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Abstract

The cozero divisor graph Γ′(R) of a commutative ring R is a simple graph whose vertex set is the set of non-zero non-unit
elements of R such that two distinct vertices x and y of Γ′(R) are adjacent if and only if x /∈ Ry and y /∈ Rx, where Rx is the
ideal generated by x. In this article, the independent domination polynomial of Γ′(Zn) is found for n ∈ {p1p2, p1p2p3, pn1

1 p2},
where pi’s are primes, n1 is an integer greater than 1, and Zn is the integer modulo ring. It is shown that the independent
domination polynomial of Γ′(Zp1p2) has only one real root. It is also proved that these polynomials are not unimodal but are
log-concave under certain conditions.
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1. Introduction

Only finite, simple, and undirected graphs are considered in this paper. A graph is denoted by G = G(V (G), E(G)) with
vertex set V (G) and edge set E(G). The numbers n = |V (G)| and m = |E(G)| are order and size of G, respectively. An edge
between two vertices u and v is represented by u ∼ v. A vertex of degree 0 is an isolated vertex and a vertex of degree one
is a pendent vertex. The degree dvi(G) (or simply di, if G is clear) of a vertex vi is the number of vertices incident with it.
The union of two graphs G1 = G1(V1(G1), E1(G1)) and G2 = G2(V2(G2), E2(G2)), denoted by G1 ∪G2, is defined as a graph
with vertex set V1(G1) ∪ V2(G2) and edge set E1(G1) ∪ E2(G2). The join of G1 and G2 is denoted by G1 ∨G2 and is defined
as a graph with vertex set V1(G1) ∪ V2(G2) and edge set E(G1) ∪ E(G2) ∪ {u ∼ v | u ∈ V (G1), v ∈ V (G2)}.

A non-empty set S ⊆ V (G) is said to be a dominating set if every vertex in V \ S is adjacent to at least one vertex in
S. The minimum cardinality among all dominating sets of G is known as the domination number of G, denoted by γ(G).

The domination theory of graphs is very well developed, see [16]. An independent set in a graph G is a set of pairwise
non-adjacent vertices. The cardinality of the largest independent set is known as the independence number of G, denoted
by α(G). An independent dominating set of G is a vertex subset that is both dominating and independent in G. The
independent domination number, denoted by γi(G), is the minimum size of all independent dominating sets of G. The
relation between γ, α and γi of G is γ(G) ≤ γi(G) ≤ α(G) (see, [16]). The independent set problem is a strongly NP-hard
problem while the dominating set problem is an NP-complete problem, which are well well-studied both in mathematics
and theoretical computer science. A star graph of order n is denoted by K1,n−1 and a complete bipartite graph by Ka,b,

with n = a + b. A graph G of order n is said to be totally disconnected if G is isomorphic to the complement of a complete
graph.

Let dk(G, k) denote the number of independent dominating sets of carnality k in G. The independent domination
polynomial of G is defined as

Di(G, x) =

α(G)∑
k=γi(G)

di(G, k)xk.

A root of the equation Di(G, x) = 0 is known as the independent domination root of G. The independent domination
polynomial Di(G, x) is a generating function of the number of the independent dominating sets of certain cardinalities of
G. The independent domination polynomials and their zeros have attracted many researchers, see [8,13,14,18]. Jahari and
Alikhani [17] gave the independent domination polynomials of generalized compound graphs and constructed graphs whose
independent domination polynomials have real zeros. Recently, the authors in [15,22] presented the results related to the
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independent domination polynomial of zero-divisor graphs of commutative rings. More about independent domination
polynomials can be found in [5–7]. Although it is hard to find the independent domination polynomial of a general graph,
we can often find a closed expression for such polynomials for certain classes of graphs. Motivated by the above-mentioned
work, especially the one related to zero-divisor graphs of commutative rings in [15, 22], we consider the independent
domination polynomial theory for cozero divisor graphs of the commutative ring of integer modulo n.

