Research Article

Bargraphs of combinations with repetition

Aubrey Blecher, Arnold Knopfmacher

The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of Witwatersrand, South Africa

(Received: 13 June 2023. Received in revised form: 21 June 2023. Accepted: 15 January 2024. Published online: 4 April 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Generating functions that track some geometrical features of combinations with repetition are developed; namely, the semi-perimeter, inner site-perimeter, and outer site-perimeter, each of whose meanings depends on the interpretation of the combination as a bargraph. The paper has three theorems, which respectively give the total number for each of these statistics based on separate generating functions tracking these statistics.

Keywords: combinations with repetition; generating functions; semi-perimeter; site-perimeter.

2020 Mathematics Subject Classification: 05A10, 05A15.

1. General introduction

In elementary mathematics, choosing (allowing replacement of) \(p \) objects from \(n \) different objects, regardless of the order of choice, is called a combination with repetition. The number of possible such combinations is a basic and elementary statistic. Indeed, choosing a combination of \(j \) objects with repetition from a set of \(n \) objects can be done in \(\binom{n+j-1}{j} \) ways. By definition, such a combination is of the form \(\{c_1,c_2,\cdots,c_j\} \) where

\[
1 \leq c_1 \leq c_2 \leq \cdots \leq c_j \leq n.
\]

In this paper, we track the number of ways of choosing \(j \) integers from \([n] \), where we allow repetitions but ignore the order in which we choose the \(j \) integers. What is different here is that we track certain geometrical statistics of the combinations, namely the semi-perimeter, inner site-perimeter, and outer site-perimeter, which are defined below. The idea for this paper follows that of Mansour and Shabani [8], where these same statistics are studied in combinations that do not allow repetition. The geometric parameters above are based on the interpretation of such a combination as a bargraph. For a survey of topics related to bargraphs, see [7]. A bargraph representation of a combination \(c_1,c_2,\ldots,c_j \) of \(j \) integers from \([n] \) is a left-to-right sequence of columns whose lower boundaries are at the same level and where the \(i \)th column has \(c_i \) vertical squares, each of which is called a cell. We think of the cells of a bargraph as lying within a larger grid of such cells, some of which are inside the bargraph and the rest being outside.

In this paper, we study three statistics. Firstly, the semi-perimeter of a bargraph is half the number of edges on the boundary of the bargraph. Secondly, the inner site-perimeter is the number of cells inside the bargraph that have at least one common edge with an outside cell. Thirdly, the outer site-perimeter is the number of cells outside the bargraph that have at least one common edge with a cell inside the bargraph.

In this paper, we track the number of elements or the cardinality of combinations. We develop a different generating function in each of these sections; in the next section, the semi-perimeter, then the outer site-perimeter, and finally in the last section, the inner site-perimeter (see [6]).

As an example of the inner site-perimeter and outer site-perimeter, we illustrate in Figure 1.1, the combination \(\{2,4,4,5\} \). The outer site-perimeter is the sum of the cells marked by “o”, i.e., 16, whereas the inner site-perimeter is the sum of the cells marked by “x”, i.e., 12. The semi-perimeter of the bargraph is 9. The number of parts is clearly 4 and this is a combination whose parts come from \([n] \), where \(n \) is any integer greater than or equal to the largest part of the combination, say \(n = 6 \).
2. Semi-perimeter

We denote by \(\text{card}(\pi)\) the cardinality of the combination \(\pi\) of \([n]\). Let \(P_n(p, q)\) be the generating function for the number of combinations \(\pi\) of \([n]\) with repetition according to the statistics \(\text{card}\) tracked by \(p\) and semi-perimeter \((sp)\) tracked by \(q\).

\[
P_n(p, q) := \sum_{\pi \in C_n} p^{\text{card}(\pi)} q^{sp(\pi)}.
\]

