Bargraphs of combinations with repetition

Aubrey Blecher, Arnold Knopfmacher*
The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of Witwatersrand, South Africa

(Received: 13 June 2023. Received in revised form: 21 June 2023. Accepted: 15 January 2024. Published online: 4 April 2024.)
© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Generating functions that track some geometrical features of combinations with repetition are developed; namely, the semiperimeter, inner site-perimeter, and outer site-perimeter, each of whose meanings depends on the interpretation of the combination as a bargraph. The paper has three theorems, which respectively give the total number for each of these statistics based on separate generating functions tracking these statistics.

Keywords: combinations with repetition; generating functions; semi-perimeter; site-perimeter.
2020 Mathematics Subject Classification: 05A10, 05A15.

1. General introduction

In elementary mathematics, choosing (allowing replacement of) p objects from n different objects, regardless of the order of choice, is called a combination with repetition. The number of possible such combinations is a basic and elementary statistic. Indeed, choosing a combination of j objects with repetition from a set of n objects can be done in $\binom{n+j-1}{j}$ ways. By definition, such a combination is of the form $\left\{c_{1}, c_{2}, \cdots, c_{j}\right\}$ where

$$
1 \leq c_{1} \leq c_{2} \leq \cdots \leq c_{j} \leq n .
$$

In this paper, we track the number of ways of choosing j integers from $[n]$, where we allow repetitions but ignore the order in which we choose the j integers. What is different here is that we track certain geometrical statistics of the combinations, namely the semi-perimeter, inner site-perimeter, and outer site-perimeter, which are defined below. The idea for this paper follows that of Mansour and Shabani [8], where these same statistics are studied in combinations that do not allow repetition. The geometric parameters above are based on the interpretation of such a combination as a bargraph. For a survey of topics related to bargraphs, see [7]. A bargraph representation of a combination $c_{1}, c_{2}, \ldots c_{j}$ of j integers from $[n]$ is a left-to-right sequence of columns whose lower boundaries are at the same level and where the i th column has c_{i} vertical squares, each of which is called a cell. We think of the cells of a bargraph as lying within a larger grid of such cells, some of which are inside the bargraph and the rest being outside.

In this paper, we study three statistics. Firstly, the semi-perimeter of a bargraph is half the number of edges on the boundary of the bargraph. Secondly, the inner site-perimeter is the number of cells inside the bargraph that have at least one common edge with an outside cell. Thirdly, the outer site-perimeter is the number of cells outside the bargraph that have at least one common edge with a cell inside the bargraph.

The statistic that is fixed over all three subsequent sections is the number of elements or the cardinality of combinations. We develop a different generating function in each of these sections; in the next section, the semi-perimeter, then the outer site-perimeter, and finally in the last section, the inner site-perimeter (see [6]).

As an example of the inner site-perimeter and outer site-perimeter, we illustrate in Figure 1.1, the combination $\{2,4,4,5\}$. The outer site-perimeter is the sum of the cells marked by " 0 ", i.e., 16 , whereas the inner site-perimeter is the sum of the cells marked by " x ", i.e., 12 . The semi-perimeter of the bargraph is 9 . The number of parts is clearly 4 and this is a combination whose parts come from $[n]$, where n is any integer greater than or equal to the largest part of the combination, say $n=6$.

[^0]

Figure 1.1: Outer and inner site-perimeters of the combination $\{2,4,4,5\}$ of $[6]$ with four parts.

2. Semi-perimeter

We denote by $\operatorname{card}(\pi)$ the cardinality of the combination π of $[n]$. Let $P_{n}(p, q)$ be the generating function for the number of combinations π of $[n]$ with repetition according to the statistics card tracked by p and semi-perimeter ($s p$) tracked by q.

$$
P_{n}(p, q):=\sum_{\pi \in C_{n}} p^{\operatorname{card}(\pi)} q^{s p(\pi)} .
$$

