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Abstract
Let G be a graph with no multiple edges and loops. A subset S of the vertex set of G is a dominating set of G if every vertex
in V (G)\S is adjacent to at least one vertex of S. A connected k-dominating set ofG is a subset S of the vertex set V (G) such
that every vertex in V (G) \ S has at least k neighbors in S and the subgraph G[S] is connected. The domination number of
G is the number of vertices in a minimum dominating set of G, denoted by γ(G). The connected k-domination number of
G, denoted by γc

k(G), is the minimum cardinality of a connected k-dominating set of G. For k = 1, we simply write γc(G).
It is known that the bounds γc

2(G) > γ(G) + 1 and γc
2(G) > γc(G) + 1 are sharp. In this research article, we present the

necessary condition of the connected graphs G with γc
2(G) = γ(G) + 1 and the necessary condition of the connected graphs

G with γc
2(G) = γc(G)+1. Moreover, we present a graph construction that takes in any connected graph with r vertices and

gives a graph G with γc
2(G) = r, γc(G) = r − 1, and γ(G) ∈ {r − 1, r − 2}.
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1. Introduction

We refer readers to [3] for notations and graph theory terminology not defined here. In our work, we only consider simple
graphs i.e. graphs with no multiple edges and loops. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set
E(G). The degree of a vertex v in G, written as degG(v), is the number of edges that are incident with v. A vertex v of G
is said to be a leaf or a pendant if degG(v) = 1. The vertex that is adjacent to a pendant is its support vertex. A universal
vertex in G is a vertex that is adjacent to all other vertices of G. For any vertex v ∈ V (G), the open neighborhood of v in G
is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v in G is the set NG[v] = NG(v)∪{v}. A graph H
is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset S of V (G), the induced subgraph G[S] is the subgraph
of G whose vertex set is S and whose edge set consists of all the edges in E(G) that have both endpoints in S. That is, for
any two vertices u, v ∈ S, u and v are adjacent in G[S] if and only if they are adjacent in G.

A subset S of the vertex set of a graph G is a dominating set if every vertex in V (G) \S is adjacent to at least one vertex
of S. The domination number of G, denoted by γ(G), is the number of vertices in a minimum dominating set of G. This
definition was introduced by Ore [4] in 1962.

Many variations of domination arise from imposing additional conditions on the dominating set. Here, we are interested
in connected domination, k-domination, and the combination of these two.

A connected dominating set of a connected graphG is a dominating set S ofG such thatG[S] is connected. The connected
domination number of G, denoted by γc(G), is the minimum cardinality of a connected dominating set of G. Any connected
dominating set of G of cardinality γc(G) is called a γc-set of G. The concept of connected domination in graphs was intro-
duced by Sampathkumar and Walikar [5] in 1979. Since connected dominating sets are dominating sets, γ(G) 6 γc(G) for
any connected graph G.

A k-dominating set of a graph G is a subset S of the vertex set V (G) such that every vertex in V (G) \ S has at least k
neighbors in S. The k-domination number of G, denoted by γk(G), is the minimum cardinality of a k-dominating set of G.
Any k-dominating set of G of cardinality γk(G) is called a γk-set of G. The k-domination in graphs was introduced by Fink
and Jacobson [1] in 1985.

A connected k-dominating set of a connected graph G is a subset S of the vertex set V (G) such that every vertex in
V (G) \ S has at least k neighbors in S and the subgraph G[S] is connected. The connected k-domination number of G,
denoted by γck(G), is the minimum cardinality of a connected k-dominating set of G. Any connected k-dominating set of
G of cardinality γck(G) is called a γck-set of G. In 2009, Volkmann [6] introduced the connected k-domination in graphs.
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Volkmann [6] characterized connected graphs G with γck(G) = |V (G)|. For δ(G) > k > 2, he also characterized connected
graphs G with γck(G) = |V (G)| − 1. Moreover, he presented various bounds of γck(G) and proposed some open problems.

