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Abstract

Let G be a graph with no multiple edges and loops. A subset S of the vertex set of G is a dominating set of G if every vertex
in V(G)\ S is adjacent to at least one vertex of S. A connected k-dominating set of G is a subset S of the vertex set V(&) such
that every vertex in V(G) \ S has at least k neighbors in S and the subgraph G[S] is connected. The domination number of
G is the number of vertices in a minimum dominating set of G, denoted by +(G). The connected k-domination number of
G, denoted by i (G), is the minimum cardinality of a connected k-dominating set of G. For k = 1, we simply write v.(G).
It is known that the bounds 5(G) > v(G) + 1 and v5(G) > 7.(G) + 1 are sharp. In this research article, we present the
necessary condition of the connected graphs G with 75(G) = v(G) + 1 and the necessary condition of the connected graphs
G with 7v5(G) = 7.(G) + 1. Moreover, we present a graph construction that takes in any connected graph with r vertices and
gives a graph G with v5(G) =7, 7.(G) =r — 1, and v(G) € {r — 1,r — 2}.
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1. Introduction

We refer readers to [3] for notations and graph theory terminology not defined here. In our work, we only consider simple
graphs i.e. graphs with no multiple edges and loops. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set
E(G). The degree of a vertex v in G, written as degs(v), is the number of edges that are incident with v. A vertex v of G
is said to be a leaf or a pendant if degs(v) = 1. The vertex that is adjacent to a pendant is its support vertex. A universal
vertex in G is a vertex that is adjacent to all other vertices of G. For any vertex v € V(G), the open neighborhood of v in G
is the set Ng(v) = {u € V(G) : uwv € E(G)} and the closed neighborhood of v in G is the set N¢g[v] = Ng(v)U{v}. A graph H
is a subgraph of Gif V(H) C V(G) and E(H) C E(G). For a subset S of V(G), the induced subgraph G[S] is the subgraph
of G whose vertex set is S and whose edge set consists of all the edges in F(G) that have both endpoints in S. That is, for
any two vertices u,v € S, v and v are adjacent in G[S] if and only if they are adjacent in G.

A subset S of the vertex set of a graph G is a dominating set if every vertex in V(G) \ S is adjacent to at least one vertex
of S. The domination number of G, denoted by v(G), is the number of vertices in a minimum dominating set of G. This
definition was introduced by Ore [4] in 1962.

Many variations of domination arise from imposing additional conditions on the dominating set. Here, we are interested
in connected domination, k-domination, and the combination of these two.

A connected dominating set of a connected graph G is a dominating set S of G such that G[S] is connected. The connected
domination number of G, denoted by 7.(G), is the minimum cardinality of a connected dominating set of G. Any connected
dominating set of G of cardinality +.(G) is called a ~.-set of G. The concept of connected domination in graphs was intro-
duced by Sampathkumar and Walikar [5] in 1979. Since connected dominating sets are dominating sets, 7(G) < v.(G) for
any connected graph G.

A k-dominating set of a graph G is a subset S of the vertex set V(G) such that every vertex in V(G) \ S has at least &k
neighbors in S. The k-domination number of G, denoted by v, (G), is the minimum cardinality of a k-dominating set of G.
Any k-dominating set of G of cardinality v, (G) is called a v;-set of G. The k-domination in graphs was introduced by Fink
and Jacobson [1] in 1985.

A connected k-dominating set of a connected graph G is a subset S of the vertex set V(G) such that every vertex in
V(G) \ S has at least k neighbors in S and the subgraph G[S] is connected. The connected k-domination number of G,
denoted by v;(G), is the minimum cardinality of a connected k-dominating set of G. Any connected k-dominating set of
G of cardinality v;(G) is called a ~¢-set of G. In 2009, Volkmann [6] introduced the connected k-domination in graphs.
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Volkmann [6] characterized connected graphs G with v{(G) = |V(G)|. For §(G) > k > 2, he also characterized connected
graphs G with v{(G) = |V (G)| — 1. Moreover, he presented various bounds of 5 (G) and proposed some open problems.

