Research Article

Some necessary conditions for graphs with extremal connected 2-domination number

Piyawat Wongthongcue, Chalermpong Worawannotai*

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand

(Received: 3 December 2023. Received in revised form: 22 February 2024. Accepted: 27 February 2024. Published online: 4 April 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a graph with no multiple edges and loops. A subset S of the vertex set of G is a dominating set of G if every vertex in $V(G) \setminus S$ is adjacent to at least one vertex of S. A connected k-dominating set of G is a subset S of the vertex set V(G) such that every vertex in $V(G) \setminus S$ has at least k neighbors in S and the subgraph G[S] is connected. The domination number of G is the number of vertices in a minimum dominating set of G, denoted by $\gamma(G)$. The connected k-domination number of G, denoted by $\gamma_k^c(G)$, is the minimum cardinality of a connected k-dominating set of G. For k = 1, we simply write $\gamma_c(G)$. It is known that the bounds $\gamma_2^c(G) \ge \gamma(G) + 1$ and $\gamma_2^c(G) \ge \gamma_c(G) + 1$ are sharp. In this research article, we present the necessary condition of the connected graphs G with $\gamma_2^c(G) = \gamma(G) + 1$ and the necessary condition of the connected graphs G with $\gamma_2^c(G) = \gamma(G) + 1$ and the necessary condition of the connected graphs G with $\gamma_2^c(G) = \gamma_c(G) + 1$. Moreover, we present a graph construction that takes in any connected graph with r vertices and gives a graph G with $\gamma_2^c(G) = r, \gamma_c(G) = r - 1$, and $\gamma(G) \in \{r - 1, r - 2\}$.

Keywords: domination; connected domination; k-domination; connected k-domination.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

We refer readers to [3] for notations and graph theory terminology not defined here. In our work, we only consider simple graphs i.e. graphs with no multiple edges and loops. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The *degree* of a vertex v in G, written as $deg_G(v)$, is the number of edges that are incident with v. A vertex v of G is said to be a *leaf* or a *pendant* if $deg_G(v) = 1$. The vertex that is adjacent to a pendant is its *support vertex*. A *universal vertex* in G is a vertex that is adjacent to all other vertices of G. For any vertex $v \in V(G)$, the *open neighborhood* of v in G is the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ and the *closed neighborhood* of v in G is the set $N_G[v] = N_G(v) \cup \{v\}$. A graph H is a *subgraph* of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a subset S of V(G), the *induced subgraph* G[S] is the subgraph of G whose vertex set is S and whose edge set consists of all the edges in E(G) that have both endpoints in S. That is, for any two vertices $u, v \in S, u$ and v are adjacent in G[S] if and only if they are adjacent in G.

A subset S of the vertex set of a graph G is a *dominating set* if every vertex in $V(G) \setminus S$ is adjacent to at least one vertex of S. The *domination number* of G, denoted by $\gamma(G)$, is the number of vertices in a minimum dominating set of G. This definition was introduced by Ore [4] in 1962.

Many variations of domination arise from imposing additional conditions on the dominating set. Here, we are interested in connected domination, *k*-domination, and the combination of these two.

A connected dominating set of a connected graph G is a dominating set S of G such that G[S] is connected. The connected domination number of G, denoted by $\gamma_c(G)$, is the minimum cardinality of a connected dominating set of G. Any connected dominating set of G of cardinality $\gamma_c(G)$ is called a γ_c -set of G. The concept of connected domination in graphs was introduced by Sampathkumar and Walikar [5] in 1979. Since connected dominating sets are dominating sets, $\gamma(G) \leq \gamma_c(G)$ for any connected graph G.

A *k*-dominating set of a graph G is a subset S of the vertex set V(G) such that every vertex in $V(G) \setminus S$ has at least k neighbors in S. The *k*-domination number of G, denoted by $\gamma_k(G)$, is the minimum cardinality of a *k*-dominating set of G. Any *k*-dominating set of G of cardinality $\gamma_k(G)$ is called a γ_k -set of G. The *k*-domination in graphs was introduced by Fink and Jacobson [1] in 1985.

A connected k-dominating set of a connected graph G is a subset S of the vertex set V(G) such that every vertex in $V(G) \setminus S$ has at least k neighbors in S and the subgraph G[S] is connected. The connected k-domination number of G, denoted by $\gamma_k^c(G)$, is the minimum cardinality of a connected k-dominating set of G. Any connected k-dominating set of G of cardinality $\gamma_k^c(G)$ is called a γ_k^c -set of G. In 2009, Volkmann [6] introduced the connected k-domination in graphs.

^{*}Corresponding author (worawannotai_c@silpakorn.edu).

Volkmann [6] characterized connected graphs G with $\gamma_k^c(G) = |V(G)|$. For $\delta(G) \ge k \ge 2$, he also characterized connected graphs G with $\gamma_k^c(G) = |V(G)| - 1$. Moreover, he presented various bounds of $\gamma_k^c(G)$ and proposed some open problems.