The bound γk(G) > γ(G) + k − 2 for any graph G with δ(G) > k > 2 was given by Fink and Jacobson in [1]. In 2010,
Hansberg [2] presented a bound similar to Fink and Jacobson’s for the connected case, that is γck(G) > γc(G) + k − 2

where δ(G) > k > 2. Moreover, she established various sharp bounds on the connected k-domination numbers and the
k-domination numbers. For k = 2, Volkmann [6] established the sharp bound γc2(G) > γc(G) + 1. This implies that
γc2(G) > γ(G) + 1.

In this article, we study two of the open problems posted by Volkmann [6] in 2009. In particular, we study graphs with
the smallest possible connected 2-domination numbers with respect to domination numbers and connected domination
numbers. We provide a characterization of the connected graphs G with γ(G) = 1 and γc2(G) = 2. Moreover, we present a
necessary condition of the connected graphs G with γc2(G) = γ(G)+ 1 and a necessary condition of the connected graphs G
with γc2(G) = γc(G) + 1, when γc2(G) > 3. Lastly, we present a graph construction that takes in any connected graph with
k vertices and gives a graph G with γc2(G) = k, γc(G) = k − 1 and γ(G) ∈ {k − 1, k − 2}.

2. Main results

In this section, we find a necessary condition for a connected graph G to have γc2(G) = γ(G) + 1 and a necessary condition
for a connected graph G to have γc2(G) = γc(G) + 1. First, we provide a characterization of the connected graphs G with
γ(G) = γc(G) = 1 and γc2(G) = 2.

Observation 2.1. Let G be a connected graph with γc2(G) = 2. Let D be a γc2-set of G. Then each vertex in D is a universal
vertex. In particular, γ(G) = γc(G) = 1.

Definition 2.1. The join of disjoint graphs G and H, written G∨H, is the graph obtained from the disjoint union of G and
H by adding the edges {xy : x ∈ V (G), y ∈ V (H)}.

Theorem 2.1. Let G be a connected graph of order at least 2. Then the following are equivalent.

(i) γc2(G) = 2,

(ii) G ∼= K2 ∨H for some graph H.

Proof. (i) ⇒ (ii) Assume that γc2(G) = 2. Let {x, y} be a γc2-set of G. Then x and y are universal vertices of G. Hence,
G = G[{x, y}] ∨G[V (G) \ {x, y}]. Observe that G[{x, y}] ∼= K2.

(ii)⇒ (i) Assume that G ∼= K2 ∨H for some graph H. Then the vertex set of K2 is a γc2-set of G. Hence, γc2(G) = 2.

From now on, we only consider connected graphs whose connected 2-domination numbers are at least 3. The following
lemma shows the existence of vertices x and y in a γc2-set D of a graph G such that x, y ∈ NG(D \ {x, y}). This shows that
the coming necessary conditions are not null.

Lemma 2.1. Let G be a connected graph with γc2(G) > 3. Let D be a γc2-set of G. Then there exist distinct vertices x, y ∈ D
such that x, y ∈ NG(D \ {x, y}). Moreover, x and y can be chosen so that G[D \ {x, y}] is connected.

Proof. Since G[D] is connected, there exists a spanning tree T of G[D]. Since T is a tree of order greater than 2, it has at
least two leaves. Let x and y be two distinct leaves in T . Then x, y ∈ NG(D \ {x, y}) and G[D \ {x, y}] is connected.

The following result provides a necessary condition of the connected graphs G with γc2(G) = γ(G) + 1.

Theorem 2.2. LetG be a connected graph with γc2(G) > 3 and γc2(G) = γ(G)+1. LetD be a γc2-set ofG. ThenNG(x)∩NG(y) *
NG(D \ {x, y}) for every pair of distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y}).

Proof. Let x and y be two distinct vertices inD such that x, y ∈ NG(D\{x, y}). Suppose thatNG(x)∩NG(y) ⊆ NG(D\{x, y}).
So, the vertices in NG(x) ∩ NG(y) are dominated by D \ {x, y}. Since x, y ∈ NG(D \ {x, y}), the vertices x and y are also
dominated by D \ {x, y}. Let v be a vertex of G not in D ∪ (NG(x) ∩ NG(y)). Then v is adjacent to at least one vertex
in D \ {x, y}. Therefore, D \ {x, y} is a dominating set of G of size |D| − 2 = γ(G) − 1, a contradiction. Consequently,
NG(x) ∩NG(y) * NG(D \ {x, y}).