The bound v4(G) > v(G) + k — 2 for any graph G with §(G) > k > 2 was given by Fink and Jacobson in [1]. In 2010,
Hansberg [2] presented a bound similar to Fink and Jacobson’s for the connected case, that is v¢(G) > 7.(G) + k — 2
where §(G) > k > 2. Moreover, she established various sharp bounds on the connected k-domination numbers and the
k-domination numbers. For k¥ = 2, Volkmann [6] established the sharp bound ~5(G) > ~.(G) + 1. This implies that
75(G) 2 7(G) + 1.

In this article, we study two of the open problems posted by Volkmann [6] in 2009. In particular, we study graphs with
the smallest possible connected 2-domination numbers with respect to domination numbers and connected domination
numbers. We provide a characterization of the connected graphs G with v(G) = 1 and +5(G) = 2. Moreover, we present a
necessary condition of the connected graphs G with v§(G) = v(G) 4+ 1 and a necessary condition of the connected graphs G
with 75(G) = v.(G) + 1, when v5(G) > 3. Lastly, we present a graph construction that takes in any connected graph with
k vertices and gives a graph G with 75(G) =k, 7.(G) =k — 1 and v(G) € {k — 1,k — 2}.

2. Main results

In this section, we find a necessary condition for a connected graph G to have 75(G) = v(G) + 1 and a necessary condition
for a connected graph G to have v5(G) = 7.(G) + 1. First, we provide a characterization of the connected graphs G with
(G) = 7(G) = 1 and 15(G) = 2.

Observation 2.1. Let G be a connected graph with v5(G) = 2. Let D be a ~5-set of G. Then each vertex in D is a universal
vertex. In particular, v(G) = 7.(G) = 1.

Definition 2.1. The join of disjoint graphs G and H, written GV H, is the graph obtained from the disjoint union of G and
H by adding the edges {zy: x € V(G),y € V(H)}

Theorem 2.1. Let G be a connected graph of order at least 2. Then the following are equivalent.
@) 13(G) =2,
(ii) G = K5 Vv H for some graph H.
Proof. (i) = (i) Assume that v5(G) = 2. Let {z,y} be a 75-set of G. Then z and y are universal vertices of G. Hence,

G = G[{z,y}] VGIV(G) \ {z,y}]. Observe that G[{z,y}] = K>.
(i) = (i) Assume that G = K, V H for some graph H. Then the vertex set of K5 is a 75-set of G. Hence, 45(G) =2. O

From now on, we only consider connected graphs whose connected 2-domination numbers are at least 3. The following
lemma shows the existence of vertices « and y in a 75-set D of a graph G such that x,y € Ng(D \ {z,y}). This shows that
the coming necessary conditions are not null.

Lemma 2.1. Let G be a connected graph with v5(G) > 3. Let D be a ~5-set of G. Then there exist distinct vertices x,y € D
such that x,y € Ng(D \ {z,y}). Moreover, x and y can be chosen so that G[D \ {z,y}] is connected.

Proof. Since G[D] is connected, there exists a spanning tree T' of G[D]. Since T is a tree of order greater than 2, it has at
least two leaves. Let x and y be two distinct leaves in 7. Then z,y € Ng(D \ {z,y}) and G[D \ {x,y}] is connected. O

The following result provides a necessary condition of the connected graphs G with v§(G) = v(G) + 1.

Theorem 2.2. Let G be a connected graph with v5(G) > 3and v5(G) = v(G)+1. Let D be a v5-set of G. Then N¢(x)NNe(y) €
Ng(D\ {z,y}) for every pair of distinct vertices x and y in D such that x,y € Ng(D \ {z,y}).

Proof. Let © and y be two distinct vertices in D such that z,y € Ng(D\{z,y}). Suppose that N (2)NNg(y) C No(D\{z,y}).
So, the vertices in Ng(2z) N Ng(y) are dominated by D \ {z,y}. Since x,y € Ng(D \ {z,y}), the vertices x and y are also
dominated by D \ {z,y}. Let v be a vertex of G not in D U (Ng(z) N Ng(y)). Then v is adjacent to at least one vertex
in D\ {z,y}. Therefore, D \ {z,y} is a dominating set of G of size |D| — 2 = 7(G) — 1, a contradiction. Consequently,

Na(z) N Ne(y) € Na(D\ {z,y}). O

Similarly, we obtain a necessary condition of the connected graphs G with v5(G) = v.(G) + 1.