Since each combination of \([n]\) either contains \(n\) or not, we have

\[
P_n(p, q) = P_{n-1}(p, q) + P_n(p, q|n), \tag{1}
\]

where \(P_n(p, q|i)\) is defined to be the generating function for such combinations ending in \(i\). We consider the two cases of cardinality 1 or larger (where the last two columns are \(jn\)) and therefore obtain:

\[
P_n(p, q|n) = pq^{n+1} + p \sum_{j=1}^{n-1} q^{n+1-j} P_j(p, q|j) \tag{2}
\]

which implies

\[
qP_{n-1}(p, q|n-1) = pq^{n+1} + p \sum_{j=1}^{n-1} q^{n+1-j} P_j(p, q|j) \tag{3}
\]

with \(P_1(p, q|1) = P_1(p, q) = \frac{pq^2}{1-pq}\). Subtracting Equation (3) from (2), we obtain

\[
P_n(p, q|n) = \frac{qP_{n-1}(p, q|n-1)}{1-pq},
\]

which we iterate \(n-1\) times to obtain

\[
P_n(p, q|n) = \frac{pq^n}{(1-pq)^n}.
\]

So, from Equation (1), we have

\[
P_n(p, q) = P_{n-1}(p, q) + \frac{pq^n}{(1-pq)^n}.
\]

Again, we iterate the latter equation to obtain

\[
P_n(p, q) = pq \sum_{j=1}^{n} \frac{q^j}{(1-pq)^j} = \frac{pq^2 (1-q^n (1-pq)^{-n})}{1 - (1+p)q}.
\]

To find the generating function for the total semi-perimeter we differentiate the last equation with respect to \(q\) and set \(q = 1\) to obtain

\[
\frac{\partial}{\partial q} \left(\frac{pq^2 (1-q^n (1-pq)^{-n})}{1 - (1+p)q} \right) \bigg|_{q=1} = -\frac{(1-p)^{-1-n} (1 - (1-p)^n + (-2 - n + 2(1-p)^n) p - (-1 + (1-p)^n) p^2)}{p}. \tag{4}
\]

Now, we extract the coefficient of \(p^j\) and obtain

\[
\frac{(1+j(1+j+n)) \binom{j+n}{j+1}}{j+n}.
\]

Finally, dividing by \(\binom{j+n-1}{j}\) (which is the number of combinations of \([n]\) with \(j\) parts allowing repetition), we obtain the next result.
Theorem 2.1. For fixed \(n \) and \(j \), the average semi-perimeter for the class of size \((j+n-1) \) of all combinations of \([n]\) with repetition and with \(j \) parts, is

\[
\frac{1 + j(1 + j + n)}{1 + j}.
\]

Example 2.1. When \(n = 3 \) and \(j = 4 \), we obtain the following list of the 15 combinations with repetition

\[
\{1,1,1,1\}, \{1,1,1,2\}, \{1,1,1,3\}, \{1,1,2,2\}, \{1,1,2,3\},
\{1,1,3,3\}, \{1,2,2,2\}, \{1,2,2,3\}, \{1,2,3,3\},
\{1,3,3,3\}, \{2,2,2,2\}, \{2,2,2,3\}, \{2,2,3,3\}, \{2,3,3,3\}, \{3,3,3,3\}\]

and average semi-perimeter of 33/5 as asserted by Theorem 2.1.

Next, we briefly consider the following problem. Suppose we are given a combination from \([n]\) with \(j \leq n \) parts and semi-perimeter \(k \), where \(k \geq j \). Can we find the generating function for the area of the different combinations having these properties?

The bargraph representation of the combination \(c_1, c_2, \ldots, c_j \) has area \(c_1 + c_2 + \cdots + c_j \) and fits within a rectangle of width \(j \) and height \(n \). The number of combination bargraphs that have exactly \(j \) columns and fit within such a rectangle is given by

\[
q^j \binom{n + j - 1}{j}_q,
\]

where

\[
\binom{n + j - 1}{j}_q
\]

is the \(q \)-binomial coefficient. This is in accordance with Equation (7.1) in [1]. Also \(q^j \binom{n+j-1}{j}_q \) is the generating function tracked by area for all combination bargraphs with \(j \) parts and semi-perimeter \(\leq n + j \).

Hence the generating function for all combinations with \(j \) parts and semi-perimeter \(k \) is given by

\[
q^j \binom{k-1}{j}_q - q^j \binom{k-2}{j}_q.
\]

Thus, by letting \(q \to 1 \), the number of bargraphs with semi-perimeter \(k \) is

\[
\binom{k-1}{j} - \binom{k-2}{j}.
\]

This gives the formula for the total semi-perimeter:

\[
\sum_{k=j+1}^{j+n} k \left(\binom{k-1}{j} - \binom{k-2}{j} \right) = \frac{n(j(n+1)+1) \left(\binom{j+n}{j} - \binom{j+n-1}{j} \right)}{j(j+1)}.
\]

Dividing this by \((n+j-1) \) we re-derive the average given in Theorem 2.1.