Similarly, we obtain a necessary condition of the connected graphs G with γc2(G) = γc(G) + 1.

Theorem 2.3. LetG be a connected graph with γc2(G) > 3 and γc2(G) = γc(G)+1. LetD be a γc2-set ofG. ThenNG(x)∩NG(y) *
NG(D \ {x, y}) for every pair of distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y}) and G[D \ {x, y}] is connected.

29



P. Wongthongcue and C. Worawannotai / Discrete Math. Lett. 13 (2024) 28–35 30

After obtaining the necessary conditions, we discover that graphs with such conditions have no universal vertices, as
shown in the following propositions.

Proposition 2.1. Let G be a connected graph with γc2(G) > 3. For every γc2-set D of G, assume that NG(x) ∩ NG(y) *
NG(D \ {x, y}) for every pair of distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y}). Then G has no universal
vertices.

Proof. Let x and y be two distinct vertices in a γc2-set D of G such that x, y ∈ NG(D \ {x, y}). So, NG(x) ∩ NG(y) *
NG(D \ {x, y}). Suppose that G has a universal vertex u. There are two possibilities.

. Case 1: u ∈ D. Since NG(x) ∩ NG(y) * NG(D \ {x, y}), there is a vertex z such that z ∈ NG(x) ∩ NG(y), but
z /∈ NG(D\{x, y}). Suppose that u ∈ D\{x, y}. Since u is a universal vertex, it is adjacent to z. So, z ∈ NG(D\{x, y}),
which is a contradiction. Thus, u ∈ {x, y}. Without loss of generality, we assume that u = x. Then x is adjacent to
all vertices in D \ {x, y}. Since |D| > 3, we have D \ {x, y} 6= φ. Let w be a vertex in D \ {x, y}. Since x is a universal
vertex, the vertices w, y ∈ NG[x] ⊆ NG(D \ {w, y}). By the assumption, NG(w) ∩ NG(y) * NG(D \ {w, y}). However,
NG(w) ∩NG(y) ⊆ NG[x] ⊆ NG(D \ {w, y}), a contradiction. Therefore, this case cannot happen.

. Case 2: u /∈ D. Then u is adjacent to every vertex in D. Since |D| > 3, the set D \ {x, y} 6= φ. Let w be a neighbor of
x in D \ {x, y}. Let D′

= (D \ {w}) ∪ {u}. Since u is a universal vertex, the set D′ is a connected 2-dominating set of
G. Since |D′ | = |D|, the set D′ is also a γc2-set of G. However, u ∈ D′ . Just as in Case 1, this cannot happen.

From both cases, we conclude that G has no universal vertices.

Proposition 2.2. Let G be a connected graph with γc2(G) > 3. For every γc2-set D of G, assume that NG(x) ∩ NG(y) *
NG(D \ {x, y}) for every pair of distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y}) and G[D \ {x, y}] is connected.
Then G has no universal vertices.

Proof. Similar to the proof of Proposition 2.1.

Next, we use the necessary condition to construct an infinite family of graphs G that satisfy γc2(G) = γc(G) + 1. Note
that the condition NG(x) ∩ NG(y) * NG(D \ {x, y}) in Theorems 2.2 and 2.3 implies that NG(x) ∩ NG(y) must contain a
vertex outside of NG(D \ {x, y}).

Definition 2.2. For a connected graph H of order at least 3, we let g(H) be the connected graph obtained from H by adding
new vertices in the following way. For every pair of distinct vertices x and y in V (H) such that x, y ∈ NH(V (H) \ {x, y}), we
add one new vertex and join it to x and y.

Observation 2.2. For any connected graph H, its vertex set V (H) is a connected 2-dominating set of g(H).

P4

g(P4)

v w x y v w x y

a

b

c d

Figure 2.1: Graphs P4 and g(P4).

For example, let H be a path P4 of order 4. The connected graph G = g(P4) is obtained from P4 by adding the red
vertices, as illustrated in Figure 2.1. Note that v /∈ NH(V (H) \ {v, w}) so no new vertex was created for the pair v, w. In
this case, we say v and w do not create a new vertex in G \H. Similarly, x and y do not create a new vertex in G \H. Also,
note that each new vertex has degree 2.