The bound $\gamma_k(G) \ge \gamma(G) + k - 2$ for any graph G with $\delta(G) \ge k \ge 2$ was given by Fink and Jacobson in [1]. In 2010, Hansberg [2] presented a bound similar to Fink and Jacobson's for the connected case, that is $\gamma_k^c(G) \ge \gamma_c(G) + k - 2$ where $\delta(G) \ge k \ge 2$. Moreover, she established various sharp bounds on the connected k-domination numbers and the k-domination numbers. For k = 2, Volkmann [6] established the sharp bound $\gamma_2^c(G) \ge \gamma_c(G) + 1$. This implies that $\gamma_2^c(G) \ge \gamma(G) + 1$.

In this article, we study two of the open problems posted by Volkmann [6] in 2009. In particular, we study graphs with the smallest possible connected 2-domination numbers with respect to domination numbers and connected domination numbers. We provide a characterization of the connected graphs G with $\gamma(G) = 1$ and $\gamma_2^c(G) = 2$. Moreover, we present a necessary condition of the connected graphs G with $\gamma_2^c(G) = \gamma(G) + 1$ and a necessary condition of the connected graphs Gwith $\gamma_2^c(G) = \gamma_c(G) + 1$, when $\gamma_2^c(G) \ge 3$. Lastly, we present a graph construction that takes in any connected graph with k vertices and gives a graph G with $\gamma_2^c(G) = k$, $\gamma_c(G) = k - 1$ and $\gamma(G) \in \{k - 1, k - 2\}$.

2. Main results

In this section, we find a necessary condition for a connected graph G to have $\gamma_2^c(G) = \gamma(G) + 1$ and a necessary condition for a connected graph G to have $\gamma_2^c(G) = \gamma_c(G) + 1$. First, we provide a characterization of the connected graphs G with $\gamma(G) = \gamma_c(G) = 1$ and $\gamma_2^c(G) = 2$.

Observation 2.1. Let G be a connected graph with $\gamma_2^c(G) = 2$. Let D be a γ_2^c -set of G. Then each vertex in D is a universal vertex. In particular, $\gamma(G) = \gamma_c(G) = 1$.

Definition 2.1. The join of disjoint graphs G and H, written $G \vee H$, is the graph obtained from the disjoint union of G and H by adding the edges $\{xy : x \in V(G), y \in V(H)\}$.

Theorem 2.1. Let G be a connected graph of order at least 2. Then the following are equivalent.

- (i) $\gamma_2^c(G) = 2$,
- (ii) $G \cong K_2 \lor H$ for some graph H.

Proof. $(i) \Rightarrow (ii)$ Assume that $\gamma_2^c(G) = 2$. Let $\{x, y\}$ be a γ_2^c -set of G. Then x and y are universal vertices of G. Hence, $G = G[\{x, y\}] \lor G[V(G) \setminus \{x, y\}]$. Observe that $G[\{x, y\}] \cong K_2$.

 $(ii) \Rightarrow (i)$ Assume that $G \cong K_2 \lor H$ for some graph H. Then the vertex set of K_2 is a γ_2^c -set of G. Hence, $\gamma_2^c(G) = 2$. \Box

From now on, we only consider connected graphs whose connected 2-domination numbers are at least 3. The following lemma shows the existence of vertices x and y in a γ_2^c -set D of a graph G such that $x, y \in N_G(D \setminus \{x, y\})$. This shows that the coming necessary conditions are not null.

Lemma 2.1. Let G be a connected graph with $\gamma_2^c(G) \ge 3$. Let D be a γ_2^c -set of G. Then there exist distinct vertices $x, y \in D$ such that $x, y \in N_G(D \setminus \{x, y\})$. Moreover, x and y can be chosen so that $G[D \setminus \{x, y\}]$ is connected.

Proof. Since G[D] is connected, there exists a spanning tree T of G[D]. Since T is a tree of order greater than 2, it has at least two leaves. Let x and y be two distinct leaves in T. Then $x, y \in N_G(D \setminus \{x, y\})$ and $G[D \setminus \{x, y\}]$ is connected. \Box

The following result provides a necessary condition of the connected graphs G with $\gamma_2^c(G) = \gamma(G) + 1$.

Theorem 2.2. Let G be a connected graph with $\gamma_2^c(G) \ge 3$ and $\gamma_2^c(G) = \gamma(G) + 1$. Let D be a γ_2^c -set of G. Then $N_G(x) \cap N_G(y) \nsubseteq N_G(D \setminus \{x, y\})$ for every pair of distinct vertices x and y in D such that $x, y \in N_G(D \setminus \{x, y\})$.

Proof. Let x and y be two distinct vertices in D such that $x, y \in N_G(D \setminus \{x, y\})$. Suppose that $N_G(x) \cap N_G(y) \subseteq N_G(D \setminus \{x, y\})$. So, the vertices in $N_G(x) \cap N_G(y)$ are dominated by $D \setminus \{x, y\}$. Since $x, y \in N_G(D \setminus \{x, y\})$, the vertices x and y are also dominated by $D \setminus \{x, y\}$. Let v be a vertex of G not in $D \cup (N_G(x) \cap N_G(y))$. Then v is adjacent to at least one vertex in $D \setminus \{x, y\}$. Therefore, $D \setminus \{x, y\}$ is a dominating set of G of size $|D| - 2 = \gamma(G) - 1$, a contradiction. Consequently, $N_G(x) \cap N_G(y) \notin N_G(D \setminus \{x, y\})$.