3. Outer site-perimeter

Outer site-perimeter is defined as the number of nearest neighbour cells outside the bargraph. See for example, [4, 5], where the statistic is simply called the site-perimeter. Outer site-perimeter is illustrated in the left portion of Figure 1.1.

Let \(P_n(p, q) \) be the generating function for the number of combinations \(\pi \) of \([n]\) according to the statistics \(\text{card} \) tracked by \(p \) and \(\text{op} \) (outer site-perimeter) tracked by \(q \).

Also, we define \(P_0(p, q) = 1 \). First, let us write a recurrence relation for \(P_n(p, q) \). Since each combination of \([n]\) either contains \(n \) or not, we have

\[
P_n(p, q) = P_{n-1}(p, q) + P_n(p, q|n),
\]

where \(P_n(p, q|n) \) is the generating function for the number of combinations of \([n]\) that contain \(n \), again according to the statistics \(\text{card} \) and \(\text{op} \). Since each combination \(\pi \) of \([n]\) that contains \(n \) either has only one element, or the second maximal element in \(\pi \) is either \(j, 1 \leq j \leq n - 1 \) or \(n \), we obtain

\[
P_n(p, q|n) = pq^{2n+2} + \sum_{j=1}^{n-1} q^{2n+1-2j} P_j(p, q|j) + pq^2 P_n(p, q|n).
\]
Hence
\[P_n(p, q|n) = \frac{pq^{2n+2}}{1 - pq^2} + \frac{p}{1 - pq^2} \sum_{j=1}^{n-1} q^{2n+1-2j} P_j(p, q|j), \]
from which we obtain
\[q^2 P_{n-1}(p, q|n-1) = \frac{pq^{2n+2}}{1 - pq^2} + \frac{p}{1 - pq^2} - \sum_{j=1}^{n-2} q^{2n+1-2j} P_j(p, q|j). \]
Subtracting the latter equation from the previous one, we obtain the recursion
\[P_n(p, q|n) = \left(q^2 + \frac{pq^3}{1 - pq^2} \right) P_{n-1}(p, q|n-1) \]
where
\[P_1(p, q|1) = \frac{pq^4}{1 - pq^2}, \]
and iterating this yields
\[P_n(p, q|n) = \frac{pq^2}{1 + pq - pq^2} \left(\frac{q^2(-1 + p(-1 + q)p)}{-1 + pq^2} \right)^n. \]
Now, substituting this into Equation (6) we obtain
\[P_n(p, q) = 1 + \sum_{j=1}^{n} P_n(p, q|j) \]
\[= \frac{1 - (1+p)q^2 - pq^3 - pq^4 \left(-2 + \left(q^2(-1 + p(-1 + q)p) \right) \right)^n}{1 - (1+p)q^2 - pq^3 + pq^4}. \] (7)
Differentiating with respect to \(q \) and putting \(q = 1 \), we find the generating function for the total outer site-perimeter to be
\[\left. \frac{\partial P_n(p, q)}{\partial q} \right|_{q=1} = -3 + \frac{2}{p} + \left(5 + 2n - \frac{2}{p} + (-3 - n)p + np^2 \right) \left(\frac{1}{1-p} \right)^{n+1}. \]
Next, we extract the coefficient of this partial derivative to obtain
\[[p^j] \frac{\partial P_n(p, q)}{\partial q} \bigg|_{q=1} = (5 + 2n) \binom{n+j}{j} - 2 \binom{n+j+1}{j+1} - (3 + n) \binom{n+j-1}{j-1} + n \binom{n+j-2}{j-2} \]
\[= -3 + j^2 + 2j^3 + 3 \left(1 + j^2 \right) n + 2jn^2 \left(j + n \right) \frac{1}{(n+j)(n+j-1)}. \] (8)
Now, dividing by \(\binom{j+n-1}{j} \), we obtain the next result.

Theorem 3.1. For fixed \(n \) and \(j \), the average outer site-perimeter for the class of size \(\binom{j+n-1}{j} \) of all combinations of \([n]\) with repetition and with \(j \) parts, is
\[\frac{3 - j^2 - 2j^3 - 3 \left(1 + j^2 \right) n - 2jn^2}{(1+j)(1-j-n)}. \]

Example 3.1. When \(n = 3 \) and \(j = 4 \), the list of the 15 combinations with repetition given in (5) has average outer site-perimeter of 61/5 as asserted by Theorem 3.1.