Theorem 2.3. Let G be a connected graph with v5(G) > 3and v5(G) = 7.(G)+1. Let D be a v5-set of G. Then Ng(x)NNa(y) €
Ng (D \ {z,y}) for every pair of distinct vertices x and y in D such that x,y € Ng(D \ {z,y}) and G[D \ {z, y}] is connected.
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After obtaining the necessary conditions, we discover that graphs with such conditions have no universal vertices, as
shown in the following propositions.

Proposition 2.1. Let G be a connected graph with v5(G) > 3. For every ~5-set D of G, assume that Ng(z) N Na(y) €
Ng(D \ {z,y}) for every pair of distinct vertices x and y in D such that x,y € Ng(D \ {z,y}). Then G has no universal

vertices.

Proof. Let = and y be two distinct vertices in a v5-set D of G such that z,y € Ng(D \ {z,y}). So, Ng(z) N Na(y) €
Ng(D\ {z,y}). Suppose that G has a universal vertex u. There are two possibilities.
> Case 1: u € D. Since Ng(z) N Ng(y) € Na(D \ {z,y}), there is a vertex z such that z € Ng(z) N Ng(y), but
z & Ng(D\{z,y}). Suppose that u € D\ {z, y}. Since u is a universal vertex, it is adjacent to z. So, z € Ng(D\ {z,y}),
which is a contradiction. Thus, v € {z,y}. Without loss of generality, we assume that v = z. Then z is adjacent to
all vertices in D \ {x,y}. Since |D| > 3, we have D \ {z,y} # ¢. Let w be a vertex in D \ {x,y}. Since z is a universal
vertex, the vertices w,y € Ng[z] C Ng(D \ {w,y}). By the assumption, Ng(w) N Ng(y) € Na(D \ {w,y}). However,
Ng(w) N Ng(y) € Nglz] € Ng(D \ {w,y}), a contradiction. Therefore, this case cannot happen.
> Case 2: v ¢ D. Then u is adjacent to every vertex in D. Since |D| > 3, the set D \ {z,y} # ¢. Let w be a neighbor of
zin D\ {z,y}. Let D" = (D \ {w}) U {u}. Since u is a universal vertex, the set D’ is a connected 2-dominating set of
G. Since |D'| = |D|, the set D’ is also a v5-set of G. However, u € D'. Just as in Case 1, this cannot happen.
From both cases, we conclude that G has no universal vertices. O

Proposition 2.2. Let G be a connected graph with v5(G) > 3. For every ~5-set D of G, assume that N¢(x) N Na(y) €
Ng(D\ {z,y}) for every pair of distinct vertices x and y in D such that x,y € Ng(D \ {z,y}) and G[D \ {z, y}] is connected.
Then G has no universal vertices.

Proof. Similar to the proof of Proposition 2.1. O

Next, we use the necessary condition to construct an infinite family of graphs G that satisfy v5(G) = ~.(G) + 1. Note
that the condition Ng(z) N Ne(y) € Ne(D \ {z,y}) in Theorems 2.2 and 2.3 implies that Ng(z) N Ng(y) must contain a
vertex outside of Ng (D \ {z, y}).

Definition 2.2. For a connected graph H of order at least 3, we let g(H) be the connected graph obtained from H by adding
new vertices in the following way. For every pair of distinct vertices x and y in V(H) such that ©,y € Ny (V(H) \ {z,y}), we
add one new vertex and join it to x and y.

Observation 2.2. For any connected graph H, its vertex set V(H) is a connected 2-dominating set of g(H ).
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Figure 2.1: Graphs P, and g(P,).

