Research Article

Independent domination polynomial for the cozero divisor graph of the ring of integers modulo n

Bilal Ahmad Rather*
Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al Ain 15551, Abu Dhabi, UAE

(Received: 14 November 2023. Received in revised form: 16 February 2024. Accepted: 27 February 2024. Published online: 4 April 2024.)
© 2024 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The cozero divisor graph $\Gamma^{\prime}(R)$ of a commutative ring R is a simple graph whose vertex set is the set of non-zero non-unit elements of R such that two distinct vertices x and y of $\Gamma^{\prime}(R)$ are adjacent if and only if $x \notin R y$ and $y \notin R x$, where $R x$ is the ideal generated by x. In this article, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is found for $n \in\left\{p_{1} p_{2}, p_{1} p_{2} p_{3}, p_{1}^{n_{1}} p_{2}\right\}$, where p_{i} 's are primes, n_{1} is an integer greater than 1 , and \mathbb{Z}_{n} is the integer modulo ring. It is shown that the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{p_{1} p_{2}}\right)$ has only one real root. It is also proved that these polynomials are not unimodal but are log-concave under certain conditions.

Keywords: cozero divisor graphs; commutative ring; independent domination polynomial; unimodal; log-concave.
2020 Mathematics Subject Classification: 05C25, 05C31, 05C69, 05C90.

1. Introduction

Only finite, simple, and undirected graphs are considered in this paper. A graph is denoted by $G=G(V(G), E(G))$ with vertex set $V(G)$ and edge set $E(G)$. The numbers $n=|V(G)|$ and $m=|E(G)|$ are order and size of G, respectively. An edge between two vertices u and v is represented by $u \sim v$. A vertex of degree 0 is an isolated vertex and a vertex of degree one is a pendent vertex. The degree $d_{v_{i}}(G)$ (or simply d_{i}, if G is clear) of a vertex v_{i} is the number of vertices incident with it. The union of two graphs $G_{1}=G_{1}\left(V_{1}\left(G_{1}\right), E_{1}\left(G_{1}\right)\right)$ and $G_{2}=G_{2}\left(V_{2}\left(G_{2}\right), E_{2}\left(G_{2}\right)\right)$, denoted by $G_{1} \cup G_{2}$, is defined as a graph with vertex set $V_{1}\left(G_{1}\right) \cup V_{2}\left(G_{2}\right)$ and edge set $E_{1}\left(G_{1}\right) \cup E_{2}\left(G_{2}\right)$. The join of G_{1} and G_{2} is denoted by $G_{1} \vee G_{2}$ and is defined as a graph with vertex set $V_{1}\left(G_{1}\right) \cup V_{2}\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u \sim v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$.

A non-empty set $S \subseteq V(G)$ is said to be a dominating set if every vertex in $V \backslash S$ is adjacent to at least one vertex in S. The minimum cardinality among all dominating sets of G is known as the domination number of G, denoted by $\gamma(G)$. The domination theory of graphs is very well developed, see [16]. An independent set in a graph G is a set of pairwise non-adjacent vertices. The cardinality of the largest independent set is known as the independence number of G, denoted by $\alpha(G)$. An independent dominating set of G is a vertex subset that is both dominating and independent in G. The independent domination number, denoted by $\gamma_{i}(G)$, is the minimum size of all independent dominating sets of G. The relation between γ, α and γ_{i} of G is $\gamma(G) \leq \gamma_{i}(G) \leq \alpha(G)$ (see, [16]). The independent set problem is a strongly NP-hard problem while the dominating set problem is an NP-complete problem, which are well well-studied both in mathematics and theoretical computer science. A star graph of order n is denoted by $K_{1, n-1}$ and a complete bipartite graph by $K_{a, b}$, with $n=a+b$. A graph G of order n is said to be totally disconnected if G is isomorphic to the complement of a complete graph.

Let $d_{k}(G, k)$ denote the number of independent dominating sets of carnality k in G. The independent domination polynomial of G is defined as

$$
D_{i}(G, x)=\sum_{k=\gamma_{i}(G)}^{\alpha(G)} d_{i}(G, k) x^{k} .
$$

A root of the equation $D_{i}(G, x)=0$ is known as the independent domination root of G. The independent domination polynomial $D_{i}(G, x)$ is a generating function of the number of the independent dominating sets of certain cardinalities of G. The independent domination polynomials and their zeros have attracted many researchers, see [8,13,14,18]. Jahari and Alikhani [17] gave the independent domination polynomials of generalized compound graphs and constructed graphs whose independent domination polynomials have real zeros. Recently, the authors in [15,22] presented the results related to the

[^0]independent domination polynomial of zero-divisor graphs of commutative rings. More about independent domination polynomials can be found in [5-7]. Although it is hard to find the independent domination polynomial of a general graph, we can often find a closed expression for such polynomials for certain classes of graphs. Motivated by the above-mentioned work, especially the one related to zero-divisor graphs of commutative rings in [15, 22], we consider the independent domination polynomial theory for cozero divisor graphs of the commutative ring of integer modulo n.

In Section 2, we present the closed expression for the independent domination polynomial of cozero divisor graphs of commutative rings and Section 3 is concerned with their unimodal and log-concave properties. We end this article with the conclusion section

2. Independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$

We first discuss the structure of cozero divisor graphs. The cozero divisor graphs are motivated by zero divisor graphs, which is defined as a graph $\Gamma(R)$ associated to a ring R, with vertex set as non-zero zero divisors of R such that two distinct vertices are adjacent if and only if their product is zero. The cozero divisor graph of a commutative ring R (with unity $1 \neq 0$) is a simple graph with vertex set as non-zero non-unit elements of R such that two vertices x and $y(x \neq y)$ are adjacent if and only if $x \notin R y$ and $y \notin R x$, where $R x$ is the ideal generated by x. The cozero divisor graph of R is denoted by $\Gamma^{\prime}(R)$. The basic properties of cozero divisor graphs including their complement graphs, planarity, characterization of commutative rings with forest, star, or unicyclic cozero divisor graphs, their relations with comaximal graphs of rings, and zero divisor graph were investigated by Afkhami and Khashyarmanesh [1-4]. Cozero divisor graphs of polynomial rings were discussed in [9], and spectral analysis of cozero divisor graphs was carried out in [19]. For some other progress of cozero divisor, see $[10,11,21]$ and the references cited therein.