4. Inner site-perimeter

The inner site-perimeter is defined as the number of cells inside the bargraph that have at least one-edge lying on the bargraph perimeter; for example, see [2, 3]. The inner site-perimeter is illustrated in the right-hand portion of Figure 1.1.

Let \(P_n(p, q) \) be the generating function for the number of combinations \(\pi \) of \([n]\) according to the statistics \(\text{card} \) tracked by \(p \) and \(\text{ip} \) (i.e., inner site-perimeter) tracked by \(q \).

Notationally, we use \(P_n(p, q|j_1, j_2, \ldots, j_s) \) to mean the generating function for combinations of \([n]\) that end with the parts \(j_1, j_2, \ldots, j_s \).

The strategy for obtaining the generating function in this section is to express \(P_n(p, q|jn) \) in terms of \(P_{j+1}(p, q|j(j+1)) \). This will enable us to solve for the generating function recursively as specified later, in Equation (17).
Also, we define \(P_0(p, q) = 1 \). First, let us write a recurrence relation for \(P_n(p, q) \). Since each combination of \([n]\) either contains \(n \) or not, we have

\[
P_n(p, q) = P_{n-1}(p, q) + P_n(p, q|n)
\]

(9)

where \(P_n(p, q|n) \) is the generating function for the number of combinations of \([n]\) that contain \(n \), again according to the statistics \(\text{card} \) and \(i_p \). Since each combination \(\pi \) of \([n]\) that contains \(n \) either has only one element, or the second maximal element in \(\pi \) is either \(j \) (\(1 \leq j \leq n-1 \)) or \(n \), we obtain

\[
P_n(p, q|n) = pq^n + \sum_{j=1}^{n-1} P_n(p, q|jn) + P_n(p, q|nn)
\]

(10)

\[
= pq^n + \sum_{j=1}^{n-1} q^{n-1-j} P_{j+1}(p, q|j(j+1)) + P_n(p, q|nn),
\]

(11)

where the summand \(q^{n-1-j} P_{j+1}(p, q|j(j+1)) \) is a replacement for the summand of the previous line \(P_n(p, q|jn) \) by exchanging \(n \) with \(j+1 \) and compensating with \(q^{n-1-j} \). Now, focusing on \(P_n(p, q|nn) \), we obtain

\[
P_n(p, q|nn) = p^2q^{2n} + \sum_{j=1}^{n-1} P_n(p, q|jnn) + P_n(p, q|nnn)
\]

(12)

\[
= p^2q^{2n} + \sum_{j=1}^{n-1} pq^{n+1-j} P_n(p, q|jn) + pq^2 P_n(p, q|nn).
\]

Hence

\[
P_n(p, q|nn) = \frac{p^2q^{2n}}{1-pq^2} + \frac{p}{1-pq^2} \sum_{j=1}^{n-1} q^{n+1-j} P_n(p, q|jn).
\]

(13)

Now, we substitute the latter equation into Equation (10) to obtain

\[
P_n(p, q|n) = pq^n + \sum_{j=1}^{n-1} P_n(p, q|jn) + \frac{p^2q^{2n}}{1-pq^2} + \frac{p}{1-pq^2} \sum_{j=1}^{n-1} q^{n+1-j} P_n(p, q|jn)
\]

\[
= pq^n + \frac{p^2q^{2n}}{1-pq^2} + \sum_{j=1}^{n-1} \left(1 + \frac{pq^{n+1-j}}{1-pq^2}\right) P_n(p, q|jn)
\]

\[
= pq^n + \frac{p^2q^{2n}}{1-pq^2} + \sum_{j=1}^{n-1} \left(1 + \frac{pq^{n+1-j}}{1-pq^2}\right) q^{n-1-j} P_{j+1}(p, q|j(j+1)),
\]

(14)

where the last line follows using (11).