In Section 2, we present the closed expression for the independent domination polynomial of cozero divisor graphs of
commutative rings and Section 3 is concerned with their unimodal and log-concave properties. We end this article with
the conclusion section

2. Independent domination polynomial of Γ′(Zn)

We first discuss the structure of cozero divisor graphs. The cozero divisor graphs are motivated by zero divisor graphs,
which is defined as a graph Γ(R) associated to a ring R,with vertex set as non-zero zero divisors of R such that two distinct
vertices are adjacent if and only if their product is zero. The cozero divisor graph of a commutative ring R (with unity
1 6= 0) is a simple graph with vertex set as non-zero non-unit elements of R such that two vertices x and y (x 6= y) are
adjacent if and only if x /∈ Ry and y /∈ Rx, where Rx is the ideal generated by x. The cozero divisor graph of R is denoted
by Γ′(R). The basic properties of cozero divisor graphs including their complement graphs, planarity, characterization of
commutative rings with forest, star, or unicyclic cozero divisor graphs, their relations with comaximal graphs of rings, and
zero divisor graph were investigated by Afkhami and Khashyarmanesh [1–4]. Cozero divisor graphs of polynomial rings
were discussed in [9], and spectral analysis of cozero divisor graphs was carried out in [19]. For some other progress of
cozero divisor, see [10,11,21] and the references cited therein.

In general, it is not easy to find the structure of Γ′(R) completely, though for some special cases we can have some
information about the structure of Γ′(R) (especially for Γ′(Zn)), where Zn is the integral modulo ring. Depending on the
proper divisors di, i /∈ {1, n} of n, we divide V (Γ′(Zn)) into mutually disjoint vertex cells as (a similar concept is used
in [12,20,23–25] for studying other algebraic graphs):

Adi = {a ∈ Zn : (a, n) = di},

where (a, n) is the greatest common divisor of a and n. Clearly Adi are mutually pairwise disjoint and

V (Γ′(Zn)) =

t⋃
i=1

Adi ,

where t is the number of proper divisor of n. Furthermore, for a, b ∈ Adi , we have 〈a〉 = 〈b〉. The cardinality of Adi is φ
(
n
di

)
(see [25]), for i = 1, 2, . . . , t, where φ(·) is an Euler function. Also, if a ∈ Adi and b ∈ Adj then a and b are adjacent in Γ′(Zn)

if and only di - dj and dj - di, for i, j ∈ {1, 2, . . . , τ(n) − 2}, where τ(·) is divisor function. For i ∈ {1, 2, . . . , τ(n) − 2}, the
induced subgraph of Adi is K

φ
(

n
di

). For more above the structural properties of Γ′(Zn), we refer to [19].
Our first result gives the independent domination polynomial of Γ′(Zn) when n is the product of two distinct primes.

Proposition 2.1. For n = p1p2, with p1 < p2, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp1−1 + zp2−1.

Proof. We partition the vertex set of Γ′(Zn) into the following subsets

A1 = {kp1 | k = 1, 2, . . . , p2 − 1},

A2 = {kp2 | k = 1, 2, . . . , p1 − 1}.

Clearly A1 ∩ A2 = ∅ and each x ∈ A1 does not divide each y ∈ A2. So it follows that Γ′(Zn) is a complete bipartite graph
and its independent domination polynomial is given by Di(Γ

′(Zn), z) = zp1−1 + zp2−1.

The next result gives the independent domination polynomial of Γ′(Zn) when n is a product of three primes.

Theorem 2.1. The independent domination polynomial of Γ′(Zn) for n = p1p2p3 with p1 < p2 < p3 is

Di(Γ
′(Zn), z) = zp2p3−p3 + zp2p3−p2 + zp1p3−p3 + zp1p3−p1 + zp1p2−p1 + zp1p2−p2 .
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Proof. Depending on the proper divisors of n, the vertex set of Γ′(Zn) can be partition into following mutually disjoint
subsets

A1 = {kp1 | k = 1, 2, . . . , p2p3 − 1, p2 - k, p3 - k}, A2 = {kp2 | k = 1, 2, . . . , p1p3 − 1, p1 - k, p3 - k},

A3 = {kp3 | k = 1, 2, . . . , p1p2 − 1, p1 - k, p2 - k}, A4 = {kp1p2 | k = 1, 2, . . . , p3 − 1},

A5 = {kp1p3 | k = 1, 2, . . . , p2 − 1}, A6 = {kp2p3 | k = 1, 2, . . . , p1 − 1}.