In general, it is not easy to find the structure of $\Gamma^{\prime}(R)$ completely, though for some special cases we can have some information about the structure of $\Gamma^{\prime}(R)$ (especially for $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$), where \mathbb{Z}_{n} is the integral modulo ring. Depending on the proper divisors $d_{i}, i \notin\{1, n\}$ of n, we divide $V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right)$ into mutually disjoint vertex cells as (a similar concept is used in [12,20,23-25] for studying other algebraic graphs):

$$
A_{d_{i}}=\left\{a \in \mathbb{Z}_{n}:(a, n)=d_{i}\right\}
$$

where (a, n) is the greatest common divisor of a and n. Clearly $A_{d_{i}}$ are mutually pairwise disjoint and

$$
V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right)=\bigcup_{i=1}^{t} A_{d_{i}}
$$

where t is the number of proper divisor of n. Furthermore, for $a, b \in A_{d_{i}}$, we have $\langle a\rangle=\langle b\rangle$. The cardinality of $A_{d_{i}}$ is $\phi\left(\frac{n}{d_{i}}\right)$ (see [25]), for $i=1,2, \ldots, t$, where $\phi(\cdot)$ is an Euler function. Also, if $a \in A_{d_{i}}$ and $b \in A_{d_{j}}$ then a and b are adjacent in $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ if and only $d_{i} \nmid d_{j}$ and $d_{j} \nmid d_{i}$, for $i, j \in\{1,2, \ldots, \tau(n)-2\}$, where $\tau(\cdot)$ is divisor function. For $i \in\{1,2, \ldots, \tau(n)-2\}$, the induced subgraph of $A_{d_{i}}$ is $\bar{K}_{\phi\left(\frac{n}{d_{i}}\right)}$. For more above the structural properties of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$, we refer to [19].

Our first result gives the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ when n is the product of two distinct primes.
Proposition 2.1. For $n=p_{1} p_{2}$, with $p_{1}<p_{2}$, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1}-1}+z^{p_{2}-1} .
$$

Proof. We partition the vertex set of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ into the following subsets

$$
\begin{aligned}
& A_{1}=\left\{k p_{1} \mid k=1,2, \ldots, p_{2}-1\right\}, \\
& A_{2}=\left\{k p_{2} \mid k=1,2, \ldots, p_{1}-1\right\} .
\end{aligned}
$$

Clearly $A_{1} \cap A_{2}=\emptyset$ and each $x \in A_{1}$ does not divide each $y \in A_{2}$. So it follows that $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is a complete bipartite graph and its independent domination polynomial is given by $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1}-1}+z^{p_{2}-1}$.

The next result gives the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ when n is a product of three primes.
Theorem 2.1. The independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ for $n=p_{1} p_{2} p_{3}$ with $p_{1}<p_{2}<p_{3}$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{2} p_{3}-p_{3}}+z^{p_{2} p_{3}-p_{2}}+z^{p_{1} p_{3}-p_{3}}+z^{p_{1} p_{3}-p_{1}}+z^{p_{1} p_{2}-p_{1}}+z^{p_{1} p_{2}-p_{2}}
$$

Proof. Depending on the proper divisors of n, the vertex set of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ can be partition into following mutually disjoint subsets

$$
\begin{aligned}
& A_{1}=\left\{k p_{1} \mid k=1,2, \ldots, p_{2} p_{3}-1, p_{2} \nmid k, p_{3} \nmid k\right\}, A_{2}=\left\{k p_{2} \mid k=1,2, \ldots, p_{1} p_{3}-1, p_{1} \nmid k, p_{3} \nmid k\right\}, \\
& A_{3}=\left\{k p_{3} \mid k=1,2, \ldots, p_{1} p_{2}-1, p_{1} \nmid k, p_{2} \nmid k\right\}, A_{4}=\left\{k p_{1} p_{2} \mid k=1,2, \ldots, p_{3}-1\right\}, \\
& A_{5}=\left\{k p_{1} p_{3} \mid k=1,2, \ldots, p_{2}-1\right\}, A_{6}=\left\{k p_{2} p_{3} \mid k=1,2, \ldots, p_{1}-1\right\} .
\end{aligned}
$$

Clearly, $x \in A_{i}$ does not divide $y \in A_{i}(x \neq y)$, for each $i=1,2, \ldots, 6$. It follows that induced subgraphs of each A_{i} is null graph (non-empty edgeless graph). Furthermore, $\left|A_{1}\right|=\phi\left(p_{2} p_{3}\right)=\left(p_{2}-1\right)\left(p_{3}-1\right),\left|A_{2}\right|=\left(p_{1}-1\right)\left(p_{3}-1\right),\left|A_{3}\right|=$ $\left(p_{1}-1\right)\left(p_{2}-1\right),\left|A_{4}\right|=p_{3}-1,\left|A_{5}\right|=p_{2}-1$ and $\left|A_{6}\right|=p_{1}-1$. Also, we note that $x \in A_{1}$ divides some $y \in A_{4}$ and some $l \in A_{5}$, so it follows that no vertex of A_{1} is adjacent to any vertex of A_{4} and A_{5}. Likewise $x \in A_{2}$ divides some $y \in A_{4}$ and some $l \in A_{6}$, implying that each vertex of A_{2} is not adjacent to any vertex of A_{4} and A_{6}. Similarly, each vertex of A_{3} is not adjacent to any vertex of A_{5} and A_{6}, there are edges between each vertex of A_{6} and A_{4}, between each vertex of A_{5} with A_{6} and A_{4}. Depending on these subsets and their adjacent relations, we have the following cases:

Case (i). Suppose $D=A_{1} \cup A_{5}$. Then the vertices of A_{1} dominate the vertices of A_{2}, A_{3} and A_{6} and A_{5} dominates the vertices of A_{2}, A_{4} and A_{6}. Thus, all vertices in $\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash D$ are dominated by D and it implies that D is an independent dominating set of cardinality $\left(p_{2}-1\right)\left(p_{3}-1\right)+p_{2}-1=p_{2} p_{3}-p_{3}$. Besides, in this case $d_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), p_{2} p_{3}-p_{3}\right)=1$.

Case (ii). Consider $D=A_{1} \cup A_{4}$. Then as in (i), A_{1} dominates the vertices of A_{2}, A_{3} and A_{6} and A_{4} dominates the vertices of A_{3}, A_{5} and A_{6}. Thus, the vertices in $\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash D$ are dominated by D and the cardinality of such an independent dominating set is $\left(p_{2}-1\right)\left(p_{3}-1\right)+p_{3}-1=p_{2} p_{3}-p_{2}$.