Similarly, we obtain a necessary condition of the connected graphs G with $\gamma_2^c(G) = \gamma_c(G) + 1$.

Theorem 2.3. Let G be a connected graph with $\gamma_2^c(G) \ge 3$ and $\gamma_2^c(G) = \gamma_c(G)+1$. Let D be a γ_2^c -set of G. Then $N_G(x) \cap N_G(y) \nsubseteq N_G(D \setminus \{x, y\})$ for every pair of distinct vertices x and y in D such that $x, y \in N_G(D \setminus \{x, y\})$ and $G[D \setminus \{x, y\}]$ is connected.

After obtaining the necessary conditions, we discover that graphs with such conditions have no universal vertices, as shown in the following propositions.

Proposition 2.1. Let G be a connected graph with $\gamma_2^c(G) \ge 3$. For every γ_2^c -set D of G, assume that $N_G(x) \cap N_G(y) \not\subseteq$ $N_G(D \setminus \{x,y\})$ for every pair of distinct vertices x and y in D such that $x,y \in N_G(D \setminus \{x,y\})$. Then G has no universal vertices.

Proof. Let x and y be two distinct vertices in a γ_2^c -set D of G such that $x, y \in N_G(D \setminus \{x, y\})$. So, $N_G(x) \cap N_G(y) \notin$ $N_G(D \setminus \{x, y\})$. Suppose that G has a universal vertex u. There are two possibilities.

- \triangleright Case 1: $u \in D$. Since $N_G(x) \cap N_G(y) \nsubseteq N_G(D \setminus \{x, y\})$, there is a vertex z such that $z \in N_G(x) \cap N_G(y)$, but $z \notin N_G(D \setminus \{x, y\})$. Suppose that $u \in D \setminus \{x, y\}$. Since u is a universal vertex, it is adjacent to z. So, $z \in N_G(D \setminus \{x, y\})$, which is a contradiction. Thus, $u \in \{x, y\}$. Without loss of generality, we assume that u = x. Then x is adjacent to all vertices in $D \setminus \{x, y\}$. Since $|D| \ge 3$, we have $D \setminus \{x, y\} \ne \phi$. Let *w* be a vertex in $D \setminus \{x, y\}$. Since *x* is a universal vertex, the vertices $w, y \in N_G[x] \subseteq N_G(D \setminus \{w, y\})$. By the assumption, $N_G(w) \cap N_G(y) \notin N_G(D \setminus \{w, y\})$. However, $N_G(w) \cap N_G(y) \subseteq N_G[x] \subseteq N_G(D \setminus \{w, y\})$, a contradiction. Therefore, this case cannot happen.
- ▷ **Case 2**: $u \notin D$. Then *u* is adjacent to every vertex in *D*. Since $|D| \ge 3$, the set $D \setminus \{x, y\} \ne \phi$. Let *w* be a neighbor of x in $D \setminus \{x, y\}$. Let $D' = (D \setminus \{w\}) \cup \{u\}$. Since u is a universal vertex, the set D' is a connected 2-dominating set of *G.* Since |D'| = |D|, the set D' is also a γ_2^c -set of *G*. However, $u \in D'$. Just as in Case 1, this cannot happen. From both cases, we conclude that G has no universal vertices.

Proposition 2.2. Let G be a connected graph with $\gamma_2^c(G) \ge 3$. For every γ_2^c -set D of G, assume that $N_G(x) \cap N_G(y) \not\subseteq$ $N_G(D \setminus \{x, y\})$ for every pair of distinct vertices x and y in D such that $x, y \in N_G(D \setminus \{x, y\})$ and $G[D \setminus \{x, y\}]$ is connected. Then G has no universal vertices.

Proof. Similar to the proof of Proposition 2.1.

Next, we use the necessary condition to construct an infinite family of graphs G that satisfy $\gamma_2^c(G) = \gamma_c(G) + 1$. Note that the condition $N_G(x) \cap N_G(y) \notin N_G(D \setminus \{x, y\})$ in Theorems 2.2 and 2.3 implies that $N_G(x) \cap N_G(y)$ must contain a vertex outside of $N_G(D \setminus \{x, y\})$.

Definition 2.2. For a connected graph H of order at least 3, we let g(H) be the connected graph obtained from H by adding new vertices in the following way. For every pair of distinct vertices x and y in V(H) such that $x, y \in N_H(V(H) \setminus \{x, y\})$, we add one new vertex and join it to x and y.

Observation 2.2. For any connected graph H, its vertex set V(H) is a connected 2-dominating set of q(H).

Figure 2.1: Graphs P_4 and $g(P_4)$.