Clearly, x ∈ Ai does not divide y ∈ Ai (x 6= y), for each i = 1, 2, . . . , 6. It follows that induced subgraphs of each Ai is
null graph (non-empty edgeless graph). Furthermore, |A1| = φ(p2p3) = (p2 − 1)(p3 − 1), |A2| = (p1 − 1)(p3 − 1), |A3| =

(p1 − 1)(p2 − 1), |A4| = p3 − 1, |A5| = p2 − 1 and |A6| = p1 − 1. Also, we note that x ∈ A1 divides some y ∈ A4 and some
l ∈ A5, so it follows that no vertex of A1 is adjacent to any vertex of A4 and A5. Likewise x ∈ A2 divides some y ∈ A4 and
some l ∈ A6, implying that each vertex of A2 is not adjacent to any vertex of A4 and A6. Similarly, each vertex of A3 is not
adjacent to any vertex of A5 and A6, there are edges between each vertex of A6 and A4, between each vertex of A5 with A6

and A4. Depending on these subsets and their adjacent relations, we have the following cases:

Case (i). Suppose D = A1 ∪ A5. Then the vertices of A1 dominate the vertices of A2, A3 and A6 and A5 dominates the
vertices of A2, A4 and A6. Thus, all vertices in (Γ′(Zn)) \ D are dominated by D and it implies that D is an independent
dominating set of cardinality (p2 − 1)(p3 − 1) + p2 − 1 = p2p3 − p3. Besides, in this case di(Γ′(Zn), p2p3 − p3) = 1.

Case (ii). ConsiderD = A1∪A4. Then as in (i), A1 dominates the vertices ofA2, A3 andA6 andA4 dominates the vertices of
A3, A5 andA6. Thus, the vertices in (Γ′(Zn))\D are dominated byD and the cardinality of such an independent dominating
set is (p2 − 1)(p3 − 1) + p3 − 1 = p2p3 − p2.

Case (iii). Take D = A2 ∪A6 and note that these two subsets dominates all vertices in A1, A3, A4 and A5. So, D is another
independent dominating set of cardinality (p1 − 1)(p3 − 1) + p1 − 1 = p1p3 − p3.

Case (iv). Take D = A2 ∪ A4 and observe that A2 dominates A1, A3 and A5 and A4 dominates A6 along with already
dominated sets A5 and A3. Thus,D is another independent dominating set of cardinality (p1−1)(p3−1)+p3−1 = p1p3−p1.

Case (v). Consider A3 ∪ A5. Then A3 dominates A1, A2 and A4 while A5 dominates A2, A4 and A6 and the vertices in
(Γ′(Zn)) \ (A3 ∪A5) are dominated by A3 ∪A5. So, it is another independent dominating set with cardinality:

(p1 − 1)(p2 − 1) + p2 − 1 = p1p2 − p1.

Case (vi). Lastly, consider D = A3 ∪ A6. Then A3 dominates A1, A2 and A4 while A6 dominates A1, A4 and A5 and the
vertices in (Γ′(Zn)) \ D are dominated by A3 ∪ A5. So, it follows that D is an independent dominating set of cardinality
(p1 − 1)(p2 − 1) + p1 − 1 = p1p2 − p2.

Therefore, by the above cases, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp2p3−p3 + zp2p3−p2 + zp1p3−p3 + zp1p3−p1 + zp1p2−p1 + zp1p2−p2 .

We illustrate Theorem 2.1 with the help of the following example.

Example 2.1. For n = 2 · 3 · 5 = 30, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = z3 + z4 + z5 + z8 + z10 + z12.

For n = 30, the order of Γ′(Zn) is n− φ(n)− 1 = 21. The independent vertex partitions are

A1 = {2, 4, 8, 14, 16, 22, 26, 28}, A2 = {3, 9, 21, 27}, A3 = {5, 25}, A4 = {6, 12, 18, 24}, A5 = {10, 20}, A6 = {15}.

The graph is shown in Figure 2.1. According to these six subsets and their independent domination combinations in Theorem
2.1, we have

Di(Γ
′(Zn), z) = z3 + z4 + z5 + z8 + z10 + z12.

In the next couple of results, we find the independent domination polynomial of Γ′(Zn) for n = pn1p2 with n1 ≥ 2.

Theorem 2.2. For n = p21p2, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp1p2−p1 + zp1p2−p2 + zp

2
1−1.
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Figure 2.1: Cozero divisor graph Γ′(Z30).

Proof. For n = p21p2, based on proper divisors p1, p2, p21 and p1p2, we divide V (Γ′(Zn)) into following subsets

Ap1 = {kp1 | k = 1, 2, . . . , p1p2 − 1, p1 - k, p2 - k}, Ap2 = {kp2 | k = 1, 2, . . . , p21 − 1, p1 - k},

Ap22 = {kp22 | k = 1, 2, . . . , p2 − 1}, Ap1p2 = {kp1p2 | k = 1, 2, . . . , p1 − 1}.