Case (iii). Take $D=A_{2} \cup A_{6}$ and note that these two subsets dominates all vertices in A_{1}, A_{3}, A_{4} and A_{5}. So, D is another independent dominating set of cardinality $\left(p_{1}-1\right)\left(p_{3}-1\right)+p_{1}-1=p_{1} p_{3}-p_{3}$.

Case (iv). Take $D=A_{2} \cup A_{4}$ and observe that A_{2} dominates A_{1}, A_{3} and A_{5} and A_{4} dominates A_{6} along with already dominated sets A_{5} and A_{3}. Thus, D is another independent dominating set of cardinality $\left(p_{1}-1\right)\left(p_{3}-1\right)+p_{3}-1=p_{1} p_{3}-p_{1}$.

Case (v). Consider $A_{3} \cup A_{5}$. Then A_{3} dominates A_{1}, A_{2} and A_{4} while A_{5} dominates A_{2}, A_{4} and A_{6} and the vertices in $\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash\left(A_{3} \cup A_{5}\right)$ are dominated by $A_{3} \cup A_{5}$. So, it is another independent dominating set with cardinality:

$$
\left(p_{1}-1\right)\left(p_{2}-1\right)+p_{2}-1=p_{1} p_{2}-p_{1} .
$$

Case (vi). Lastly, consider $D=A_{3} \cup A_{6}$. Then A_{3} dominates A_{1}, A_{2} and A_{4} while A_{6} dominates A_{1}, A_{4} and A_{5} and the vertices in $\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash D$ are dominated by $A_{3} \cup A_{5}$. So, it follows that D is an independent dominating set of cardinality $\left(p_{1}-1\right)\left(p_{2}-1\right)+p_{1}-1=p_{1} p_{2}-p_{2}$.

Therefore, by the above cases, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{2} p_{3}-p_{3}}+z^{p_{2} p_{3}-p_{2}}+z^{p_{1} p_{3}-p_{3}}+z^{p_{1} p_{3}-p_{1}}+z^{p_{1} p_{2}-p_{1}}+z^{p_{1} p_{2}-p_{2}} .
$$

We illustrate Theorem 2.1 with the help of the following example.
Example 2.1. For $n=2 \cdot 3 \cdot 5=30$, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{3}+z^{4}+z^{5}+z^{8}+z^{10}+z^{12}
$$

For $n=30$, the order of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is $n-\phi(n)-1=21$. The independent vertex partitions are

$$
A_{1}=\{2,4,8,14,16,22,26,28\}, A_{2}=\{3,9,21,27\}, A_{3}=\{5,25\}, A_{4}=\{6,12,18,24\}, A_{5}=\{10,20\}, A_{6}=\{15\}
$$

The graph is shown in Figure 2.1. According to these six subsets and their independent domination combinations in Theorem 2.1, we have

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{3}+z^{4}+z^{5}+z^{8}+z^{10}+z^{12}
$$

In the next couple of results, we find the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ for $n=p^{n_{1}} p_{2}$ with $n_{1} \geq 2$.
Theorem 2.2. For $n=p_{1}^{2} p_{2}$, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1} p_{2}-p_{1}}+z^{p_{1} p_{2}-p_{2}}+z^{p_{1}^{2}-1}
$$

Figure 2.1: Cozero divisor graph $\Gamma^{\prime}\left(\mathbb{Z}_{30}\right)$.

Proof. For $n=p_{1}^{2} p_{2}$, based on proper divisors p_{1}, p_{2}, p_{1}^{2} and $p_{1} p_{2}$, we divide $V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right)$ into following subsets

$$
\begin{aligned}
& A_{p_{1}}=\left\{k p_{1} \mid k=1,2, \ldots, p_{1} p_{2}-1, p_{1} \nmid k, p_{2} \nmid k\right\}, A_{p_{2}}=\left\{k p_{2} \mid k=1,2, \ldots, p_{1}^{2}-1, p_{1} \nmid k\right\}, \\
& A_{p_{2}^{2}}=\left\{k p_{2}^{2} \mid k=1,2, \ldots, p_{2}-1\right\}, A_{p_{1} p_{2}}=\left\{k p_{1} p_{2} \mid k=1,2, \ldots, p_{1}-1\right\} .
\end{aligned}
$$

The induces subgraphs of A_{i} 's are non-empty null graph and their cardinalities are $\left(p_{1}-1\right)\left(p_{2}-1\right),\left(p_{1}^{2}-p_{1}\right), p_{2}-1$ and $p_{1}-1$, respectively. Also, each vertex of $A_{p_{1}}$ is adjacent to every vertex of $A_{p_{2}}$, since $A_{p_{1}}$ contains some multiplies of p_{1} and $A_{p_{2}}$ contains some multiples of p_{2} and p_{1} does not divide p_{2}. Likewise, each vertex of $A_{p_{2}}$ is adjacent to each vertex of $A_{p_{1}^{2}}$ and each vertex of $A_{p_{1}^{2}}$ is adjacent to every vertex of $A_{p_{1} p_{2}}$. As each of A_{i} is an independent set, so there are total $\binom{4}{2}=3$ independent dominating sets namely $A_{p_{1}} \cup A_{p_{1}^{2}}, A_{p_{1}} \cup A_{p_{1} p_{2}}$ and $A_{p_{2}} \cup A_{p_{1} p_{2}}$ each with cardinalities $p_{1} p_{2}-p_{1}, p_{1} p_{2}-p_{2}$ and $p_{1}^{2}-1$, respectively. Therefore, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1} p_{2}-p_{1}}+z^{p_{1} p_{2}-p_{2}}+z^{p_{1}^{2}-1}$.