For example, let H be a path P, of order 4. The connected graph G = ¢(P,) is obtained from P, by adding the red
vertices, as illustrated in Figure 2.1. Note that v ¢ Ny(V(H) \ {v,w}) so no new vertex was created for the pair v, w. In
this case, we say v and w do not create a new vertex in G \ H. Similarly, z and y do not create a new vertex in G \ H. Also,
note that each new vertex has degree 2.

The following lemmas discuss some useful properties of graphs g(H).

Lemma 2.2, Let H be a connected graph of order k where k > 3 and let G = g(H). The vertices x and y in H do not create
a new vertex in G \ H if and only if x and y are adjacent and one of the two vertices has degree 1 in H.

Proof. We will prove the forward direction by the contrapositive method. Assume that z and y are not adjacent or both x
and y have degree at least 2 in H. Since H is a connected graph, it implies that z,y € Ng(V(H) \ {z,y}). By construction,
x and y create a new vertex in G \ H.

Conversely, assume that « and y are adjacent and one of the two vertices has degree 1 in H. Without loss of generality,
let degp(z) = 1. Then = ¢ Ng(V(H) \ {z,y}). It follows that = and y do not create a new vertex in G \ H. O
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Lemma 2.3. Let H be a connected graph of order k where k > 3 and let G = g(H). Then among any three vertices of H,
there exist two vertices that create a new vertex in G \ H.

Proof. Let z,y,z € V(H). Suppose there are no pairs of vertices among x,y and z that create a new vertex in G\ H. By
Lemma 2.2 and since = and y do not create a new vertex in G \ H, the vertices = and y are adjacent and one of the two
vertices has degree 1 in H, say y. Similarly, since « and z do not create a new vertex in G \ H, the vertices z and z are
adjacent and z has degree 1 in H. Note that y and z are not adjacent in H. By Lemma 2.2, the vertices y and z create a new
vertex in G \ H, a contradiction. Hence, there exist two vertices among x,y and z that create a new vertex in G \ H. O

Lemma 2.4. Let H be a connected graph of order k where k > 3 and let | be the number of pendants in H. Then

Vet =k () -

Proof. Let G = g(H). If every pair of vertices in H creates a new vertex in G \ H, then the number of new vertices in G is
(5). By Lemma 2.2, the number of new vertices in G is (£) — I. By Definition 2.2, |V(G)| = |V(H)| + (¥) — 1. O

We proceed to find the connected 2-domination numbers of the graphs g(H). We begin by proving two useful lemmas.

Lemma 2.5. Let H be a connected graph of order k where k > 3. Let D be a connected 2-dominating set of g(H). If V(H)\ D
contains a vertex u that does not create new vertices with any vertices in DNV (H), then DNV (H) is an independent set and
u is adjacent to every vertex in D NV (H).

Proof. Assume that V(H) \ D contains a vertex u that does not create new vertices with any vertices in D N V(H). By
Lemma 2.2, each vertex in D NV (H) is adjacent to the vertex u. If [D NV (H)| = 1, then we are done. Otherwise, we have
degp(u) > 2 so each vertex in D NV (H) has degree 1 in H. Hence, D N V(H) is an independent set. O

Lemma 2.6. Let H be a connected graph of order 3 and let G = g(H). Suppose that D is a connected 2-dominating set of G
of size 2 such that D ¢ V(H). If there exist two vertices in V(H)\ D that do not create a new vertex in G, then |DNV (H)| = 1.

Proof. Let V(H) = {z,y, z}. Assume that z,y € V(H) \ D and they do not create a new vertex in G. By Lemma 2.2, z and
y are adjacent and one of the two has degree 1 in H, say y. Then y and z create a new vertex v in G\ H. Next, we will show
that v € D. Suppose that v ¢ D. Since D is a 2-dominating set and v is only adjacent to z and y, we have y, 2 € D. This is
a contradiction to y € V(H) \ D. It follows that v € D. Suppose that D N V(H) = ¢. Since |D| = 2, there exists a vertex
w € D\ {v}. Since N¢g(v) = {y, 2z}, the vertex w is not adjacent to v. This is a contradiction to G[D] being a connected
graph. Hence, |[ DNV (H)| = 1. O

Theorem 2.4. Let H be a connected graph of order k where k > 3 and let G = g(H). Then V(H) is a ~5-set of G. In
particular, v5(G) = k.