The following lemmas discuss some useful properties of graphs g(H).

Lemma 2.2. Let H be a connected graph of order k where k > 3 and let G = g(H). The vertices x and y in H do not create
a new vertex in G \H if and only if x and y are adjacent and one of the two vertices has degree 1 in H.

Proof. We will prove the forward direction by the contrapositive method. Assume that x and y are not adjacent or both x
and y have degree at least 2 in H. Since H is a connected graph, it implies that x, y ∈ NH(V (H) \ {x, y}). By construction,
x and y create a new vertex in G \H.

Conversely, assume that x and y are adjacent and one of the two vertices has degree 1 in H. Without loss of generality,
let degH(x) = 1. Then x /∈ NH(V (H) \ {x, y}). It follows that x and y do not create a new vertex in G \H.
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Lemma 2.3. Let H be a connected graph of order k where k > 3 and let G = g(H). Then among any three vertices of H,
there exist two vertices that create a new vertex in G \H.

Proof. Let x, y, z ∈ V (H). Suppose there are no pairs of vertices among x, y and z that create a new vertex in G \H. By
Lemma 2.2 and since x and y do not create a new vertex in G \ H, the vertices x and y are adjacent and one of the two
vertices has degree 1 in H, say y. Similarly, since x and z do not create a new vertex in G \ H, the vertices x and z are
adjacent and z has degree 1 inH. Note that y and z are not adjacent inH. By Lemma 2.2, the vertices y and z create a new
vertex in G \H, a contradiction. Hence, there exist two vertices among x, y and z that create a new vertex in G \H.

Lemma 2.4. Let H be a connected graph of order k where k > 3 and let l be the number of pendants in H. Then

|V (g(H))| = k +

(
k

2

)
− l.

Proof. Let G = g(H). If every pair of vertices in H creates a new vertex in G \H, then the number of new vertices in G is(
k
2

)
. By Lemma 2.2, the number of new vertices in G is

(
k
2

)
− l. By Definition 2.2, |V (G)| = |V (H)|+

(
k
2

)
− l.

We proceed to find the connected 2-domination numbers of the graphs g(H). We begin by proving two useful lemmas.

Lemma 2.5. LetH be a connected graph of order k where k > 3. LetD be a connected 2-dominating set of g(H). If V (H)\D
contains a vertex u that does not create new vertices with any vertices in D∩V (H), then D∩V (H) is an independent set and
u is adjacent to every vertex in D ∩ V (H).

Proof. Assume that V (H) \ D contains a vertex u that does not create new vertices with any vertices in D ∩ V (H). By
Lemma 2.2, each vertex in D ∩ V (H) is adjacent to the vertex u. If |D ∩ V (H)| = 1, then we are done. Otherwise, we have
degH(u) > 2 so each vertex in D ∩ V (H) has degree 1 in H. Hence, D ∩ V (H) is an independent set.

Lemma 2.6. Let H be a connected graph of order 3 and let G = g(H). Suppose that D is a connected 2-dominating set of G
of size 2 such thatD * V (H). If there exist two vertices in V (H)\D that do not create a new vertex in G, then |D∩V (H)| = 1.

Proof. Let V (H) = {x, y, z}. Assume that x, y ∈ V (H) \D and they do not create a new vertex in G. By Lemma 2.2, x and
y are adjacent and one of the two has degree 1 in H, say y. Then y and z create a new vertex v in G \H. Next, we will show
that v ∈ D. Suppose that v /∈ D. Since D is a 2-dominating set and v is only adjacent to z and y, we have y, z ∈ D. This is
a contradiction to y ∈ V (H) \ D. It follows that v ∈ D. Suppose that D ∩ V (H) = φ. Since |D| = 2, there exists a vertex
w ∈ D \ {v}. Since NG(v) = {y, z}, the vertex w is not adjacent to v. This is a contradiction to G[D] being a connected
graph. Hence, |D ∩ V (H)| = 1.

Theorem 2.4. Let H be a connected graph of order k where k > 3 and let G = g(H). Then V (H) is a γc2-set of G. In
particular, γc2(G) = k.