For example, let H be a path P_4 of order 4. The connected graph $G = g(P_4)$ is obtained from P_4 by adding the red vertices, as illustrated in Figure 2.1. Note that $v \notin N_H(V(H) \setminus \{v, w\})$ so no new vertex was created for the pair v, w. In this case, we say v and w do not create a new vertex in $G \setminus H$. Similarly, x and y do not create a new vertex in $G \setminus H$. Also, note that each new vertex has degree 2.

The following lemmas discuss some useful properties of graphs g(H).

Lemma 2.2. Let H be a connected graph of order k where $k \ge 3$ and let G = g(H). The vertices x and y in H do not create a new vertex in $G \setminus H$ if and only if x and y are adjacent and one of the two vertices has degree 1 in H.

Proof. We will prove the forward direction by the contrapositive method. Assume that x and y are not adjacent or both xand y have degree at least 2 in H. Since H is a connected graph, it implies that $x, y \in N_H(V(H) \setminus \{x, y\})$. By construction, *x* and *y* create a new vertex in $G \setminus H$.

Conversely, assume that x and y are adjacent and one of the two vertices has degree 1 in H. Without loss of generality, let $deg_H(x) = 1$. Then $x \notin N_H(V(H) \setminus \{x, y\})$. It follows that x and y do not create a new vertex in $G \setminus H$.

Lemma 2.3. Let *H* be a connected graph of order *k* where $k \ge 3$ and let G = g(H). Then among any three vertices of *H*, there exist two vertices that create a new vertex in $G \setminus H$.

Proof. Let $x, y, z \in V(H)$. Suppose there are no pairs of vertices among x, y and z that create a new vertex in $G \setminus H$. By Lemma 2.2 and since x and y do not create a new vertex in $G \setminus H$, the vertices x and y are adjacent and one of the two vertices has degree 1 in H, say y. Similarly, since x and z do not create a new vertex in $G \setminus H$, the vertices x and z are adjacent and z has degree 1 in H. Note that y and z are not adjacent in H. By Lemma 2.2, the vertices y and z create a new vertex in $G \setminus H$, a contradiction. Hence, there exist two vertices among x, y and z that create a new vertex in $G \setminus H$.

Lemma 2.4. Let *H* be a connected graph of order *k* where $k \ge 3$ and let *l* be the number of pendants in *H*. Then

$$|V(g(H))| = k + \binom{k}{2} - l$$

Proof. Let G = g(H). If every pair of vertices in H creates a new vertex in $G \setminus H$, then the number of new vertices in G is $\binom{k}{2}$. By Lemma 2.2, the number of new vertices in G is $\binom{k}{2} - l$. By Definition 2.2, $|V(G)| = |V(H)| + \binom{k}{2} - l$.

We proceed to find the connected 2-domination numbers of the graphs g(H). We begin by proving two useful lemmas.

Lemma 2.5. Let H be a connected graph of order k where $k \ge 3$. Let D be a connected 2-dominating set of g(H). If $V(H) \setminus D$ contains a vertex u that does not create new vertices with any vertices in $D \cap V(H)$, then $D \cap V(H)$ is an independent set and u is adjacent to every vertex in $D \cap V(H)$.

Proof. Assume that $V(H) \setminus D$ contains a vertex u that does not create new vertices with any vertices in $D \cap V(H)$. By Lemma 2.2, each vertex in $D \cap V(H)$ is adjacent to the vertex u. If $|D \cap V(H)| = 1$, then we are done. Otherwise, we have $deg_H(u) \ge 2$ so each vertex in $D \cap V(H)$ has degree 1 in H. Hence, $D \cap V(H)$ is an independent set.

Lemma 2.6. Let *H* be a connected graph of order 3 and let G = g(H). Suppose that *D* is a connected 2-dominating set of *G* of size 2 such that $D \notin V(H)$. If there exist two vertices in $V(H) \setminus D$ that do not create a new vertex in *G*, then $|D \cap V(H)| = 1$.

Proof. Let $V(H) = \{x, y, z\}$. Assume that $x, y \in V(H) \setminus D$ and they do not create a new vertex in *G*. By Lemma 2.2, *x* and *y* are adjacent and one of the two has degree 1 in *H*, say *y*. Then *y* and *z* create a new vertex *v* in $G \setminus H$. Next, we will show that $v \in D$. Suppose that $v \notin D$. Since *D* is a 2-dominating set and *v* is only adjacent to *z* and *y*, we have $y, z \in D$. This is a contradiction to $y \in V(H) \setminus D$. It follows that $v \in D$. Suppose that $D \cap V(H) = \phi$. Since |D| = 2, there exists a vertex $w \in D \setminus \{v\}$. Since $N_G(v) = \{y, z\}$, the vertex *w* is not adjacent to *v*. This is a contradiction to G[D] being a connected graph. Hence, $|D \cap V(H)| = 1$.

Theorem 2.4. Let H be a connected graph of order k where $k \ge 3$ and let G = g(H). Then V(H) is a γ_2^c -set of G. In particular, $\gamma_2^c(G) = k$.