Proof. By construction, V(H) is a connected 2-dominating set of G of size k. Suppose that there exists a connected 2-
dominating set D of G of size k —1 > 2. Suppose that D C V(H). Let u be the single vertex in V/(H)\ D. If u does not create
new vertices with any vertices in D, then by Lemma 2.5, the set D is independent. This contradicts G[D] being a connected
graph. Consequently, u creates a new vertex v € G\ H with some vertex w in D. Since u ¢ D and Ng(v) = {u, w}, it follows
that D is not a 2-dominating set of G, a contradiction. Hence, D ¢ V(H). Then there is at least one vertex in D that does
not belong to V(H). So, |[DNV(H)| < k — 2. It implies that there exist at least two vertices x and y in V/(H) \ D. There are
two possibilities.

> Case 1: = and y create a new vertex z in G \ H. Suppose that z € D. Since Ng(z) = {z,y}, the graph G[D] is
disconnected, a contradiction. Thus, z ¢ D. Then the new vertex z is not dominated by D. This is a contradiction to
D being a 2-dominating set of G.

> Case 2: z and y do not create a new vertex in G\ H. By Lemma 2.2, the two vertices are adjacent and one of the two
has degree 1 in H, say y. Note that |V(H)\{z,y}| = |V(H)|-2=k—2. Let V(H)\{z,y} = {u1,uz,...,ux_2}. Since H
is a connected graph and y is adjacent to z in V(H)\ D, for each i € {1, ..., k—2}, we have that u;,y € Ny (V(H)\{u;,y})
so u; and y create a new vertex v; in G\ H. Let S = {v1,va,...,vx_2}. Next, we will show that S C D. Suppose that
there exists an ¢ € {1,...,k — 2} such that v; ¢ D. Since D is a 2-dominating set and N¢(v;) = {u;, y}, the vertices u;
and y are in D. This is a contradiction to y € V(H) \ D. It implies that v; € D for all i € {1,...,k — 2}. So, S C D.
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If £ = 3, then |S| = 1 and |D| = 2. Thus, S = {v1}. By Lemma 2.6, |D NV (H)| = 1. Since V(H) = {z,y,u;} and
x,y ¢ D, we have DNV (H) = {u;}. Since S C D, the vertex v; belongs to D\ V(H). Thus, D = {uy,v;}. Since y is a
pendant with x as its support, y is not adjacent to u;. It follows that D is not a 2-dominating set of G, a contradiction.
Thus, k # 3.

Now, suppose k& > 4 so there exist at least 2 vertices in S. By construction, S is an independent set. Since each
vertex v; in S is created by joining it to y and u; € V(H) \ {z,y}, the vertices in S have only one common neighbor,
namely y. But y isnotin D. Since S C D and |D\ S| = 1, the induced subgraph G[D] is disconnected, a contradiction.

We conclude from the above two cases that a connected 2-dominating set of G has at least X members. Therefore, V(H)
is a v5-set of G and 75(G) = k. O

Theorem 2.5. Let H be a connected graph of order k > 3 not isomorphic to a path on 3 vertices and let G = g(H). Then
V(H) is the unique ~5-set of G.

Proof. By Theorem 2.4, we have that V(H) is a 5-set of G. If k = 3, then H is a cycle on 3 vertices and it is easy to
check that V(H) is the only 75-set of G. It remains to consider k£ > 4. Suppose that there exists a v§-set D of G such that
D #V(H). So, |D|=|V(H)| and |V(H)\ D| =|D \ V(H)|. Consider the following 3 cases.

