]n. Necessarily, there exists
i ∈ [n] such that xi ≤ xj , where j = i+ 1 if i < n and j = 1, otherwise. Let x′ be the rotation of x such that the first letter
of x′ is xj . Then cycdes(x) = cycdes(x′) = des(x′). We conclude that max {cycdes(x) : x ∈ [k]n} ≤ max {des(x) : x ∈ [k]n}
and hence the proof is complete.

Corollary 2.3.1. We have
max

{
cycdes(w) : w ∈ T (m(d), k)

}
=
∑
i∈[d]

pd,i

⌊
mi(k − 1)

k

⌋
. (6)
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Proof. First, we show that the left-hand side of (6) is less than or equal to the right-hand side. Proceeding by induction
on d, the case d = 1 follows from Lemma 2.3.1. Assume that the inequality holds for d and let w ∈ T (m(d+1), k). Then

cycdes(w) ≤ md+1 max
{

cycdes(w′) : w′ ∈ T (m(d), k)
}
+ pd

⌊
md+1(k − 1)

k

⌋

≤ md+1

∑
i∈[d]

pd,i

⌊
mi(k − 1)

k

⌋
+ pd

⌊
md+1(k − 1)

k

⌋

=
∑

i∈[d+1]

pd+1,i

⌊
mi(k − 1)

k

⌋
,

as required. To prove the reversed inequality, consider the word v = k, k − 1, k − 2, . . . , 1, k, k − 1, . . ., of length m1, that
obtains the maximal number of cyclic descents. Due to cyclicity, we may rotate v without losing cyclic descents. Writing v
and its m2 − 1 rotations, we obtain the matrix word of size m1 ×m2:

u =

 k k − 1 k − 2 · · ·
k − 1 k − 2 k − 3 · · ·

...
... . . .

 .

Rotating u, i.e., decreasing by 1 each of its entries, and replacing 0s with ks, we may write u and its m3− 1 rotations along
the third axis, obtaining an (m1,m2,m3)-tensor word. In this manner we successively construct an m(d)-tensor word over
[k] that, by induction, may be shown to have the necessary number of cyclic descents.

Remark 2.3.1. Since the number of descents is never larger than the number of cyclic descents, the right-hand side of (6)
gives an upper bound on the maximal number of descents in tensor words. Here, the situation is more complex and the naive
approach of Corollary 2.3.1 does not work. Indeed, we have

des

4 3 2 1
3 2 1 4
2 1 4 3

 = 13, while des

4 3 4 3
3 2 3 2
2 1 2 1

 = 14,

which is maximal for (3, 4)-tensor words over [4]. Nevertheless, by rotating the (standard) word v = k, k−1, k−2, . . . , 1, k, k−
1, . . ., we lose, at most, one descent. It follows that the tensor word, constructed in the proof of Corollary 2.3.1, has at least∑

i∈[d]

pd,i

(⌊
mi(k − 1)

k

⌋
− 1

)

descents.
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