Proof. By construction, V(H) is a connected 2-dominating set of G of size k. Suppose that there exists a connected 2-dominating set D of G of size $k-1 \ge 2$. Suppose that $D \subseteq V(H)$. Let u be the single vertex in $V(H) \setminus D$. If u does not create new vertices with any vertices in D, then by Lemma 2.5, the set D is independent. This contradicts G[D] being a connected graph. Consequently, u creates a new vertex $v \in G \setminus H$ with some vertex w in D. Since $u \notin D$ and $N_G(v) = \{u, w\}$, it follows that D is not a 2-dominating set of G, a contradiction. Hence, $D \nsubseteq V(H)$. Then there is at least one vertex in D that does not belong to V(H). So, $|D \cap V(H)| \le k-2$. It implies that there exist at least two vertices x and y in $V(H) \setminus D$. There are two possibilities.

- ▷ **Case 1**: *x* and *y* create a new vertex *z* in $G \setminus H$. Suppose that $z \in D$. Since $N_G(z) = \{x, y\}$, the graph G[D] is disconnected, a contradiction. Thus, $z \notin D$. Then the new vertex *z* is not dominated by *D*. This is a contradiction to *D* being a 2-dominating set of *G*.
- ▷ **Case 2**: *x* and *y* do not create a new vertex in $G \setminus H$. By Lemma 2.2, the two vertices are adjacent and one of the two has degree 1 in *H*, say *y*. Note that $|V(H) \setminus \{x, y\}| = |V(H)| 2 = k 2$. Let $V(H) \setminus \{x, y\} = \{u_1, u_2, \dots, u_{k-2}\}$. Since *H* is a connected graph and *y* is adjacent to *x* in $V(H) \setminus D$, for each $i \in \{1, \dots, k-2\}$, we have that $u_i, y \in N_H(V(H) \setminus \{u_i, y\})$ so u_i and *y* create a new vertex v_i in $G \setminus H$. Let $S = \{v_1, v_2, \dots, v_{k-2}\}$. Next, we will show that $S \subseteq D$. Suppose that there exists an $i \in \{1, \dots, k-2\}$ such that $v_i \notin D$. Since *D* is a 2-dominating set and $N_G(v_i) = \{u_i, y\}$, the vertices u_i and *y* are in *D*. This is a contradiction to $y \in V(H) \setminus D$. It implies that $v_i \in D$ for all $i \in \{1, \dots, k-2\}$. So, $S \subseteq D$.

If k = 3, then |S| = 1 and |D| = 2. Thus, $S = \{v_1\}$. By Lemma 2.6, $|D \cap V(H)| = 1$. Since $V(H) = \{x, y, u_1\}$ and $x, y \notin D$, we have $D \cap V(H) = \{u_1\}$. Since $S \subseteq D$, the vertex v_1 belongs to $D \setminus V(H)$. Thus, $D = \{u_1, v_1\}$. Since y is a pendant with x as its support, y is not adjacent to u_1 . It follows that D is not a 2-dominating set of G, a contradiction. Thus, $k \neq 3$.

Now, suppose $k \ge 4$ so there exist at least 2 vertices in *S*. By construction, *S* is an independent set. Since each vertex v_i in *S* is created by joining it to *y* and $u_i \in V(H) \setminus \{x, y\}$, the vertices in *S* have only one common neighbor, namely *y*. But *y* is not in *D*. Since $S \subseteq D$ and $|D \setminus S| = 1$, the induced subgraph G[D] is disconnected, a contradiction.

We conclude from the above two cases that a connected 2-dominating set of *G* has at least *k* members. Therefore, V(H) is a γ_2^c -set of *G* and $\gamma_2^c(G) = k$.

Theorem 2.5. Let *H* be a connected graph of order $k \ge 3$ not isomorphic to a path on 3 vertices and let G = g(H). Then V(H) is the unique γ_2^c -set of *G*.

Proof. By Theorem 2.4, we have that V(H) is a γ_2^c -set of G. If k = 3, then H is a cycle on 3 vertices and it is easy to check that V(H) is the only γ_2^c -set of G. It remains to consider $k \ge 4$. Suppose that there exists a γ_2^c -set D of G such that $D \ne V(H)$. So, |D| = |V(H)| and $|V(H) \setminus D| = |D \setminus V(H)|$. Consider the following 3 cases.