> Case 1: |V(H)\ D| = |D\ V(H)| = 1. Let u be the unique vertex in V(H) \ D. Suppose that v does not create new
vertices with any vertices in D N V(H). By Lemma 2.5, the set D N V(H) is independent and u is adjacent to every
vertex in D NV (H). Since D NV (H) is an independent set of size at least 3 and the unique vertex in D \ V(H) has
degree 2, the graph G[D] is disconnected, a contradiction. Therefore, v creates new vertices with some vertices in
DNV (H). Suppose u creates exactly one new vertex. Let a be the vertex in DNV (H) that creates the new vertex with
u. Since k > 4 and |V(H)\ D| =1, we have [(DNV(H)) \ {a}| > 2. By Lemma 2.2, every vertex in (DNV(H))\ {a} is
adjacent to v and has degree 1 in H. Then a is not adjacent to any vertex in (DNV(H))\ {a}. Thus, Ng(a) C {u}. By
this and Lemma 2.2, the vertices u and a are not adjacent. Therefore, a is not adjacent to any vertices in V(H) \ {a}.
Consequently, H is disconnected, a contradiction. Thus, u creates at least two new vertices with some vertices in
DNV(H). Since |D \ V(H)| = 1, at least one of the new vertices above is not in D and is not 2-dominated by D, a
contradiction.

> Case 2: |V(H)\D|=|D\V(H)| =2. Let V(H) \ D = {z,y}. Suppose that = and y create a new vertex z in G \ H.
Suppose that z € D. Since degg(z) = 2, the graph G[D] is disconnected, a contradiction. So, z ¢ D. Thus, D is not
a dominating set of GG, a contradiction. Therefore, + and y do not create a new vertex in G \ H. By Lemma 2.2, the
vertices x and y are adjacent and one of the two has degree 1 in H, say y.

Now, suppose x does not create new vertices with any vertices in D N V(H). By Lemma 2.5, the set D NV (H) is
independent and z is adjacent to every vertex in D NV (H). Since D NV (H) is an independent set of size at least 2,
the graph H is a star with at least 3 pendants. By Lemma 2.3, there exist at least |D NV (H)| new vertices in G that
are created by joining them to y and DNV (H). If IDNV(H)| > 2, then at least one of the new vertices above is not
in D and so it is not 2-dominated by D, a contradiction. Thus, |D NV (H)| = 2 and H is a star of order 4. By Lemma
2.4, the number of new vertices in g(H) is three. Suppose that two new vertices in g(H) that are created by joining
them to y and D NV (H) belong to D \ V(H). Since both of the two new vertices have degree two and D NV (H) is
an independent set, the graph G[D] is disconnected, a contradiction. Hence, at least one of the two new vertices in
g(H) that is created by joining them to y and D N V(H) does not belong to D, and so it is not 2-dominated by D, a
contradiction. Therefore, = creates new vertices with some vertices in D NV (H).

Since y is a pendant with x as its support, by Lemma 2.6 the vertex y creates a new vertex with each vertex in
DNV(H). It follows that there exist at least |D NV (H)| + 1 > 3 new vertices in G that are adjacent to x or y. Since
|D\ V(H)| = 2, at least one of the new vertices above is not in D and is not 2-dominated by D, a contradiction.

> Case 3: |[V(H)\ D| > 3. Let x,y,z € V(H) \ D. By Lemma 2.3, there exist two vertices in {z,y, 2z} that create a
new vertex in G. Without loss of generality, let = and y create a new vertex v in G \ H. Suppose that v € D. Since
dega(v) = 2, the graph G[D] is disconnected, a contradiction. So, v ¢ D. Thus, D is not a dominating set of G, a
contradiction.

From the above three cases, we conclude that V' (H) is the unique ~5-set of G. O
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Next, we find the connected domination numbers of the graphs g(H) and show how they relate to the connected 2-
domination numbers.

Theorem 2.6. Let H be a connected graph of order k where k > 3 and let G = g(H). Then v.(G) =k — 1.

Proof. Let S be a subset of V(H) such that |S| = k — 1 and G[S5] is connected. Since V(H) is a 2-dominating set of G, the
set S is a connected dominating set of G. Thus, 7.(G) < k — 1. Suppose that there exists a connected dominating set D of
G of size k — 2. Suppose that D C V(H). Then there exist u,v € V(H) \ D. We consider the vertices v and v in V(H) \ D in
two cases.

> Case 1: u and v create a new vertex in G \ H. Then the new vertex is not dominated by D. This is a contradiction to
D being a dominating set.