Since each combination of [n] either contains n or not, we have

$$
\begin{equation*}
P_{n}(p, q)=P_{n-1}(p, q)+P_{n}(p, q \mid n), \tag{1}
\end{equation*}
$$

where $P_{n}(p, q \mid i)$ is defined to be the generating function for such combinations ending in i. We consider the two cases of cardinality 1 or larger (where the last two columns are $j n$) and therefore obtain:

$$
\begin{equation*}
P_{n}(p, q \mid n)=p q^{n+1}+p \sum_{j=1}^{n} q^{n+1-j} P_{j}(p, q \mid j) \tag{2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
q P_{n-1}(p, q \mid n-1)=p q^{n+1}+p \sum_{j=1}^{n-1} q^{n+1-j} P_{j}(p, q \mid j) \tag{3}
\end{equation*}
$$

with $P_{1}(p, q \mid 1)=P_{1}(p, q)=\frac{p q^{2}}{1-p q}$. Subtracting Equation (3) from (2), we obtain

$$
P_{n}(p, q \mid n)=\frac{q P_{n-1}(p, q \mid n-1)}{1-p q}
$$

which we iterate $n-1$ times to obtain

$$
P_{n}(p, q \mid n)=\frac{p q q^{n}}{(1-p q)^{n}} .
$$

So, from Equation (1), we have

$$
P_{n}(p, q)=P_{n-1}(p, q)+\frac{p q q^{n}}{(1-p q)^{n}}
$$

Again, we iterate the latter equation to obtain

$$
P_{n}(p, q)=p q \sum_{j=1}^{n} \frac{q^{j}}{(1-p q)^{j}}=\frac{p q^{2}\left(1-q^{n}(1-p q)^{-n}\right)}{1-(1+p) q}
$$

To find the generating function for the total semi-perimeter we differentiate the last equation with respect to q and set $q=1$ to obtain

$$
\begin{equation*}
\left.\frac{\partial}{\partial q} \frac{p q^{2}\left(1-q^{n}(1-p q)^{-n}\right)}{1-(1+p) q}\right|_{q=1}=-\frac{(1-p)^{-1-n}\left(1-(1-p)^{n}+\left(-2-n+2(1-p)^{n}\right) p-\left(-1+(1-p)^{n}\right) p^{2}\right)}{p} . \tag{4}
\end{equation*}
$$

Now, we extract the coefficient of p^{j} and obtain

$$
\frac{(1+j(1+j+n))\binom{j+n}{j+1}}{j+n} .
$$

Finally, dividing by $\binom{j+n-1}{j}$ (which is the number of combinations of $[n]$ with j parts allowing repetition), we obtain the next result.

Theorem 2.1. For fixed n and j, the average semi-perimeter for the class of size $\binom{j+n-1}{j}$ of all combinations of $[n]$ with repetition and with j parts, is

$$
\frac{1+j(1+j+n)}{1+j}
$$

Example 2.1. When $n=3$ and $j=4$, we obtain the following list of the 15 combinations with repetition

$$
\begin{array}{r}
\{\{1,1,1,1\},\{1,1,1,2\},\{1,1,1,3\},\{1,1,2,2\},\{1,1,2,3\}, \\
\{1,1,3,3\},\{1,2,2,2\},\{1,2,2,3\},\{1,2,3,3\},\{1,3,3,3\} \\
\{2,2,2,2\},\{2,2,2,3\},\{2,2,3,3\},\{2,3,3,3\},\{3,3,3,3\}\} \tag{5}
\end{array}
$$

and average semi-perimeter of $33 / 5$ as asserted by Theorem 2.1.
Next, we briefly consider the following problem. Suppose we are given a combination from $[n]$ with $j \leq n$ parts and semi-perimeter k, where $k \geq j$. Can we find the generating function for the area of the different combinations having these properties?

The bargraph representation of the combination $c_{1}, c_{2}, \cdots, c_{j}$ has area $c_{1}+c_{2}+\cdots+c_{j}$ and fits within a rectangle of width j and height n. The number of combination bargraphs that have exactly j columns and fit within such a rectangle is given by

$$
q^{j}\binom{n+j-1}{j}_{q}
$$

where

$$
\binom{n+j-1}{j}_{q}
$$

is the q-binomial coefficient. This is in accordance with Equation (7.1) in [1]. Also $q^{j}\left({ }_{j}^{n+j-1}\right)_{q}$ is the generating function tracked by area for all combination bargraphs with j parts and semi-perimeter $\leq n+j$.