Theorem 2.3. For the cozero divisor graph $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$, the following hold:
(i) If $n=p_{1}^{3} p_{2}$, then the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1}^{2}\left(p_{2}-1\right)}+z^{\left(p_{1}-1\right)\left(p_{1} p_{2}+p_{2}-p_{1}\right)}+z^{\left(p_{1}-1\right)\left(p_{1} p_{2}+1\right)}+z^{p_{1}^{3}-1} .
$$

(ii) If $n=p_{1}^{4} p_{2}$, then the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1}^{3}\left(p_{2}-1\right)}+z^{\left(p_{2}-1\right)\left(p_{1}^{3}-1\right)+p_{1}-1}+z^{\left(p_{2}-1\right)\left(p_{1}^{3}-p_{1}\right)+p_{1}^{2}-1}+z^{\left(p_{2}-1\right)\left(p_{1}^{3}-p_{1}^{2}\right)+p_{1}^{3}-1}+z^{p_{1}^{4}-1} .
$$

Proof. We prove only (ii), and (i) can be similarly proved. For $n=p_{1}^{4} p_{2}$, the vertex set of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ can be portioned as

$$
\begin{aligned}
& A_{1}=\left\{k p_{1} \mid k=1,2, \ldots, p_{1}^{3} p_{2}-1, p_{1} \nmid k, p_{2} \nmid k\right\}, A_{2}=\left\{k p_{1}^{2} \mid k=1,2, \ldots, p_{1}^{2} p_{2}-1, p_{1} \nmid k, p_{2} \nmid k\right\}, \\
& A_{3}=\left\{k p_{1}^{3} \mid k=1,2, \ldots, p_{1} p_{2}-1, p_{1} \nmid k, p_{2} \nmid k\right\}, A_{4}=\left\{k p_{1}^{4} \mid k=1,2, \ldots, p_{2}-1\right\}, \\
& A_{5}=\left\{k p_{2} \mid k=1,2, \ldots, p_{1}^{4}-1, p_{1} \nmid k\right\}, A_{6}=\left\{k p_{1} p_{2} \mid k=1,2, \ldots, p_{1}^{3}-1, p_{1} \nmid k\right\}, \\
& A_{7}=\left\{k p_{1}^{2} p_{2} \mid k=1,2, \ldots, p_{1}^{2}-1, p_{1} \nmid k\right\}, A_{8}=\left\{k p_{1}^{3} p_{2} \mid k=1,2, \ldots, p_{1}-1\right\} .
\end{aligned}
$$

By the definition of the cozero divisor graph, each vertex of A_{1} is adjacent to each vertex of A_{5}, each vertex of A_{2} is adjacent to each vertex of A_{5} and A_{6}, each vertex of A_{3} is adjacent to each vertex of A_{5}, A_{6} and A_{7}, each vertex of A_{4} is adjacent to each vertex of $A_{i}, i=5,6,7$ and 8 .

Case (i). Let $D=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$. Then D is an independent set since each of A_{i} induces a complement of clique. Also, A_{4} dominates each vertex of A_{5}, A_{6}, A_{7} and A_{8}. Thus each vertex of $V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash D$ is adjacent to at least one vertex of D. So D is an independent dominating set of cardinality $\phi\left(p_{1}^{3} p_{2}\right)+\phi\left(p_{1}^{2} p_{2}\right)+\phi\left(p_{1} p_{2}\right)+\phi\left(p_{2}\right)=p_{1}^{3}\left(p_{2}-1\right)$.

Case (ii). If $D=A_{1} \cup A_{2} \cup A_{3} \cup A_{8}$, then A_{1} dominates A_{5}, A_{8} dominates A_{4} and $A_{2} \cup A_{3}$ dominates A_{5}, A_{6} and A_{7}. In this way all vertices of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ are dominated by D and it follows that D is an independent dominating set of order $\phi\left(p_{1}^{3} p_{2}\right)+\phi\left(p_{1}^{2} p_{2}\right)+\phi\left(p_{1} p_{2}\right)+\phi\left(p_{1}\right)=\left(p_{2}-1\right)\left(p_{1}^{3}-1\right)+p_{1}-1$.

Case (iii). If $D=A_{1} \cup A_{2} \cup A_{7} \cup A_{8}$, then A_{1} dominates A_{5}, A_{2} dominates A_{5} and A_{6}, A_{7} dominates A_{3} and A_{4}. So each vertex of $V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash D$ is adjacent to at least one vertex of D. It implies that D is an independent dominating set of order $\phi\left(p_{1}^{3} p_{2}\right)+\phi\left(p_{1}^{2} p_{2}\right)+\phi\left(p_{1}^{2}\right)+\phi\left(p_{1}\right)=\left(p_{2}-1\right)\left(p_{1}^{3}-p_{1}\right)+p_{1}^{2}-1$.

Case (iv). If $D=A_{1} \cup A_{6} \cup A_{7} \cup A_{8}$, then A_{1} dominates A_{5}, and A_{6} dominates A_{2}, A_{3} and A_{4}. It is clear that each vertex of $V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right) \backslash D$ is adjacent to at least one vertex of D. So, D is an independent dominating set of order $\phi\left(p_{1}^{3} p_{2}\right)+\phi\left(p_{1}^{3}\right)+$ $\phi\left(p_{1}^{2}\right)+\phi\left(p_{1}\right)=\left(p_{2}-1\right)\left(p_{1}^{3}-p_{1}^{2}\right)+p_{1}^{3}-1$.
Case (v). Clearly each vertex of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is dominated by $A_{5} \cup A_{6} \cup A_{7} \cup A_{8}$ and it is an independent dominating set of cardinality $\phi\left(p_{1}^{4}\right)+\phi\left(p_{1}^{3}\right)+\phi\left(p_{1}^{2}\right)+\phi\left(p_{1}\right)=p_{1}^{4}-1$.

Based on the above discussion, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1}^{3}\left(p_{2}-1\right)}+z^{\left(p_{2}-1\right)\left(p_{1}^{3}-1\right)+p_{1}-1}+z^{\left(p_{2}-1\right)\left(p_{1}^{3}-p_{1}\right)+p_{1}^{2}-1}+z^{\left(p_{2}-1\right)\left(p_{1}^{3}-p_{1}^{2}\right)+p_{1}^{3}-1}+z^{p_{1}^{4}-1}
$$

Next, we illustrate Theorem 2.1 by the following example:
Example 2.2. For $n=2^{4} \cdot 3=48$, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{15}(z+4)$. For $n=48$, the order of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is $n-\phi(n)-1=31$. The independent vertex partitions of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ are

$$
\begin{aligned}
& A_{1}=\{2,10,14,22,26,34,38,46\}, A_{2}=\{4,20,28,44\}, A_{3}=\{8,40\}, A_{4}=\{16,32\}, \\
& A_{5}=\{3,9,15,21,27,33,39,45\}, A_{6}=\{6,18,30,42\}, A_{7}=\{12,36\}, A_{8}=\{24\} .
\end{aligned}
$$

The graph is shown in Figure 2.2. With the independent dominating combination of A_{i} 's as in Theorem 2.3, we have

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{16}+4 z^{15}
$$

Figure 2.2: Cozero divisor graph $\Gamma^{\prime}\left(\mathbb{Z}_{48}\right)$.