- ▷ **Case 1**: $|V(H) \setminus D| = |D \setminus V(H)| = 1$. Let *u* be the unique vertex in $V(H) \setminus D$. Suppose that *u* does not create new vertices with any vertices in $D \cap V(H)$. By Lemma 2.5, the set $D \cap V(H)$ is independent and *u* is adjacent to every vertex in $D \cap V(H)$. Since $D \cap V(H)$ is an independent set of size at least 3 and the unique vertex in $D \setminus V(H)$ has degree 2, the graph G[D] is disconnected, a contradiction. Therefore, *u* creates new vertices with some vertices in $D \cap V(H)$. Suppose *u* creates exactly one new vertex. Let *a* be the vertex in $D \cap V(H)$ that creates the new vertex with *u*. Since $k \ge 4$ and $|V(H) \setminus D| = 1$, we have $|(D \cap V(H)) \setminus \{a\}| \ge 2$. By Lemma 2.2, every vertex in $(D \cap V(H)) \setminus \{a\}$ is adjacent to *u* and has degree 1 in *H*. Then *a* is not adjacent to any vertex in $(D \cap V(H)) \setminus \{a\}$. Thus, $N_H(a) \subseteq \{u\}$. By this and Lemma 2.2, the vertices *u* and *a* are not adjacent. Therefore, *a* is not adjacent to any vertices in $V(H) \setminus \{a\}$. Consequently, *H* is disconnected, a contradiction. Thus, *u* creates at least two new vertices with some vertices in $D \cap V(H)$. Since $|D \setminus V(H)| = 1$, at least one of the new vertices above is not in *D* and is not 2-dominated by *D*, a contradiction.
- ▷ **Case 2**: $|V(H) \setminus D| = |D \setminus V(H)| = 2$. Let $V(H) \setminus D = \{x, y\}$. Suppose that x and y create a new vertex z in $G \setminus H$. Suppose that $z \in D$. Since $deg_G(z) = 2$, the graph G[D] is disconnected, a contradiction. So, $z \notin D$. Thus, D is not a dominating set of G, a contradiction. Therefore, x and y do not create a new vertex in $G \setminus H$. By Lemma 2.2, the vertices x and y are adjacent and one of the two has degree 1 in H, say y.

Now, suppose x does not create new vertices with any vertices in $D \cap V(H)$. By Lemma 2.5, the set $D \cap V(H)$ is independent and x is adjacent to every vertex in $D \cap V(H)$. Since $D \cap V(H)$ is an independent set of size at least 2, the graph H is a star with at least 3 pendants. By Lemma 2.3, there exist at least $|D \cap V(H)|$ new vertices in G that are created by joining them to y and $D \cap V(H)$. If $|D \cap V(H)| > 2$, then at least one of the new vertices above is not in D and so it is not 2-dominated by D, a contradiction. Thus, $|D \cap V(H)| = 2$ and H is a star of order 4. By Lemma 2.4, the number of new vertices in g(H) is three. Suppose that two new vertices in g(H) that are created by joining them to y and $D \cap V(H)$ belong to $D \setminus V(H)$. Since both of the two new vertices have degree two and $D \cap V(H)$ is an independent set, the graph G[D] is disconnected, a contradiction. Hence, at least one of the two new vertices in g(H) that is created by joining them to y and $D \cap V(H)$ does not belong to D, and so it is not 2-dominated by D, a contradiction. Therefore, x creates new vertices with some vertices in $D \cap V(H)$.

Since y is a pendant with x as its support, by Lemma 2.6 the vertex y creates a new vertex with each vertex in $D \cap V(H)$. It follows that there exist at least $|D \cap V(H)| + 1 \ge 3$ new vertices in G that are adjacent to x or y. Since $|D \setminus V(H)| = 2$, at least one of the new vertices above is not in D and is not 2-dominated by D, a contradiction.

▷ **Case 3:** $|V(H) \setminus D| \ge 3$. Let $x, y, z \in V(H) \setminus D$. By Lemma 2.3, there exist two vertices in $\{x, y, z\}$ that create a new vertex in *G*. Without loss of generality, let *x* and *y* create a new vertex *v* in *G* \ *H*. Suppose that $v \in D$. Since $deg_G(v) = 2$, the graph G[D] is disconnected, a contradiction. So, $v \notin D$. Thus, *D* is not a dominating set of *G*, a contradiction.

From the above three cases, we conclude that V(H) is the unique γ_2^c -set of G.

Next, we find the connected domination numbers of the graphs g(H) and show how they relate to the connected 2-domination numbers.

Theorem 2.6. Let H be a connected graph of order k where $k \ge 3$ and let G = g(H). Then $\gamma_c(G) = k - 1$.

Proof. Let *S* be a subset of V(H) such that |S| = k - 1 and G[S] is connected. Since V(H) is a 2-dominating set of *G*, the set *S* is a connected dominating set of *G*. Thus, $\gamma_c(G) \leq k - 1$. Suppose that there exists a connected dominating set *D* of *G* of size k - 2. Suppose that $D \subseteq V(H)$. Then there exist $u, v \in V(H) \setminus D$. We consider the vertices *u* and *v* in $V(H) \setminus D$ in two cases.

- \triangleright **Case 1**: *u* and *v* create a new vertex in $G \setminus H$. Then the new vertex is not dominated by *D*. This is a contradiction to *D* being a dominating set.
- \triangleright **Case 2**: *u* and *v* do not create a new vertex in $G \setminus H$. By Lemma 2.2, *u* and *v* are adjacent and one of the two has degree 1 in V(H), say *v*. Then *v* is not dominated by *D*, a contradiction.

From the above two cases, we conclude that $D \notin V(H)$. Then at least one vertex in D does not belong to V(H). So, $|D \cap V(H)| \leq k-3$. It implies that there exist at least 3 vertices in $V(H) \setminus D$. Let $x, y, z \in V(H) \setminus D$. By Lemma 2.3, there exist two vertices in $V(H) \setminus D$ that create a new vertex in $G \setminus H$. Without loss of generality, let x and y create a new vertex t in $G \setminus H$. Suppose that $t \in D$. Since $N_G(t) = \{x, y\}$, we have that $t \notin N_G(D)$, a contradiction. So, $t \notin D$. It follows that the new vertex t in G is not dominated by D, a contradiction. Hence, a connected dominating set of G has at least k-1 members. Therefore, $\gamma_c(G) = k - 1$.