> Case 2: v and v do not create a new vertex in G \ H. By Lemma 2.2, v and v are adjacent and one of the two has
degree 1 in V(H), say v. Then v is not dominated by D, a contradiction.

From the above two cases, we conclude that D ¢ V(H). Then at least one vertex in D does not belong to V(H). So,
|IDNV(H)| < k— 3. It implies that there exist at least 3 vertices in V(H)\ D. Let x,y,2 € V(H) \ D. By Lemma 2.3, there
exist two vertices in V(H) \ D that create a new vertex in G \ H. Without loss of generality, let = and y create a new vertex
tin G\ H. Suppose that ¢t € D. Since Ng(t) = {z,y}, we have that ¢t ¢ Ng(D), a contradiction. So, ¢ ¢ D. It follows that
the new vertex ¢ in G is not dominated by D, a contradiction. Hence, a connected dominating set of G has at least & — 1
members. Therefore, v.(G) =k — 1. O

Corollary 2.1. Let H be a connected graph of order k where k > 3 and let G = g(H). Then v5(G) = v.(G) + 1.

Now, we show that for any connected graph H of order at least 3, the graph g(H) satisfies either vS(g(H)) = v(g(H)) +1
or v5(9(H)) = v(g(H)) + 2.

Theorem 2.7. Let H be a connected graph of order 3 and let G = g(H). Then v(G) = 2.

Proof. Since H is a connected graph of order 3, it follows that H is either a path P; or a cycle C5 of order 3. Since
g(Ps) is a cycle of order 4, it implies that v(g(P5)) = 2. Next, we show that v(g(C3)) = 2. By Lemma 2.4, we have that
|V (g(C3))| = 6. Since the maximum degree of g(C3) equals 4, no single vertex in g(C3) can dominate all vertices in g(Cs).
Thus, v(g(C3)) > 2. Clearly, any two vertices in V(C3) form a dominating set of g(C3). Hence, v(g(C3)) < 2. Therefore,

v(9(Cs)) = 2. m
Lemma 2.7. Let H be a connected graph of order k where k > 4 and let G = g(H). Then v(G) > k — 2.

Proof. Let V(H) = {v1,v9,v3,...,0}. Let X = V(G) \ V(H). Then X consists of the new vertices. Suppose there exists
D C V(G) such that |D| = k£ — 3 and D dominates X. If D contains a new vertex = in X, then = was created by some
vertices u and v in H. Since Ng[z] N X C Ng[u] N X, we can use the vertex v in H to dominate new vertices in X instead
of the vertex x. Hence, it is sufficient to consider that the vertices in D are from V(H). Without loss of generality, let
D = {v1,v2,vs,...,vx_3}. We divide the argument into two cases according to the number of pendants in {v;_s, vx_1, Vi }.

> Case 1: {v;_2,v;_1,v;} contains at most one pendant. Without loss of generality, assume v;_; and v, are not pen-
dants. By Lemma 2.2, v;_; and v, create a new vertex in G \ H which is not dominated by D, a contradiction.

> Case 2: {v,_2,v;_1,v;} contains at least two pendants. Without loss of generality, assume v;_; and vy are the two
pendants. By Lemma 2.2, v;,_; and vy create a new vertex in G \ H which is not dominated by D, a contradiction.

We conclude from the above two cases that at least k — 2 vertices are required to dominate X. Thus, v(G) >k —2. O

Theorem 2.8. Let H be a connected graph of order k where k > 4 and let G = g(H). If H contains two pendants that share
a support vertex in H, then v(G) = k — 2.