Proof. By construction, V (H) is a connected 2-dominating set of G of size k. Suppose that there exists a connected 2-
dominating setD of G of size k−1 > 2. Suppose thatD ⊆ V (H). Let u be the single vertex in V (H)\D. If u does not create
new vertices with any vertices inD, then by Lemma 2.5, the setD is independent. This contradictsG[D] being a connected
graph. Consequently, u creates a new vertex v ∈ G\H with some vertex w in D. Since u /∈ D and NG(v) = {u,w}, it follows
that D is not a 2-dominating set of G, a contradiction. Hence, D * V (H). Then there is at least one vertex in D that does
not belong to V (H). So, |D ∩ V (H)| 6 k− 2. It implies that there exist at least two vertices x and y in V (H) \D. There are
two possibilities.

. Case 1: x and y create a new vertex z in G \ H. Suppose that z ∈ D. Since NG(z) = {x, y}, the graph G[D] is
disconnected, a contradiction. Thus, z /∈ D. Then the new vertex z is not dominated by D. This is a contradiction to
D being a 2-dominating set of G.

. Case 2: x and y do not create a new vertex in G \H. By Lemma 2.2, the two vertices are adjacent and one of the two
has degree 1 inH, say y. Note that |V (H)\{x, y}| = |V (H)|−2 = k−2. Let V (H)\{x, y} = {u1, u2, . . . , uk−2}. SinceH
is a connected graph and y is adjacent to x in V (H)\D, for each i ∈ {1, ..., k−2}, we have that ui, y ∈ NH(V (H)\{ui, y})
so ui and y create a new vertex vi in G \H. Let S = {v1, v2, . . . , vk−2}. Next, we will show that S ⊆ D. Suppose that
there exists an i ∈ {1, ..., k − 2} such that vi /∈ D. Since D is a 2-dominating set and NG(vi) = {ui, y}, the vertices ui
and y are in D. This is a contradiction to y ∈ V (H) \D. It implies that vi ∈ D for all i ∈ {1, ..., k − 2}. So, S ⊆ D.
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If k = 3, then |S| = 1 and |D| = 2. Thus, S = {v1}. By Lemma 2.6, |D ∩ V (H)| = 1. Since V (H) = {x, y, u1} and
x, y /∈ D, we have D ∩ V (H) = {u1}. Since S ⊆ D, the vertex v1 belongs to D \ V (H). Thus, D = {u1, v1}. Since y is a
pendant with x as its support, y is not adjacent to u1. It follows that D is not a 2-dominating set of G, a contradiction.
Thus, k 6= 3.

Now, suppose k > 4 so there exist at least 2 vertices in S. By construction, S is an independent set. Since each
vertex vi in S is created by joining it to y and ui ∈ V (H) \ {x, y}, the vertices in S have only one common neighbor,
namely y. But y is not in D. Since S ⊆ D and |D \S| = 1, the induced subgraph G[D] is disconnected, a contradiction.

We conclude from the above two cases that a connected 2-dominating set of G has at least k members. Therefore, V (H)

is a γc2-set of G and γc2(G) = k.

Theorem 2.5. Let H be a connected graph of order k > 3 not isomorphic to a path on 3 vertices and let G = g(H). Then
V (H) is the unique γc2-set of G.

Proof. By Theorem 2.4, we have that V (H) is a γc2-set of G. If k = 3, then H is a cycle on 3 vertices and it is easy to
check that V (H) is the only γc2-set of G. It remains to consider k > 4. Suppose that there exists a γc2-set D of G such that
D 6= V (H). So, |D| = |V (H)| and |V (H) \D| = |D \ V (H)|. Consider the following 3 cases.