The induces subgraphs ofAi’s are non-empty null graph and their cardinalities are (p1−1)(p2−1), (p21−p1), p2−1 and p1−1,

respectively. Also, each vertex of Ap1 is adjacent to every vertex of Ap2 , since Ap1 contains some multiplies of p1 and Ap2
contains some multiples of p2 and p1 does not divide p2.Likewise, each vertex ofAp2 is adjacent to each vertex ofAp21 and each
vertex of Ap21 is adjacent to every vertex of Ap1p2 . As each of Ai is an independent set, so there are total

(
4
2

)
= 3 independent

dominating sets namely Ap1 ∪ Ap21 , Ap1 ∪ Ap1p2 and Ap2 ∪ Ap1p2 each with cardinalities p1p2 − p1, p1p2 − p2 and p21 − 1,

respectively. Therefore, the independent domination polynomial of Γ′(Zn) is Di(Γ
′(Zn), z) = zp1p2−p1 + zp1p2−p2 + zp

2
1−1.

Theorem 2.3. For the cozero divisor graph Γ′(Zn), the following hold:

(i) If n = p31p2, then the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp

2
1(p2−1) + z(p1−1)(p1p2+p2−p1) + z(p1−1)(p1p2+1) + zp

3
1−1.

(ii) If n = p41p2, then the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp

3
1(p2−1) + z(p2−1)(p

3
1−1)+p1−1 + z(p2−1)(p

3
1−p1)+p

2
1−1 + z(p2−1)(p

3
1−p

2
1)+p

3
1−1 + zp

4
1−1.

Proof. We prove only (ii), and (i) can be similarly proved. For n = p41p2, the vertex set of Γ′(Zn) can be portioned as

A1 = {kp1 | k = 1, 2, . . . , p31p2 − 1, p1 - k, p2 - k}, A2 = {kp21 | k = 1, 2, . . . , p21p2 − 1, p1 - k, p2 - k},

A3 = {kp31 | k = 1, 2, . . . , p1p2 − 1, p1 - k, p2 - k}, A4 = {kp41 | k = 1, 2, . . . , p2 − 1},

A5 = {kp2 | k = 1, 2, . . . , p41 − 1, p1 - k}, A6 = {kp1p2 | k = 1, 2, . . . , p31 − 1, p1 - k},

A7 = {kp21p2 | k = 1, 2, . . . , p21 − 1, p1 - k}, A8 = {kp31p2 | k = 1, 2, . . . , p1 − 1}.

By the definition of the cozero divisor graph, each vertex of A1 is adjacent to each vertex of A5, each vertex of A2 is adjacent
to each vertex of A5 and A6, each vertex of A3 is adjacent to each vertex of A5, A6 and A7, each vertex of A4 is adjacent to
each vertex of Ai, i = 5, 6, 7 and 8.
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Case (i). Let D = A1 ∪A2 ∪A3 ∪A4. Then D is an independent set since each of Ai induces a complement of clique. Also,
A4 dominates each vertex of A5, A6, A7 and A8. Thus each vertex of V (Γ′(Zn)) \ D is adjacent to at least one vertex of D.
So D is an independent dominating set of cardinality φ(p31p2) + φ(p21p2) + φ(p1p2) + φ(p2) = p31(p2 − 1).

Case (ii). If D = A1 ∪ A2 ∪ A3 ∪ A8, then A1 dominates A5, A8 dominates A4 and A2 ∪ A3 dominates A5, A6 and A7.

In this way all vertices of Γ′(Zn) are dominated by D and it follows that D is an independent dominating set of order
φ(p31p2) + φ(p21p2) + φ(p1p2) + φ(p1) = (p2 − 1)(p31 − 1) + p1 − 1.

Case (iii). If D = A1 ∪ A2 ∪ A7 ∪ A8, then A1 dominates A5, A2 dominates A5 and A6, A7 dominates A3 and A4. So each
vertex of V (Γ′(Zn)) \D is adjacent to at least one vertex of D. It implies that D is an independent dominating set of order
φ(p31p2) + φ(p21p2) + φ(p21) + φ(p1) = (p2 − 1)(p31 − p1) + p21 − 1.