Proof. Let V(H) = {v1,v2,vs,...,v;}. Assume that H contains 2 pendants that share a support vertex in H. For i # j,
when v; and v; create a new vertex in G \ H, we let v;; denote the new vertex. Since |V (H)| = k > 4, no two pendants
are adjacent. Without loss of generality, let v;_; and v; be two pendants of H with the common support vertex vy;_». Let
D = {v1,v2,vs,...,0%-3} U{vg_1}. By Lemma 2.2, v;,_, does not create a new vertex with either v;_; or v;. Since H is
connected, the vertex v;_o is adjacent to some vertex in {vy, va,...,vx_3}. By construction, all vertices in G except vjy_1, vy
and vy_1 ; are dominated by {v1,v2,vs,...,v5—3} but vy_1,v; and vy_1 ; are dominated by vi_1 ;. Hence, D dominates all
vertices in G. Since |D| = k — 2, we have that v(G) < k — 2. By Lemma 2.7, we have v(G) = k — 2. O
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Theorem 2.9. Let H be a connected graph of order k such that k > 4 and no two pendants share a support vertex. Let
G =g(H). Then v(G) =k — 1

Proof. Let V(H) = {v1,v2,v3,...,v:}. Let X = V(G)\ V(H). For i # j, when v; and v, create a new vertex in G\ H, we let
v;; denote the new vertex. Suppose there exists D C V(G) such that |[D| = k — 2 and D dominates X. Similar to the proof
of Theorem 2.7, we can assume that D C V(H) and let D = {vy,v2,vs,...,vx_2}. Let o be the number of vertices in X that
are dominated by D. Let [ be the number of pendants in H. By Lemma 2.4, we have

a:|X|=<’;>_z.

We will also compute « by counting the number of additional vertices that are dominated by each v; for 1 <i < k — 2. By
Lemma 2.2, for each v € D, if v is a pendant or a support of a pendant, then v is adjacent to k¥ — 2 vertices in X; otherwise,
v is adjacent to k — 1 vertices in X.

First, suppose that both v,_; and vy are not pendants in H. Then all [ pendants are in D, so

a(k1)+(k2)+-~~+21(§>1l-

Thus, a < |X|, which is a contradiction.

Suppose that both v;_; and v, are pendants in H. Then the support vertices of v;_; and v, are distinct and are in D.
It implies that « = (k — 1) + (k —2) +--- + 2 — 1 = (¥) =1 — 1. Thus, a < | X|, a contradiction.

Therefore, exactly one vertex in {v;_1, vy} is a pendant in H. Then D contains [ — 1 pendants. Without loss of generality,
let v, be a pendant. First, suppose that the support vertex of vy, isin D. It follows thata = (k- 1)+ (k—2)+---+2 -1 =
(k) —1—1. Thus, o < | X]|, a contradiction. Thus, the support vertex of vy is not in D, i.e. v;_1 is the support vertex of vy.

2
Then

2
It follows that we need at least & — 2 vertices to dominate every vertex in X. Each vertex v; in D dominates at least 2

a:(k—1)+(k—2)+---+2—(l—1):<k>—l.

additional vertices v; ;1 and v;;. Each vertex v;; in X can only dominate one vertex (itself) in X. So, to use exactly k — 2
vertices to dominate X, we cannot use any vertex from X. Since the pendant v, and its support vertex v;_; are not in D,
the vertex v, is not dominated by D. Thus, we must use one more vertex to dominate v;. Then a dominating set of G has
at least k£ — 1 members. So, v(G) > k — 1.

Let D' = {vy,v2,03,...,v5_1}. Clearly, D' dominate all vertices in G. Since |D'| = k — 1, we have that v(G) < k — 1.
Therefore, v(G) = k — 1. O

Ss 9(55)

Figure 2.2: Graphs S5 and ¢(S5).

Remark 2.1. Theorems 2.4 and 2.8 imply that our necessary condition for graphs G with v5(G) = v(G) + 1 is not a sufficient
condition.

Lastly, we apply Theorems 2.4, 2.6, 2.7, 2.8, and 2.9 to stars, paths, and cycles. We let S, P, and C} denote a star, a
path and a cycle of order &, respectively.

Corollary 2.2. For k > 4, let G = g(Si). Then ¥5(G) =k, 7.(G) =k —1and v(G) =k — 2
Corollary 2.3. For k > 3, let G = g(Px). Then v5(G) =k, 7.(G) =k —1land v(G) =k — 1.
Corollary 2.4. For k > 3, let G = g(C). Then v5(G) =k, 7.(G) =k —1and v(G) =k — 1.
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