. Case 1: |V (H) \D| = |D \ V (H)| = 1. Let u be the unique vertex in V (H) \D. Suppose that u does not create new
vertices with any vertices in D ∩ V (H). By Lemma 2.5, the set D ∩ V (H) is independent and u is adjacent to every
vertex in D ∩ V (H). Since D ∩ V (H) is an independent set of size at least 3 and the unique vertex in D \ V (H) has
degree 2, the graph G[D] is disconnected, a contradiction. Therefore, u creates new vertices with some vertices in
D∩V (H). Suppose u creates exactly one new vertex. Let a be the vertex inD∩V (H) that creates the new vertex with
u. Since k > 4 and |V (H) \D| = 1, we have |(D ∩ V (H)) \ {a}| > 2. By Lemma 2.2, every vertex in (D ∩ V (H)) \ {a} is
adjacent to u and has degree 1 in H. Then a is not adjacent to any vertex in (D∩V (H)) \ {a}. Thus, NH(a) ⊆ {u}. By
this and Lemma 2.2, the vertices u and a are not adjacent. Therefore, a is not adjacent to any vertices in V (H) \ {a}.
Consequently, H is disconnected, a contradiction. Thus, u creates at least two new vertices with some vertices in
D ∩ V (H). Since |D \ V (H)| = 1, at least one of the new vertices above is not in D and is not 2-dominated by D, a
contradiction.

. Case 2: |V (H) \D| = |D \ V (H)| = 2. Let V (H) \D = {x, y}. Suppose that x and y create a new vertex z in G \H.
Suppose that z ∈ D. Since degG(z) = 2, the graph G[D] is disconnected, a contradiction. So, z /∈ D. Thus, D is not
a dominating set of G, a contradiction. Therefore, x and y do not create a new vertex in G \H. By Lemma 2.2, the
vertices x and y are adjacent and one of the two has degree 1 in H, say y.

Now, suppose x does not create new vertices with any vertices in D ∩ V (H). By Lemma 2.5, the set D ∩ V (H) is
independent and x is adjacent to every vertex in D ∩ V (H). Since D ∩ V (H) is an independent set of size at least 2,
the graph H is a star with at least 3 pendants. By Lemma 2.3, there exist at least |D ∩ V (H)| new vertices in G that
are created by joining them to y and D ∩ V (H). If |D ∩ V (H)| > 2, then at least one of the new vertices above is not
in D and so it is not 2-dominated by D, a contradiction. Thus, |D ∩ V (H)| = 2 and H is a star of order 4. By Lemma
2.4, the number of new vertices in g(H) is three. Suppose that two new vertices in g(H) that are created by joining
them to y and D ∩ V (H) belong to D \ V (H). Since both of the two new vertices have degree two and D ∩ V (H) is
an independent set, the graph G[D] is disconnected, a contradiction. Hence, at least one of the two new vertices in
g(H) that is created by joining them to y and D ∩ V (H) does not belong to D, and so it is not 2-dominated by D, a
contradiction. Therefore, x creates new vertices with some vertices in D ∩ V (H).

Since y is a pendant with x as its support, by Lemma 2.6 the vertex y creates a new vertex with each vertex in
D ∩ V (H). It follows that there exist at least |D ∩ V (H)|+ 1 > 3 new vertices in G that are adjacent to x or y. Since
|D \ V (H)| = 2, at least one of the new vertices above is not in D and is not 2-dominated by D, a contradiction.

. Case 3: |V (H) \ D| > 3. Let x, y, z ∈ V (H) \ D. By Lemma 2.3, there exist two vertices in {x, y, z} that create a
new vertex in G. Without loss of generality, let x and y create a new vertex v in G \ H. Suppose that v ∈ D. Since
degG(v) = 2, the graph G[D] is disconnected, a contradiction. So, v /∈ D. Thus, D is not a dominating set of G, a
contradiction.

From the above three cases, we conclude that V (H) is the unique γc2-set of G.
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Next, we find the connected domination numbers of the graphs g(H) and show how they relate to the connected 2-
domination numbers.

Theorem 2.6. Let H be a connected graph of order k where k > 3 and let G = g(H). Then γc(G) = k − 1.

Proof. Let S be a subset of V (H) such that |S| = k − 1 and G[S] is connected. Since V (H) is a 2-dominating set of G, the
set S is a connected dominating set of G. Thus, γc(G) 6 k − 1. Suppose that there exists a connected dominating set D of
G of size k− 2. Suppose that D ⊆ V (H). Then there exist u, v ∈ V (H) \D. We consider the vertices u and v in V (H) \D in
two cases.

. Case 1: u and v create a new vertex in G \H. Then the new vertex is not dominated by D. This is a contradiction to
D being a dominating set.