Case (iv). If D = A1 ∪ A6 ∪ A7 ∪ A8, then A1 dominates A5, and A6 dominates A2, A3 and A4. It is clear that each vertex
of V (Γ′(Zn)) \D is adjacent to at least one vertex of D. So, D is an independent dominating set of order φ(p31p2) + φ(p31) +

φ(p21) + φ(p1) = (p2 − 1)(p31 − p21) + p31 − 1.

Case (v). Clearly each vertex of Γ′(Zn) is dominated by A5 ∪ A6 ∪ A7 ∪ A8 and it is an independent dominating set of
cardinality φ(p41) + φ(p31) + φ(p21) + φ(p1) = p41 − 1.

Based on the above discussion, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp

3
1(p2−1) + z(p2−1)(p

3
1−1)+p1−1 + z(p2−1)(p

3
1−p1)+p

2
1−1 + z(p2−1)(p

3
1−p

2
1)+p

3
1−1 + zp

4
1−1.

Next, we illustrate Theorem 2.1 by the following example:

Example 2.2. For n = 24 ·3 = 48, the independent domination polynomial of Γ′(Zn) isDi(Γ
′(Zn), z) = z15(z+4). For n = 48,

the order of Γ′(Zn) is n− φ(n)− 1 = 31. The independent vertex partitions of Γ′(Zn) are

A1 = {2, 10, 14, 22, 26, 34, 38, 46}, A2 = {4, 20, 28, 44}, A3 = {8, 40}, A4 = {16, 32},

A5 = {3, 9, 15, 21, 27, 33, 39, 45}, A6 = {6, 18, 30, 42}, A7 = {12, 36}, A8 = {24}.

The graph is shown in Figure 2.2. With the independent dominating combination of Ai’s as in Theorem 2.3, we have

Di(Γ
′(Zn), z) = z16 + 4z15.

Figure 2.2: Cozero divisor graph Γ′(Z48).
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Next, we generalize Theorem 2.1 for n = pn1
1 p2, where p1, p2 are primes and n1 is a positive integer. A similar analysis

can be carried for n = p1p
n2
2 . In order to make calculations simple, we denote p1 by p and p2 by q.

Theorem 2.4. If n = pn1q, then the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp

n1−1(q−1) + z(q−1)(p
n1−1−1)+p−1 + z(q−1)(p

n1−1−p)+p2−1 + z(q−1)(p
n1−1−p2)+p3−1

+ · · ·+ z(p−1)(p
n1−1−pi−1)+pi−1 + · · ·+ z(q−1)(p

n1−1−pn1−4)+pn1−3−1

+ z(q−1)(p
n1−1−pn1−3)+pn1−2−1 + z(q−1)(p

n1−1−pn1−2)+pn1−1−1 + zp
n1−1.

Proof. Let n = pn1q with p < q. Then the proper divisors of n are pi, i = 1, 2, . . . , n1, q and pjq, for j = 1, 2, . . . , n1 − 1.

We partition the vertex set of Γ′(Zn) as Api = {a ∈ Zn : (a, n) = pi} and Api−1q = {b ∈ Zn : (b, n) = pi−1q}, where
i = 1, 2, . . . , n1. We denote these sets by Ai = Apn1−i+1 and Bi = Api−1q, for i = 1, 2, . . . , n1. The cardinality of Ai is
φ(pi−1q) and that of Bi is φ(pn1−i+1), for i = 1, 2, . . . , n1. Also Ai’s induce a non-empty totally disconnected graph of order∑n1

i=1 φ(pn1−iq) = pn1(q−1), since
∑η
i=1 φ(pi) = pη−1, for prime p. LikewiseBi’s induce a totally disconnected graph of order∑n1

i=1 p
i = pn1 −1. This implies that no vertex of any Ai is adjacent to any vertex of Aj , for each i < j, since pj = cpi, where c

is some scaler. Similarly, no vertex of Bi is adjacent to any vertex of Bj , for each i and j. Thus, there are adjacency relation
only between Ai’s and Bj ’s for some i and j. The divisor pn1 is not multiple of any pn1−iq, for i = 1, 2, . . . , n1. So, the vertices
of A1 are adjacent to all Bi, i = 1, 2, . . . , n1. For i = 1, 2, . . . , n1 − 2, the divisor pn1−1 is adjacent to pn1−iq except pn1−1q, it
implies that the vertices of A2 are adjacent to all Bi except i = n1. Similarly, the set An1

containing some multiplies of p is
adjacent only to set B1, the set An1−1 is adjacent to sets B1 and B2 and so on. Thus, in general the adjacency among Ai’s
and Bi’s can be represented by the relation: each vertex of Ai is adjacent to every vertex of

⋃n1−(i−1)
j=1 Bj , for i = 1, 2, . . . , n1.