Next, we generalize Theorem 2.1 for $n=p_{1}^{n_{1}} p_{2}$, where p_{1}, p_{2} are primes and n_{1} is a positive integer. A similar analysis can be carried for $n=p_{1} p_{2}^{n_{2}}$. In order to make calculations simple, we denote p_{1} by p and p_{2} by q.

Theorem 2.4. If $n=p^{n_{1}} q$, then the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
\begin{aligned}
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)= & z^{p^{n_{1}-1}(q-1)}+z^{(q-1)\left(p^{n_{1}-1}-1\right)+p-1}+z^{(q-1)\left(p^{n_{1}-1}-p\right)+p^{2}-1}+z^{(q-1)\left(p^{n_{1}-1}-p^{2}\right)+p^{3}-1} \\
& +\cdots+z^{(p-1)\left(p^{n_{1}-1}-p^{i-1}\right)+p^{i}-1}+\cdots+z^{(q-1)\left(p^{n_{1}-1}-p^{n_{1}-4}\right)+p^{n_{1}-3}-1} \\
& +z^{(q-1)\left(p^{n_{1}-1}-p^{n_{1}-3}\right)+p^{n_{1}-2}-1}+z^{(q-1)\left(p^{n_{1}-1}-p^{n_{1}-2}\right)+p^{n_{1}-1}-1}+z^{p^{n_{1}-1}} .
\end{aligned}
$$

Proof. Let $n=p^{n_{1}} q$ with $p<q$. Then the proper divisors of n are $p^{i}, i=1,2, \ldots, n_{1}, q$ and $p^{j} q$, for $j=1,2, \ldots, n_{1}-1$. We partition the vertex set of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ as $A_{p^{i}}=\left\{a \in \mathbb{Z}_{n}:(a, n)=p^{i}\right\}$ and $A_{p^{i-1} q}=\left\{b \in \mathbb{Z}_{n}:(b, n)=p^{i-1} q\right\}$, where $i=1,2, \ldots, n_{1}$. We denote these sets by $A_{i}=A_{p^{n_{1}-i+1}}$ and $B_{i}=A_{p^{i-1} q}$, for $i=1,2, \ldots, n_{1}$. The cardinality of A_{i} is $\phi\left(p^{i-1} q\right)$ and that of B_{i} is $\phi\left(p^{n_{1}-i+1}\right)$, for $i=1,2, \ldots, n_{1}$. Also A_{i} 's induce a non-empty totally disconnected graph of order $\sum_{i=1}^{n_{1}} \phi\left(p^{n_{1}-i} q\right)=p^{n_{1}}(q-1)$, since $\sum_{i=1}^{\eta} \phi\left(p^{i}\right)=p^{\eta}-1$, for prime p. Likewise B_{i} 's induce a totally disconnected graph of order $\sum_{i=1}^{n_{1}} p^{i}=p^{n_{1}}-1$. This implies that no vertex of any A_{i} is adjacent to any vertex of A_{j}, for each $i<j$, since $p^{j}=c p^{i}$, where c is some scaler. Similarly, no vertex of B_{i} is adjacent to any vertex of B_{j}, for each i and j. Thus, there are adjacency relation only between A_{i} 's and B_{j} 's for some i and j. The divisor $p^{n_{1}}$ is not multiple of any $p^{n_{1}-i} q$, for $i=1,2, \ldots, n_{1}$. So, the vertices of A_{1} are adjacent to all $B_{i}, i=1,2, \ldots, n_{1}$. For $i=1,2, \ldots, n_{1}-2$, the divisor $p^{n_{1}-1}$ is adjacent to $p^{n_{1}-i} q$ except $p^{n_{1}-1} q$, it implies that the vertices of A_{2} are adjacent to all B_{i} except $i=n_{1}$. Similarly, the set $A_{n_{1}}$ containing some multiplies of p is adjacent only to set B_{1}, the set $A_{n_{1}-1}$ is adjacent to sets B_{1} and B_{2} and so on. Thus, in general the adjacency among A_{i} 's and B_{i} 's can be represented by the relation: each vertex of A_{i} is adjacent to every vertex of $\bigcup_{j=1}^{n_{1}-(i-1)} B_{j}$, for $i=1,2, \ldots, n_{1}$. Thus, the relations of adjacency between A_{i} 's and B_{j} 's are completely known. Next, we find the independent dominating sets of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$.

The first possibility for an independent domination set is $D=\bigcup_{i=1}^{n_{1}} A_{i}$. In this case vertices of A_{1} dominates vertices of all B_{i} 's and so D is an independent domination set of cardinality $p^{n_{1}-1}(q-1)$.

The second possibility is $D=\bigcup_{i=2}^{n_{1}} A_{i} \cup B_{n_{1}}$, since A_{1} dominates all vertices of B_{i} 's and A_{2} dominates all B_{i} 's except $B_{n_{1}}$. So, it follows that each vertex of $V\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right) \backslash D\right.$ is adjacent to at least one vertex of D. Thus D is the another independent dominating set of cardinality $\phi(q)\left(\phi(p)+\cdots+\phi\left(p^{n_{1}-1}\right)\right)+\phi(p)=\phi(q)\left(p^{n_{1}-1}-1\right)+\phi(p)$. Next we claim that if we remove any of set from $\bigcup_{i=1}^{n_{1}} A_{i}$ other than A_{1} and add a suitable subset among B_{i} 's, then the resulting set cannot be an independent dominating set. If we remove any set among A_{i} 's other than A_{1}, say $A_{j}, j \neq 1$. Then $D^{\prime}=\bigcup_{i=1}^{n_{1}} A_{i} \backslash A_{j}$ cannot be a dominating set, since A_{i} remains missing in such a set. We must add some B_{k}, so that the resulting set $D=D^{\prime} \cup B_{k}$ is an independent dominating set. But we cannot add any of the B_{k} as A_{1} is adjacent to all B_{i} 's and that violates the condition of independence in the independent domination set. Thus, it follows that $\bigcup_{i=2}^{n_{1}} A_{i} \cup B_{n_{1}}$ is the only independent dominating set missing exactly one set among A_{i} 's.