. Case 2: u and v do not create a new vertex in G \ H. By Lemma 2.2, u and v are adjacent and one of the two has
degree 1 in V (H), say v. Then v is not dominated by D, a contradiction.

From the above two cases, we conclude that D * V (H). Then at least one vertex in D does not belong to V (H). So,
|D ∩ V (H)| 6 k − 3. It implies that there exist at least 3 vertices in V (H) \D. Let x, y, z ∈ V (H) \D. By Lemma 2.3, there
exist two vertices in V (H) \D that create a new vertex in G \H. Without loss of generality, let x and y create a new vertex
t in G \H. Suppose that t ∈ D. Since NG(t) = {x, y}, we have that t /∈ NG(D), a contradiction. So, t /∈ D. It follows that
the new vertex t in G is not dominated by D, a contradiction. Hence, a connected dominating set of G has at least k − 1

members. Therefore, γc(G) = k − 1.

Corollary 2.1. Let H be a connected graph of order k where k > 3 and let G = g(H). Then γc2(G) = γc(G) + 1.

Now, we show that for any connected graph H of order at least 3, the graph g(H) satisfies either γc2(g(H)) = γ(g(H))+1

or γc2(g(H)) = γ(g(H)) + 2.

Theorem 2.7. Let H be a connected graph of order 3 and let G = g(H). Then γ(G) = 2.

Proof. Since H is a connected graph of order 3, it follows that H is either a path P3 or a cycle C3 of order 3. Since
g(P3) is a cycle of order 4, it implies that γ(g(P3)) = 2. Next, we show that γ(g(C3)) = 2. By Lemma 2.4, we have that
|V (g(C3))| = 6. Since the maximum degree of g(C3) equals 4, no single vertex in g(C3) can dominate all vertices in g(C3).
Thus, γ(g(C3)) > 2. Clearly, any two vertices in V (C3) form a dominating set of g(C3). Hence, γ(g(C3)) 6 2. Therefore,
γ(g(C3)) = 2.

Lemma 2.7. Let H be a connected graph of order k where k > 4 and let G = g(H). Then γ(G) > k − 2.

Proof. Let V (H) = {v1, v2, v3, . . . , vk}. Let X = V (G) \ V (H). Then X consists of the new vertices. Suppose there exists
D ⊆ V (G) such that |D| = k − 3 and D dominates X. If D contains a new vertex x in X, then x was created by some
vertices u and v in H. Since NG[x] ∩X ⊆ NG[u] ∩X, we can use the vertex u in H to dominate new vertices in X instead
of the vertex x. Hence, it is sufficient to consider that the vertices in D are from V (H). Without loss of generality, let
D = {v1, v2, v3, . . . , vk−3}. We divide the argument into two cases according to the number of pendants in {vk−2, vk−1, vk}.

. Case 1: {vk−2, vk−1, vk} contains at most one pendant. Without loss of generality, assume vk−1 and vk are not pen-
dants. By Lemma 2.2, vk−1 and vk create a new vertex in G \H which is not dominated by D, a contradiction.

. Case 2: {vk−2, vk−1, vk} contains at least two pendants. Without loss of generality, assume vk−1 and vk are the two
pendants. By Lemma 2.2, vk−1 and vk create a new vertex in G \H which is not dominated by D, a contradiction.

We conclude from the above two cases that at least k − 2 vertices are required to dominate X. Thus, γ(G) > k − 2.

Theorem 2.8. Let H be a connected graph of order k where k > 4 and let G = g(H). If H contains two pendants that share
a support vertex in H, then γ(G) = k − 2.

Proof. Let V (H) = {v1, v2, v3, . . . , vk}. Assume that H contains 2 pendants that share a support vertex in H. For i 6= j,
when vi and vj create a new vertex in G \ H, we let vij denote the new vertex. Since |V (H)| = k > 4, no two pendants
are adjacent. Without loss of generality, let vk−1 and vk be two pendants of H with the common support vertex vk−2. Let
D = {v1, v2, v3, . . . , vk−3} ∪ {vk−1,k}. By Lemma 2.2, vk−2 does not create a new vertex with either vk−1 or vk. Since H is
connected, the vertex vk−2 is adjacent to some vertex in {v1, v2, . . . , vk−3}. By construction, all vertices in G except vk−1, vk

and vk−1,k are dominated by {v1, v2, v3, . . . , vk−3} but vk−1, vk and vk−1,k are dominated by vk−1,k. Hence, D dominates all
vertices in G. Since |D| = k − 2, we have that γ(G) 6 k − 2. By Lemma 2.7, we have γ(G) = k − 2.
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Theorem 2.9. Let H be a connected graph of order k such that k > 4 and no two pendants share a support vertex. Let
G = g(H). Then γ(G) = k − 1.