Thus, the relations of adjacency between Ai’s and Bj ’s are completely known. Next, we find the independent dominating
sets of Γ′(Zn).

The first possibility for an independent domination set is D =
⋃n1

i=1Ai. In this case vertices of A1 dominates vertices of
all Bi’s and so D is an independent domination set of cardinality pn1−1(q − 1).

The second possibility isD =
⋃n1

i=2Ai∪Bn1
, since A1 dominates all vertices of Bi’s and A2 dominates all Bi’s except Bn1

.

So, it follows that each vertex of V (Γ′(Zn) \D is adjacent to at least one vertex of D. Thus D is the another independent
dominating set of cardinality φ(q)(φ(p)+ · · ·+φ(pn1−1))+φ(p) = φ(q)(pn1−1−1)+φ(p).Next we claim that if we remove any
of set from

⋃n1

i=1Ai other than A1 and add a suitable subset among Bi’s, then the resulting set cannot be an independent
dominating set. If we remove any set among Ai’s other than A1, say Aj , j 6= 1. Then D′ =

⋃n1

i=1Ai \ Aj cannot be a
dominating set, since Ai remains missing in such a set. We must add some Bk, so that the resulting set D = D′ ∪Bk is an
independent dominating set. But we cannot add any of the Bk as A1 is adjacent to all Bi’s and that violates the condition of
independence in the independent domination set. Thus, it follows that

⋃n1

i=2Ai ∪ Bn1
is the only independent dominating

set missing exactly one set among Ai’s.
Next, we drop two sets among Ai’s and find all possible independent dominating sets. Consider D =

⋃n1

i=3Ai ∪Bn1−1 ∪
Bn1

, then by adjacency relations
⋃n1

i=3Ai dominates all Bi’s except i = n1 − 1, n1. So, D is an independent dominating
set. We claim that D is the only independent dominating set missing exactly two sets among Ai’s. Suppose that D′ is
another dominating set missing any two sets among Ai’s except i = 1, 2. We assume that A` and A are two such sets,
then D′ cannot be an independent domination set as A1 dominates all Bi’s and A2 dominates all Bi’s except i = n1. Thus
selecting any set among Bi’s violates independence property and missing of A` and A breaks the domination condition.
So, in this case D is the only independent dominating set missing exactly two sets among Ai’s and cardinality of such a set
is φ(q)(φ(p2) + . . . φ(pn1−1)) + φ(p2) + φ(p) = φ(q)(pn1−1 − p) + p2 − 1.

Similarly, D =
⋃n1

i=4Ai ∪ Bn1−2 ∪ Bn1−1 ∪ Bn1 is the unique independent dominating set missing exactly three sets
among Ai’s. The cardinality of D is φ(q)(φ(p3) + . . . φ(pn1−1)) + φ(p3) + φ(p2) + φ(p) = φ(q)(pn1−1 − p2) + p3 − 1.

Proceeding in a similar fashion at the i-th stage, we must remove the first i sets among Aj ’s and add the last i sets
among Bj ’s so that the resulting set is the unique independent dominating set. That is, D =

⋃n1

j=i+1Aj ∪
⋃i
j=1Bn1−(j−1)

is the only independent set missing i sets from Aj ’s and containing i sets from Bi’s. The cardinality of this independent
domination set is φ(q)(φ(pi) + · · ·+ φ(pn1−1)) +

∑i
j=1 φ(pj) = φ(q)(pn1−1 − pi−1) + pi − 1.

Continuing in this manner, at the end we have the following cases.
The (n1 − 2)-th case is D = An1−2 ∪ An1−1 ∪ An1

∪
⋃n1

i=4Bi and D is an independent dominating set of cardinality
φ(q)(φ(pn1−3) + φ(pn1−2) + φ(pn1−1)) +

∑n1−3
i=1 φ(pi) = φ(q)(pn1−1 − pn1−4) + pn1−3 − 1.