Next, for \(j > 1 \), we have

\[
P_{j+1}(p, q|j(j+1)) = p^2q^{2j+1} + \sum_{i=1}^{j-1} P_{j+1}(p, q|i(j+1))
\]

\[
= p^2q^{2j+1} + \sum_{i=1}^{j-1} q^{2(j-1-i)} P_{i+2}(p, q|i+1(i+2)) + P_{j+1}(p, q|j(j+1))
\]

\[
= p^2q^{2j+1} + p \sum_{i=1}^{j-1} q^{2j+1-2i} P_{i+1}(p, q|i+1) + pq^2 P_{j+1}(p, q|j(j+1)).
\]

Hence for \(j > 1 \), we have

\[
P_{j+1}(p, q|j(j+1)) = \frac{p^2q^{2j+1}}{1-pq^2} + \frac{p}{1-pq^2} \sum_{i=1}^{j-1} q^{2j+1-2i} P_{i+1}(p, q|i+1).
\]

(15)

Thus, for \(j > 2 \), we obtain

\[
P_{j+1}(p, q|j(j+1)) - q^2 P_j(p, q|(j-1)j) = \frac{p}{1-pq^2} q^2 P_j(p, q|(j-1)j).
\]

(16)

\[
P_{j+1}(p, q|j(j+1)) = q^2 \left(\frac{pq}{1-pq^2} + 1 \right) P_j(p, q|(j-1)j).
\]

(17)
Since $P_3(p, q|23) = \frac{1}{1-pq} \frac{p^2q^2}{1-pq^2}$, by iteration for $j \geq 2$, we have

$$P_{j+1}(p, q, j(j+1)) = P_j(p, q|23)q^{2j-4} \left(\frac{pq}{1-pq^2} + 1\right)^{j-2}$$

(18)

Substitute this into Equation (14) to obtain

$$P_n(p, q|n) = pq^n + \frac{p^2q^{2n}}{1-pq^2} + \left(1 + \frac{pq^n}{1-pq^2}\right) q^{n-2}P_2(p, q|12) + \sum_{j=2}^{n-1} \frac{p^2q^{2n-1-j}}{1-pq^2} q^{n-1-j}P_n(p, q|23)q^{2j-4} \left(1 + \frac{pq}{1-pq^2}\right)^{j-2} \left(1 + \frac{pq^{n+1-j}}{1-pq^2}\right).$$

(19)

Now, by substituting this into Equation (9), we obtain

$$P_n(p, q) = 1 + \sum_{j=1}^{n} P_n(p, q|j) = 1 + pq \left(1 - pq^2\right) \times \frac{(1 - (1 + 2p)q^2 - pq^3 + pq^4 - q^4(1 - (1 + p)q^2 + pq) + pq^{2+2n} \left(1 + \frac{pq}{1-pq^2}\right)^n)}{(1 - pq)(1 - q - 2pq^2 + pq^3)(1 - (1 + p)q^2 - pq^3 + pq^4)},$$

(20)

where the simplification is a result of summing a finite geometric series. Differentiating with respect to q and putting $q = 1$, we find the generating function for the total inner site-perimeter to be

$$\left.\frac{\partial P_n(p, q)}{\partial q}\right|_{q=1} = \frac{3 - 4p + np + 2p^2 - np^2}{(1 - p)p} - \frac{3 - 4p - 2np + 2p^2 + np^2 - np^3}{(1 - p)p} \left(\frac{1}{1 - p}\right)^n.$$

(21)

Next, we extract the coefficient of this partial derivative to obtain

$$\left.\frac{[p^j]}{p} \frac{\partial P_n(p, q)}{\partial q}\right|_{q=1} = -3 \binom{n+j}{j+1} + (1+2n) \binom{n+j-1}{j} + (n-1) \binom{n+j-2}{j-1} + (2n-1) \sum_{i=2}^{j} \binom{n+j-1-i}{j-i} + 1$$

$$= (2n-1) \binom{j+n-2}{j-2} + (n-1) \binom{j+n-2}{j-1} + (2n+1) \binom{j+n-1}{j} - 3 \binom{j+n}{j+1} + 1.$$

(22)

Dividing by $\binom{j+n-1}{j}$, we obtain the next theorem.

Theorem 4.1. For fixed n and j, the average inner site-perimeter for the class of size $(j+n-1)$ of all combinations of $[n]$ with repetition and with j parts, is

$$\frac{(2j-1)n}{1+j} + j - 2 + \frac{3}{1+j} - \frac{j}{n} + \frac{(j-1)n}{j+n-1} + \frac{1}{(j+n-1)}.$$

Example 4.1. When $n = 3$ and $j = 4$, the list of the 15 combinations with repetition given in (5) has average inner site-perimeter of 113/15 as asserted by Theorem 4.1.
References