Corollary 2.1. Let H be a connected graph of order k where $k \ge 3$ and let G = g(H). Then $\gamma_2^c(G) = \gamma_c(G) + 1$.

Now, we show that for any connected graph H of order at least 3, the graph g(H) satisfies either $\gamma_2^c(g(H)) = \gamma(g(H)) + 1$ or $\gamma_2^c(g(H)) = \gamma(g(H)) + 2$.

Theorem 2.7. Let H be a connected graph of order 3 and let G = g(H). Then $\gamma(G) = 2$.

Proof. Since *H* is a connected graph of order 3, it follows that *H* is either a path P_3 or a cycle C_3 of order 3. Since $g(P_3)$ is a cycle of order 4, it implies that $\gamma(g(P_3)) = 2$. Next, we show that $\gamma(g(C_3)) = 2$. By Lemma 2.4, we have that $|V(g(C_3))| = 6$. Since the maximum degree of $g(C_3)$ equals 4, no single vertex in $g(C_3)$ can dominate all vertices in $g(C_3)$. Thus, $\gamma(g(C_3)) \ge 2$. Clearly, any two vertices in $V(C_3)$ form a dominating set of $g(C_3)$. Hence, $\gamma(g(C_3)) \le 2$. Therefore, $\gamma(g(C_3)) = 2$.

Lemma 2.7. Let H be a connected graph of order k where $k \ge 4$ and let G = g(H). Then $\gamma(G) \ge k - 2$.

Proof. Let $V(H) = \{v_1, v_2, v_3, \dots, v_k\}$. Let $X = V(G) \setminus V(H)$. Then X consists of the new vertices. Suppose there exists $D \subseteq V(G)$ such that |D| = k - 3 and D dominates X. If D contains a new vertex x in X, then x was created by some vertices u and v in H. Since $N_G[x] \cap X \subseteq N_G[u] \cap X$, we can use the vertex u in H to dominate new vertices in X instead of the vertex x. Hence, it is sufficient to consider that the vertices in D are from V(H). Without loss of generality, let $D = \{v_1, v_2, v_3, \dots, v_{k-3}\}$. We divide the argument into two cases according to the number of pendants in $\{v_{k-2}, v_{k-1}, v_k\}$.

- \triangleright **Case 1**: { v_{k-2}, v_{k-1}, v_k } contains at most one pendant. Without loss of generality, assume v_{k-1} and v_k are not pendants. By Lemma 2.2, v_{k-1} and v_k create a new vertex in $G \setminus H$ which is not dominated by D, a contradiction.
- \triangleright **Case 2**: { v_{k-2}, v_{k-1}, v_k } contains at least two pendants. Without loss of generality, assume v_{k-1} and v_k are the two pendants. By Lemma 2.2, v_{k-1} and v_k create a new vertex in $G \setminus H$ which is not dominated by D, a contradiction.

We conclude from the above two cases that at least k-2 vertices are required to dominate X. Thus, $\gamma(G) \ge k-2$. \Box

Theorem 2.8. Let *H* be a connected graph of order *k* where $k \ge 4$ and let G = g(H). If *H* contains two pendants that share a support vertex in *H*, then $\gamma(G) = k - 2$.

Proof. Let $V(H) = \{v_1, v_2, v_3, \ldots, v_k\}$. Assume that H contains 2 pendants that share a support vertex in H. For $i \neq j$, when v_i and v_j create a new vertex in $G \setminus H$, we let v_{ij} denote the new vertex. Since $|V(H)| = k \ge 4$, no two pendants are adjacent. Without loss of generality, let v_{k-1} and v_k be two pendants of H with the common support vertex v_{k-2} . Let $D = \{v_1, v_2, v_3, \ldots, v_{k-3}\} \cup \{v_{k-1,k}\}$. By Lemma 2.2, v_{k-2} does not create a new vertex with either v_{k-1} or v_k . Since H is connected, the vertex v_{k-2} is adjacent to some vertex in $\{v_1, v_2, \ldots, v_{k-3}\}$. By construction, all vertices in G except v_{k-1}, v_k and $v_{k-1,k}$ are dominated by $\{v_1, v_2, v_3, \ldots, v_{k-3}\}$ but v_{k-1}, v_k and $v_{k-1,k}$ are dominated by $v_{k-1,k}$. Hence, D dominates all vertices in G. Since |D| = k - 2, we have that $\gamma(G) \le k - 2$. By Lemma 2.7, we have $\gamma(G) = k - 2$.

Theorem 2.9. Let *H* be a connected graph of order *k* such that $k \ge 4$ and no two pendants share a support vertex. Let G = g(H). Then $\gamma(G) = k - 1$.