As in the third case,D = An1−1∪An1∪
⋃n1

i=3Bi is the only independent dominating set at (n1−1)-the stage missing exactly
two sets among Bi’s. The cardinality of this set is φ(q)(φ(pn1−2) +φ(pn1−1)) +

∑n1−2
i=1 φ(pi) = φ(q)(pn1−1−pn1−3) +pn1−2−1.

Lastly at the n1-th stage, D = An1
∪
⋃n1

i=2Bi is the unique independent dominating set missing exactly one set among
Bi’s as in the second case. The order of this set is φ(q)(φ(pn1−1)) +

∑n1−1
i=1 φ(pi) = φ(q)(pn1−1 − pn1−2) + pn1−1 − 1.
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Finally, D =
⋃n1

i=1Bi is another independent set. Since the vertices of B1 dominates the vertices of all Ai’s and it follows
that D is an independent dominating set of cardinality

∑n1

i=1 φ(pi) = pn1 − 1.

With these cases and calculations, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp

n1−1(q−1) + z(q−1)(p
n1−1−1)+p−1 + z(q−1)(p

n1−1−p)+p2−1 + z(q−1)(p
n1−1−p2)+p3−1

+ · · ·+ z(p−1)(p
n1−1−pi−1)+pi−1 + · · ·+ z(q−1)(p

n1−1−pn1−4)+pn1−3−1

+ z(q−1)(p
n1−1−pn1−3)+pn1−2−1 + z(q−1)(p

n1−1−pn1−2)+pn1−1−1 + zp
n1−1.

Thus, the proof is completed.

3. Unimodal and log-concave properties of Di(Γ
′(Zn), z)

In this section, we will discuss the unimodal and log-concave properties of Di(Γ
′(Zn), z) for n ∈ {p1p2, p1p2p3, pn1

1 p2}.
A polynomial p(z) =

∑n
i=0 aiz

i is said to be unimodal if the sequence of its coefficients {a1, a2, . . . , an} is unimodal,
that is, there exists a positive integer p (0 ≤ p ≤ n), known as the mode, such that a0 ≤ a1 ≤ · · · ≤ ap ≥ ap+1 ≥
· · · ≥ an. The count of changes of directions (increasing or decreasing) in the sequence of coefficients of p(z) is known as
oscillations, denoted by µ(p(x)). By definition, the oscillations of unimodal polynomial is at most one. The polynomial
p(x) = 1 + 8x + 21x2 + 8x3 + x4 + 9x5 is not unimodal, since µ(p(x)) = 2 as there are two increasing oscillations. The
polynomial p(x) is symmetric (self reciprocal) if ai = an−i, for 0 ≤ i ≤

⌊
n
2

⌋
and log-concave if

a2i ≥ ai−1ai+1, for all 1 ≤ i ≤ n− 1. (1)

The following result shows that the independent domination polynomial of Zp1p2 has only one real root.

Proposition 3.1. Let Di(Γ
′(R, z) be an independent domination polynomial of Γ′(R). Then Di(Γ

′(R, z) has only one real
root if R ∼= Zp1p2 , where 2 < p1 < p2 are primes.

Proof. For R ∼= Zn with n = p1p2 and by Proposition 2.1, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp1−1 + zp2−1.

As 2 < p1 < p2, it is easy to see that p2 − p1 is even and from this it follows that zp1−1 + zp2−1 has only real zero as 0.

From Proposition 2.1 with 2 ≤ p1 < p2, the independent domination polynomial p(z) = zp1−1 + zp2−1 satisfies the
unimodal property if and only if the exponents of p(z) differ by one, that is, p2−p1 = 1. In this case, the coefficients from an
increasing sequence and hence p(z) is log-concave. Conversely, it is easy to see that p(z) is unimodal if p1 = 2 and p2 = 3.

The log-concavity trivially holds true for p(z).
We make this observation precise in the next result.

Proposition 3.2. The independent domination polynomial ofZp1p2 is log-concave and it is unimodal if and only if p2−p1 =1.

The next proposition shows that Di(Γ
′(Zp1p2p3), z) is not unimodal.

Proposition 3.3. For n = p1p2p3 with p1 < p3 < p3, the independent domination polynomial of Γ′(Zn) is not unimodal.

Proof. By Theorem 2.1, the independent domination polynomial of Γ′(Zn) is

Di(Γ
′(Zn), z) = zp1p2−p1 + zp1p2−p2 + zp2p3−p2 + zp2p3−p3 + zp1p3−p1 + zp1p3−p3 .