Next, we drop two sets among A_{i} 's and find all possible independent dominating sets. Consider $D=\bigcup_{i=3}^{n_{1}} A_{i} \cup B_{n_{1}-1} \cup$ $B_{n_{1}}$, then by adjacency relations $\bigcup_{i=3}^{n_{1}} A_{i}$ dominates all B_{i} 's except $i=n_{1}-1, n_{1}$. So, D is an independent dominating set. We claim that D is the only independent dominating set missing exactly two sets among A_{i} 's. Suppose that D^{\prime} is another dominating set missing any two sets among A_{i} 's except $i=1,2$. We assume that A_{ℓ} and A_{\jmath} are two such sets, then D^{\prime} cannot be an independent domination set as A_{1} dominates all B_{i} 's and A_{2} dominates all B_{i} 's except $i=n_{1}$. Thus selecting any set among B_{i} 's violates independence property and missing of A_{ℓ} and A_{\jmath} breaks the domination condition. So, in this case D is the only independent dominating set missing exactly two sets among A_{i} 's and cardinality of such a set is $\phi(q)\left(\phi\left(p^{2}\right)+\ldots \phi\left(p^{n_{1}-1}\right)\right)+\phi\left(p^{2}\right)+\phi(p)=\phi(q)\left(p^{n_{1}-1}-p\right)+p^{2}-1$.

Similarly, $D=\bigcup_{i=4}^{n_{1}} A_{i} \cup B_{n_{1}-2} \cup B_{n_{1}-1} \cup B_{n_{1}}$ is the unique independent dominating set missing exactly three sets among A_{i} 's. The cardinality of D is $\phi(q)\left(\phi\left(p^{3}\right)+\ldots \phi\left(p^{n_{1}-1}\right)\right)+\phi\left(p^{3}\right)+\phi\left(p^{2}\right)+\phi(p)=\phi(q)\left(p^{n_{1}-1}-p^{2}\right)+p^{3}-1$.

Proceeding in a similar fashion at the i-th stage, we must remove the first i sets among A_{j} 's and add the last i sets among B_{j} 's so that the resulting set is the unique independent dominating set. That is, $D=\bigcup_{j=i+1}^{n_{1}} A_{j} \cup \bigcup_{j=1}^{i} B_{n_{1}-(j-1)}$ is the only independent set missing i sets from A_{j} 's and containing i sets from B_{i} 's. The cardinality of this independent domination set is $\phi(q)\left(\phi\left(p^{i}\right)+\cdots+\phi\left(p^{n_{1}-1}\right)\right)+\sum_{j=1}^{i} \phi\left(p^{j}\right)=\phi(q)\left(p^{n_{1}-1}-p^{i-1}\right)+p^{i}-1$.

Continuing in this manner, at the end we have the following cases.
The ($n_{1}-2$)-th case is $D=A_{n_{1}-2} \cup A_{n_{1}-1} \cup A_{n_{1}} \cup \bigcup_{i=4}^{n_{1}} B_{i}$ and D is an independent dominating set of cardinality $\phi(q)\left(\phi\left(p^{n_{1}-3}\right)+\phi\left(p^{n_{1}-2}\right)+\phi\left(p^{n_{1}-1}\right)\right)+\sum_{i=1}^{n_{1}-3} \phi\left(p^{i}\right)=\phi(q)\left(p^{n_{1}-1}-p_{n_{1}-4}\right)+p^{n_{1}-3}-1$.

As in the third case, $D=A_{n_{1}-1} \cup A_{n_{1}} \cup \bigcup_{i=3}^{n_{1}} B_{i}$ is the only independent dominating set at ($n_{1}-1$)-the stage missing exactly two sets among B_{i} 's. The cardinality of this set is $\phi(q)\left(\phi\left(p^{n_{1}-2}\right)+\phi\left(p^{n_{1}-1}\right)\right)+\sum_{i=1}^{n_{1}-2} \phi\left(p^{i}\right)=\phi(q)\left(p^{n_{1}-1}-p_{n_{1}-3}\right)+p^{n_{1}-2}-1$.

Lastly at the n_{1}-th stage, $D=A_{n_{1}} \cup \bigcup_{i=2}^{n_{1}} B_{i}$ is the unique independent dominating set missing exactly one set among B_{i} 's as in the second case. The order of this set is $\phi(q)\left(\phi\left(p^{n_{1}-1}\right)\right)+\sum_{i=1}^{n_{1}-1} \phi\left(p^{i}\right)=\phi(q)\left(p^{n_{1}-1}-p_{n_{1}-2}\right)+p^{n_{1}-1}-1$.

Finally, $D=\bigcup_{i=1}^{n_{1}} B_{i}$ is another independent set. Since the vertices of B_{1} dominates the vertices of all A_{i} 's and it follows that D is an independent dominating set of cardinality $\sum_{i=1}^{n_{1}} \phi\left(p^{i}\right)=p^{n_{1}}-1$.

With these cases and calculations, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
\begin{aligned}
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right) & =z^{p^{n_{1}-1}(q-1)}+z^{(q-1)\left(p^{n_{1}-1}-1\right)+p-1}+z^{(q-1)\left(p^{n_{1}-1}-p\right)+p^{2}-1}+z^{(q-1)\left(p^{n_{1}-1}-p^{2}\right)+p^{3}-1} \\
& +\cdots+z^{(p-1)\left(p^{n_{1}-1}-p^{i-1}\right)+p^{i}-1}+\cdots+z^{(q-1)\left(p^{n_{1}-1}-p^{n_{1}-4}\right)+p^{n_{1}-3}-1} \\
& +z^{(q-1)\left(p^{n_{1}-1}-p^{n_{1}-3}\right)+p^{n_{1}-2}-1}+z^{(q-1)\left(p^{n_{1}-1}-p^{n_{1}-2}\right)+p^{n_{1}-1}-1}+z^{p^{n_{1}}-1} .
\end{aligned}
$$

Thus, the proof is completed.