Proof. Let $V(H) = \{v_1, v_2, v_3, \dots, v_k\}$. Let $X = V(G) \setminus V(H)$. For $i \neq j$, when v_i and v_j create a new vertex in $G \setminus H$, we let v_{ij} denote the new vertex. Suppose there exists $D \subseteq V(G)$ such that |D| = k - 2 and D dominates X. Similar to the proof of Theorem 2.7, we can assume that $D \subseteq V(H)$ and let $D = \{v_1, v_2, v_3, \dots, v_{k-2}\}$. Let α be the number of vertices in X that are dominated by D. Let l be the number of pendants in H. By Lemma 2.4, we have

$$\alpha = |X| = \binom{k}{2} - l.$$

We will also compute α by counting the number of additional vertices that are dominated by each v_i for $1 \le i \le k-2$. By Lemma 2.2, for each $v \in D$, if v is a pendant or a support of a pendant, then v is adjacent to k-2 vertices in X; otherwise, v is adjacent to k-1 vertices in X.

First, suppose that both v_{k-1} and v_k are not pendants in *H*. Then all *l* pendants are in *D*, so

$$\alpha = (k-1) + (k-2) + \dots + 2 - l = \binom{k}{2} - 1 - l$$

Thus, $\alpha < |X|$, which is a contradiction.

Suppose that both v_{k-1} and v_k are pendants in H. Then the support vertices of v_{k-1} and v_k are distinct and are in D. It implies that $\alpha = (k-1) + (k-2) + \cdots + 2 - l = \binom{k}{2} - 1 - l$. Thus, $\alpha < |X|$, a contradiction.

Therefore, exactly one vertex in $\{v_{k-1}, v_k\}$ is a pendant in H. Then D contains l-1 pendants. Without loss of generality, let v_k be a pendant. First, suppose that the support vertex of v_k is in D. It follows that $\alpha = (k-1) + (k-2) + \cdots + 2 - l = \binom{k}{2} - 1 - l$. Thus, $\alpha < |X|$, a contradiction. Thus, the support vertex of v_k is not in D, i.e. v_{k-1} is the support vertex of v_k . Then

$$\alpha = (k-1) + (k-2) + \dots + 2 - (l-1) = \binom{k}{2} - l$$

It follows that we need at least k - 2 vertices to dominate every vertex in X. Each vertex v_i in D dominates at least 2 additional vertices $v_{i,k-1}$ and v_{ik} . Each vertex v_{ij} in X can only dominate one vertex (itself) in X. So, to use exactly k - 2vertices to dominate X, we cannot use any vertex from X. Since the pendant v_k and its support vertex v_{k-1} are not in D, the vertex v_k is not dominated by D. Thus, we must use one more vertex to dominate v_k . Then a dominating set of G has at least k - 1 members. So, $\gamma(G) \ge k - 1$.

Let $D' = \{v_1, v_2, v_3, \dots, v_{k-1}\}$. Clearly, D' dominate all vertices in G. Since |D'| = k - 1, we have that $\gamma(G) \leq k - 1$. Therefore, $\gamma(G) = k - 1$.

Figure 2.2: Graphs S_5 and $g(S_5)$.

Remark 2.1. Theorems 2.4 and 2.8 imply that our necessary condition for graphs G with $\gamma_2^c(G) = \gamma(G) + 1$ is not a sufficient condition.

Lastly, we apply Theorems 2.4, 2.6, 2.7, 2.8, and 2.9 to stars, paths, and cycles. We let S_k , P_k and C_k denote a star, a path and a cycle of order k, respectively.

Corollary 2.2. For $k \ge 4$, let $G = g(S_k)$. Then $\gamma_2^c(G) = k$, $\gamma_c(G) = k - 1$ and $\gamma(G) = k - 2$. **Corollary 2.3.** For $k \ge 3$, let $G = g(P_k)$. Then $\gamma_2^c(G) = k$, $\gamma_c(G) = k - 1$ and $\gamma(G) = k - 1$. **Corollary 2.4.** For $k \ge 3$, let $G = g(C_k)$. Then $\gamma_2^c(G) = k$, $\gamma_c(G) = k - 1$ and $\gamma(G) = k - 1$.

Acknowledgment

This work was supported in part by the Development and Promotion of Science and Technology Talents Project (DPST).

References

- J. F. Fink, M. S. Jacobson, n-Domination in graphs, In: Y. Alavi, G. Chartrand, D. R. Lick, C. E. Wall, L. M. Lesniak (Eds.), Graph Theory with Applications to Algorithms and Computer Science, John Wiley & Sons, New York, 1985, 283–300.
- [2] A. Hansberg, Bounds on the connected k-domination number in graphs, Discrete Appl. Math. 158 (2010) 1506–1510.
- [3] T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [4] O. Ore, *Theory of Graphs*, American Mathematical Society, Providence, 1962.
- [5] E. Sampathkumar, H. B. Walikar, The connected domination number of a graph, J. Math. Phy. Sci. 13 (1979) 607–613.
- [6] L. Volkmann, Connected *p*-domination in graphs, Util. Math. 79 (2009) 81–90.