Proof. Let V (H) = {v1, v2, v3, . . . , vk}. Let X = V (G) \ V (H). For i 6= j, when vi and vj create a new vertex in G \H, we let
vij denote the new vertex. Suppose there exists D ⊆ V (G) such that |D| = k − 2 and D dominates X. Similar to the proof
of Theorem 2.7, we can assume that D ⊆ V (H) and let D = {v1, v2, v3, . . . , vk−2}. Let α be the number of vertices in X that
are dominated by D. Let l be the number of pendants in H. By Lemma 2.4, we have

α = |X| =
(
k

2

)
− l.

We will also compute α by counting the number of additional vertices that are dominated by each vi for 1 6 i 6 k − 2. By
Lemma 2.2, for each v ∈ D, if v is a pendant or a support of a pendant, then v is adjacent to k− 2 vertices in X; otherwise,
v is adjacent to k − 1 vertices in X.

First, suppose that both vk−1 and vk are not pendants in H. Then all l pendants are in D, so

α = (k − 1) + (k − 2) + · · ·+ 2− l =
(
k

2

)
− 1− l.

Thus, α < |X|, which is a contradiction.
Suppose that both vk−1 and vk are pendants in H. Then the support vertices of vk−1 and vk are distinct and are in D.

It implies that α = (k − 1) + (k − 2) + · · ·+ 2− l =
(
k
2

)
− 1− l. Thus, α < |X|, a contradiction.

Therefore, exactly one vertex in {vk−1, vk} is a pendant inH. ThenD contains l−1 pendants. Without loss of generality,
let vk be a pendant. First, suppose that the support vertex of vk is in D. It follows that α = (k − 1) + (k − 2) + · · ·+ 2− l =(
k
2

)
− 1− l. Thus, α < |X|, a contradiction. Thus, the support vertex of vk is not in D, i.e. vk−1 is the support vertex of vk.

Then
α = (k − 1) + (k − 2) + · · ·+ 2− (l − 1) =

(
k

2

)
− l.

It follows that we need at least k − 2 vertices to dominate every vertex in X. Each vertex vi in D dominates at least 2

additional vertices vi,k−1 and vik. Each vertex vij in X can only dominate one vertex (itself) in X. So, to use exactly k − 2

vertices to dominate X, we cannot use any vertex from X. Since the pendant vk and its support vertex vk−1 are not in D,
the vertex vk is not dominated by D. Thus, we must use one more vertex to dominate vk. Then a dominating set of G has
at least k − 1 members. So, γ(G) > k − 1.

Let D′
= {v1, v2, v3, . . . , vk−1}. Clearly, D′ dominate all vertices in G. Since |D′ | = k − 1, we have that γ(G) 6 k − 1.

Therefore, γ(G) = k − 1.

S5 g(S5)

Figure 2.2: Graphs S5 and g(S5).

Remark 2.1. Theorems 2.4 and 2.8 imply that our necessary condition for graphsGwith γc2(G) = γ(G)+1 is not a sufficient
condition.

Lastly, we apply Theorems 2.4, 2.6, 2.7, 2.8, and 2.9 to stars, paths, and cycles. We let Sk, Pk and Ck denote a star, a
path and a cycle of order k, respectively.

Corollary 2.2. For k > 4, let G = g(Sk). Then γc2(G) = k, γc(G) = k − 1 and γ(G) = k − 2.

Corollary 2.3. For k > 3, let G = g(Pk). Then γc2(G) = k, γc(G) = k − 1 and γ(G) = k − 1.

Corollary 2.4. For k > 3, let G = g(Ck). Then γc2(G) = k, γc(G) = k − 1 and γ(G) = k − 1.
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