3. Unimodal and log-concave properties of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$

In this section, we will discuss the unimodal and log-concave properties of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$ for $n \in\left\{p_{1} p_{2}, p_{1} p_{2} p_{3}, p_{1}^{n_{1}} p_{2}\right\}$.
A polynomial $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is said to be unimodal if the sequence of its coefficients $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is unimodal, that is, there exists a positive integer $p(0 \leq p \leq n)$, known as the mode, such that $a_{0} \leq a_{1} \leq \cdots \leq a_{p} \geq a_{p+1} \geq$ $\cdots \geq a_{n}$. The count of changes of directions (increasing or decreasing) in the sequence of coefficients of $p(z)$ is known as oscillations, denoted by $\mu(p(x))$. By definition, the oscillations of unimodal polynomial is at most one. The polynomial $p(x)=1+8 x+21 x^{2}+8 x^{3}+x^{4}+9 x^{5}$ is not unimodal, since $\mu(p(x))=2$ as there are two increasing oscillations. The polynomial $p(x)$ is symmetric (self reciprocal) if $a_{i}=a_{n-i}$, for $0 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ and log-concave if

$$
\begin{equation*}
a_{i}^{2} \geq a_{i-1} a_{i+1}, \text { for all } 1 \leq i \leq n-1 \tag{1}
\end{equation*}
$$

The following result shows that the independent domination polynomial of $\mathbb{Z}_{p_{1} p_{2}}$ has only one real root.
Proposition 3.1. Let $D_{i}\left(\Gamma^{\prime}(R, z)\right.$ be an independent domination polynomial of $\Gamma^{\prime}(R)$. Then $D_{i}\left(\Gamma^{\prime}(R, z)\right.$ has only one real root if $R \cong \mathbb{Z}_{p_{1} p_{2}}$, where $2<p_{1}<p_{2}$ are primes.
Proof. For $R \cong \mathbb{Z}_{n}$ with $n=p_{1} p_{2}$ and by Proposition 2.1 , the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1}-1}+z^{p_{2}-1}
$$

As $2<p_{1}<p_{2}$, it is easy to see that $p_{2}-p_{1}$ is even and from this it follows that $z^{p_{1}-1}+z^{p_{2}-1}$ has only real zero as 0.
From Proposition 2.1 with $2 \leq p_{1}<p_{2}$, the independent domination polynomial $p(z)=z^{p_{1}-1}+z^{p_{2}-1}$ satisfies the unimodal property if and only if the exponents of $p(z)$ differ by one, that is, $p_{2}-p_{1}=1$. In this case, the coefficients from an increasing sequence and hence $p(z)$ is log-concave. Conversely, it is easy to see that $p(z)$ is unimodal if $p_{1}=2$ and $p_{2}=3$. The log-concavity trivially holds true for $p(z)$.

We make this observation precise in the next result.
Proposition 3.2. The independent domination polynomial of $\mathbb{Z}_{p_{1} p_{2}}$ is log-concave and it is unimodal if and only if $p_{2}-p_{1}=1$.
The next proposition shows that $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{p_{1} p_{2} p_{3}}\right), z\right)$ is not unimodal.
Proposition 3.3. For $n=p_{1} p_{2} p_{3}$ with $p_{1}<p_{3}<p_{3}$, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is not unimodal.
Proof. By Theorem 2.1, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is

$$
D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)=z^{p_{1} p_{2}-p_{1}}+z^{p_{1} p_{2}-p_{2}}+z^{p_{2} p_{3}-p_{2}}+z^{p_{2} p_{3}-p_{3}}+z^{p_{1} p_{3}-p_{1}}+z^{p_{1} p_{3}-p_{3}} .
$$

Since the coefficients of the above polynomial are unity, so we are concerned only with the exponents. In order to violate the unimodal condition, we need to show that there is missing at least one term between any two terms of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$, as all its exponents are different. Without loss of generality, consider $z^{p_{2} p_{3}-p_{2}}$ and $z^{p_{2} p_{3}-p_{3}}$. If their exponents differ by one, then we get $p_{3}-p_{2}=1$, which is always true since $p_{1}<p_{2}<p_{3}$. Thus there is at least one term missing between the terms of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$, which implies that $\mu\left(D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)\right)>1$. Thus, $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$ cannot be unimodal.

Remark 3.1. The independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ for $n=p_{1} p_{2} p_{3}$ with $p_{1}<p_{3}<p_{3}$ cannot be always logconcave. We can prove it if we show that there is a missing term with its exponent lying between two non-consecutive exponents of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$. Consider terms $z^{p_{2} p_{3}-p_{2}}$ and $z^{p_{2} p_{3}-p_{3}}$ and suppose that there difference is two. Then $p_{2} p_{3}-p_{2}-\left(z^{p_{2} p_{3}-p_{3}}\right)=2$ implies that $p_{3}-p_{2}=2$ and in this case $a_{p_{2} p_{3}-p_{2}+1}^{2}=0 \nsupseteq 1=a_{p_{2} p_{3}-p_{2}} a_{p_{2} p_{3}-p_{3}}$. Thus, $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ is not always log-concave. For $G \cong \Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ with $n=2 \cdot 2 \cdot 5$, we have $D_{i}(G, z)=z^{3}+z^{4}+z^{5}+z^{8}+z^{10}+z^{12}$, we see that $a_{9}^{2} \nsupseteq a_{8} a_{9}$ and $a_{11}^{2} \nsupseteq a_{10} a_{12}$. Also, note that $\mu\left(D_{i}(G, z)\right)=3$, as there are three increasing oscillations.

The next result is related to log-concave and unimodal properties of the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{p_{1}^{2} p_{2}}\right)$.
Proposition 3.4. The independent domination polynomial of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)\right.$, z) for $n=p_{1}^{2} p_{2}$ is not unimodal and it is log-concave if and only if $p_{1}-p_{2} \neq 2$.

Proof. From Theorem 2.2, the independent domination polynomial of $G \cong \Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ with $n=p_{1}^{2} p_{2}$ and $p_{1}>p_{2}$ is

$$
\left.D_{i}(G), z\right)=z^{p_{1} p_{2}-p_{1}}+z^{p_{1} p_{2}-p_{2}}+z^{p_{1}^{2}-1}
$$