Since the coefficients of the above polynomial are unity, so we are concerned only with the exponents. In order to violate
the unimodal condition, we need to show that there is missing at least one term between any two terms of Di(Γ

′(Zn), z), as
all its exponents are different. Without loss of generality, consider zp2p3−p2 and zp2p3−p3 . If their exponents differ by one,
then we get p3− p2 = 1, which is always true since p1 < p2 < p3. Thus there is at least one term missing between the terms
of Di(Γ

′(Zn), z), which implies that µ(Di(Γ
′(Zn), z)) > 1. Thus, Di(Γ

′(Zn), z) cannot be unimodal.

Remark 3.1. The independent domination polynomial of Γ′(Zn) for n = p1p2p3 with p1 < p3 < p3 cannot be always log-
concave. We can prove it if we show that there is a missing term with its exponent lying between two non-consecutive exponents
ofDi(Γ

′(Zn), z).Consider terms zp2p3−p2 and zp2p3−p3 and suppose that there difference is two. Then p2p3−p2−(zp2p3−p3) = 2

implies that p3 − p2 = 2 and in this case a2p2p3−p2+1 = 0 � 1 = ap2p3−p2ap2p3−p3 . Thus, Γ′(Zn) is not always log-concave. For
G ∼= Γ′(Zn) with n = 2 · 2 · 5, we have Di(G, z) = z3 + z4 + z5 + z8 + z10 + z12, we see that a29 � a8a9 and a211 � a10a12. Also,
note that µ(Di(G, z)) = 3, as there are three increasing oscillations.
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The next result is related to log-concave and unimodal properties of the independent domination polynomial of Γ′(Zp21p2).

Proposition 3.4. The independent domination polynomial ofDi(Γ
′(Zn), z) for n = p21p2 is not unimodal and it is log-concave

if and only if p1 − p2 6= 2.

Proof. From Theorem 2.2, the independent domination polynomial of G ∼= Γ′(Zn) with n = p21p2 and p1 > p2 is

Di(G), z) = zp1p2−p1 + zp1p2−p2 + zp
2
1−1.

Since p1 > p2, so p1p2 − p1 ≤ p1p2 − p2 ≤ p21 − 1. The above polynomial is not unimodal if its oscillations are more than
one. To prove it, we need to show between two of its terms there exists a zero term. Next, if p21 − 1 − (p1p2 − p2) ≥ 2,

then the solutions of this inequality are p1 ≥ 3 and 2 ≤ p2 ≤ p21−3
p1−1 . Since the minimum value of p1 is 3, so this is true and

there always lies a missing term between zp1p2−p2 and zp21−1, which shows that µ(Di(G), z)) ≥ 2 and unimodal property is
violated. For log-concave, we must have p1p2− p2− (p1p2− p1) 6= 2 and p21− 1− (p1p2− p2) 6= 2, since there exists a missing
between two terms with consecutive powers and that contradicts the log-concavity. From this, we obtain p1 − p2 6= 2 and
p1 = 3, p2 = 2 or p1 ≥ 5 and 2 ≤ p2 < p1. The second condition hardly matters as there is always a gap between zp1p2−p2

and zp
2
1−1. Thus, it follows that Di(G), z) is log-concave if p1 − p2 6= 2. Conversely, if p1 > p2 are primes and p1 − p2 = 2,

then there is ap1p2−p1+1 = 0 such that a2p1p2−p1+1 � ap1p2−p1ap1p2−p2 and log-concave property fails.

By Example 2.2, the independent domination polynomial of Γ′(Z48) is 4z15+z16,which is both log-concave and unimodal.
Based on this fact, it remains open to discuss the unimodal and log-concave properties of Γ′(Zn) for n = pn1

1 p2. Also, further
study on the independent domination polynomial of Γ′(Zn) for other general values of n along with their unimodal and log-
concave property (especially, their zeros) can be discussed.

4. Conclusion

The independent domination polynomial of cozero divisor graphs of Zn has been determined for some special values of n.
For general n, it seems to be a hard problem and hence, in the future, it would be interesting to establish more results
related to the independent domination polynomial of Γ′(Zn). By Proposition 3.1, Di(Γ

′(Zp1p2)) has only one real root for
2 < p1 < p2. Hence, it would be interesting to investigate the zeros of Di(Γ

′(Zn), z) and the bounds for these zeros.
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