Since $p_{1}>p_{2}$, so $p_{1} p_{2}-p_{1} \leq p_{1} p_{2}-p_{2} \leq p_{1}^{2}-1$. The above polynomial is not unimodal if its oscillations are more than one. To prove it, we need to show between two of its terms there exists a zero term. Next, if $p_{1}^{2}-1-\left(p_{1} p_{2}-p_{2}\right) \geq 2$, then the solutions of this inequality are $p_{1} \geq 3$ and $2 \leq p_{2} \leq \frac{p_{1}^{2}-3}{p_{1}-1}$. Since the minimum value of p_{1} is 3 , so this is true and there always lies a missing term between $z^{p_{1} p_{2}-p_{2}}$ and $z^{p_{1}^{2}-1}$, which shows that $\left.\mu\left(D_{i}(G), z\right)\right) \geq 2$ and unimodal property is violated. For log-concave, we must have $p_{1} p_{2}-p_{2}-\left(p_{1} p_{2}-p_{1}\right) \neq 2$ and $p_{1}^{2}-1-\left(p_{1} p_{2}-p_{2}\right) \neq 2$, since there exists a missing between two terms with consecutive powers and that contradicts the log-concavity. From this, we obtain $p_{1}-p_{2} \neq 2$ and $p_{1}=3, p_{2}=2$ or $p_{1} \geq 5$ and $2 \leq p_{2}<p_{1}$. The second condition hardly matters as there is always a gap between $z^{p_{1} p_{2}-p_{2}}$ and $z^{p_{1}^{2}-1}$. Thus, it follows that $\left.D_{i}(G), z\right)$ is log-concave if $p_{1}-p_{2} \neq 2$. Conversely, if $p_{1}>p_{2}$ are primes and $p_{1}-p_{2}=2$, then there is $a_{p_{1} p_{2}-p_{1}+1}=0$ such that $a_{p_{1} p_{2}-p_{1}+1}^{2} \nsupseteq a_{p_{1} p_{2}-p_{1}} a_{p_{1} p_{2}-p_{2}}$ and log-concave property fails.

By Example 2.2, the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{48}\right)$ is $4 z^{15}+z^{16}$, which is both log-concave and unimodal. Based on this fact, it remains open to discuss the unimodal and log-concave properties of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ for $n=p_{1}^{n_{1}} p_{2}$. Also, further study on the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$ for other general values of n along with their unimodal and logconcave property (especially, their zeros) can be discussed.

4. Conclusion

The independent domination polynomial of cozero divisor graphs of \mathbb{Z}_{n} has been determined for some special values of n. For general n, it seems to be a hard problem and hence, in the future, it would be interesting to establish more results related to the independent domination polynomial of $\Gamma^{\prime}\left(\mathbb{Z}_{n}\right)$. By Proposition 3.1, $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{p_{1} p_{2}}\right)\right)$ has only one real root for $2<p_{1}<p_{2}$. Hence, it would be interesting to investigate the zeros of $D_{i}\left(\Gamma^{\prime}\left(\mathbb{Z}_{n}\right), z\right)$ and the bounds for these zeros.

Acknowledgment

The author is thankful to anonymous referees for their useful comments, which have improved the quality of the paper.

References

[^1]
[^0]: *E-mail address: bilalahmadrr@gmail.com

[^1]: [1] M. Afkhami, K. Khashyarmanesh, The cozero divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011) $753-762$.
 [2] M. Afkhami, K. Khashyarmanesh, On the cozero divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35 (2012) $935-944$.
 [3] M. Afkhami, K. Khashyarmanesh, Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite commutative ring, J. Algebra Appl. 11 (2012) \#1250103.
 [4] M. Afkhami, K. Khashyarmanesh, On the cozero divisor graphs and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013) \#1250173.
 [5] S. Alikhani, The domination polynomial of a graph at -1, Graphs Combin. 29 (2013) 1175-1181.
 [6] S. Alikhani, J. Brown, S. Jahari, On the domination polynomials of friendship graphs, Filomat 30 (2016) 169-178.
 [7] S. Alikhani, Y. H. Peng, Introduction to domination polynomial of a graph, Ars Combin. 114 (2014) 257-266.
 [8] A. Alwardi, P.M. Shivaswamy, N. D. Soner, Independent dominating polynomial in graphs, Int. J. Sci. Inn. Math. Research, 2 (2014) 757-763.
 [9] S. Akbari, F. Alizadeh, S. Khojasteh, Some results on cozero divisor graph of a commutative ring, J. Algebra Appl. 13 (2014) \#1350113.
 [10] S. Akbari, S. Khojasteh, Commutative rings whose cozero divisor graphs are unicyclic or of bounded degree, Commun. Algebra. 42 (2014) $1594-1605$.
 [11] M. Bakhtyiari, R. Nikandish, M. Nikmehr, Coloring of cozero-divisor graphs of commutative von Neumann regular rings, Proc. Math. Sci. 130 (2020) 1-7.
 [12] S. Chattopadhyay, K. L. Patra, B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring \mathbb{Z}_{n}, Linear Algebra Appl. 584 (2020) $267-286$.
 [13] M. Dod, The independent domination polynomial, arXiv:1602.08250 [math.CO], (2016).
 [14] W. Goddard, M. A. Henning, Independent domination in graphs: a survey and recent results, Discrete Math. 3132013 839-854.
 [15] N. K. Gürsoy, A. Ülker, A. Gürsoy, Independent domination polynomial of zero-divisor graphs of commutative rings, Soft Comp. 26 (2022) $6989-6997$.
 [16] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
 [17] S. Jahari, S. Alikhani, On the independent domination polynomial of a graph, Discrete Appl. Math. 289 (2021) 416-426.
 [18] G. P. Lonzaga, Independent dominating polynomial of corona of some special graphs, Int. J. Sci. Eng. Res. 9 (2018) 262-267.
 [19] P. Mathil, B. Baloda, J. Kumar, On the cozero divisor graphs associated to rings, AKCE Int. J. Graphs Comb. 19 (2022) 38-248.
 [20] Z. Mehranian, A. Gholami, A. R. Ashrafi, The spectra of power graphs of certain finite groups, Linear Multilinear Algebra 65 (2016) 1003-1010.
 [21] R. Nikandish, M. Nikmehr, M. Bakhtyiari, Metric and strong metric dimension in cozero-divisor graphs, Mediter. J. Math. 18 (2021) 1-12.
 [22] B. A. Rather, A note on the independent domination polynomial of zero divisor graph of rings, arXiv:2401.02559 [math.CO], (2024).
 [23] B. A. Rather, S. Pirzada, T. A. Chishti, A. M. A. Alghamdi, On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups, Discrete Math. Algorithms Appl. 15 (2022) \#2250070.
 [24] B. A. Rather, S. Pirzada, T. A. Naikoo, Y. Shang, On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo n, Math. 9 (2021) \#482.
 [25] M. Young, Adjacency matrices of zero divisor graphs of integer modulo n, Involve 8 (2015) 753-761.