Hence the generating function for all combinations with j parts and semi-perimeter k is given by

$$
q^{j}\binom{k-1}{j}_{q}-q^{j}\binom{k-2}{j}_{q}
$$

Thus, by letting $q \rightarrow 1$, the number of bargraphs with semi-perimeter k is

$$
\binom{k-1}{j}-\binom{k-2}{j} .
$$

This gives the formula for the total semi-perimeter:

$$
\sum_{k=j+1}^{j+n} k\left(\binom{k-1}{j}-\binom{k-2}{j}\right)=\frac{n(j(j+n+1)+1)\left(\binom{j+n}{j}-\binom{j+n-1}{j}\right)}{j(j+1)} .
$$

Dividing this by $\binom{n+j-1}{j}$ we re-derive the average given in Theorem 2.1.

3. Outer site-perimeter

Outer site-perimeter is defined as the number of nearest neighbour cells outside the bargraph. See for example, [4, 5], where the statistic is simply called the site-perimeter. Outer site-perimeter is illustrated in the left portion of Figure 1.1.

Let $P_{n}(p, q)$ be the generating function for the number of combinations π of $[n]$ according to the statistics card tracked by p and $o p$ (outer site-perimeter) tracked by q.

Also, we define $P_{0}(p, q)=1$. First, let us write a recurrence relation for $P_{n}(p, q)$. Since each combination of $[n]$ either contains n or not, we have

$$
\begin{equation*}
P_{n}(p, q)=P_{n-1}(p, q)+P_{n}(p, q \mid n), \tag{6}
\end{equation*}
$$

where $P_{n}(p, q \mid n)$ is the generating function for the number of combinations of [n] that contain n, again according to the statistics card and op. Since each combination π of $[n]$ that contains n either has only one element, or the second maximal element in π is either $j, 1 \leq j \leq n-1$ or n, we obtain

$$
P_{n}(p, q \mid n)=p q^{2 n+2}+p \sum_{j=1}^{n-1} q^{2 n+1-2 j} P_{j}(p, q \mid j)+p q^{2} P_{n}(p, q \mid n)
$$

Hence

$$
P_{n}(p, q \mid n)=\frac{p q^{2 n+2}}{1-p q^{2}}+\frac{p}{1-p q^{2}} \sum_{j=1}^{n-1} q^{2 n+1-2 j} P_{j}(p, q \mid j)
$$

from which we obtain

$$
q^{2} P_{n-1}(p, q \mid n-1)=\frac{p q^{2 n+2}}{1-p q^{2}}+\frac{p}{1-p q^{2}}-\sum_{j=1}^{n-2} q^{2 n+1-2 j} P_{j}(p, q \mid j)
$$

Subtracting the latter equation from the previous one, we obtain the recursion

$$
P_{n}(p, q \mid n)=\left(q^{2}+\frac{p q^{3}}{1-p q^{2}}\right) P_{n-1}(p, q \mid n-1)
$$

where

$$
P_{1}(p, q \mid 1)=\frac{p q^{4}}{1-p q^{2}}
$$

and iterating this yields

$$
P_{n}(p, q \mid n)=\frac{p q^{2}}{1+p q-p q^{2}}\left(\frac{q^{2}(-1+p(-1+q) q)}{-1+p q^{2}}\right)^{n}
$$

Now, substituting this into Equation (6) we obtain

$$
\begin{align*}
P_{n}(p, q) & =1+\sum_{j=1}^{n} P_{n}(p, q \mid j) \\
& =\frac{1-(1+p) q^{2}-p q^{3}-p q^{4}\left(-2+\left(\frac{q^{2}(-1+p(-1+q) q)}{-1+p q^{2}}\right)^{n}\right)}{1-(1+p) q^{2}-p q^{3}+p q^{4}} \tag{7}
\end{align*}
$$

Differentiating with respect to q and putting $q=1$, we find the generating function for the total outer site-perimeter to be

$$
\left.\frac{\partial P_{n}(p, q)}{\partial q}\right|_{q=1}=-3+\frac{2}{p}+\left(5+2 n-\frac{2}{p}+(-3-n) p+n p^{2}\right)\left(\frac{1}{1-p}\right)^{n+1}
$$

Next, we extract the coefficient of this partial derivative to obtain

$$
\begin{align*}
{\left.\left[p^{j}\right] \frac{\partial P_{n}(p, q)}{\partial q}\right|_{q=1} } & =(5+2 n)\binom{n+j}{j}-2\binom{n+j+1}{j+1}-(3+n)\binom{n+j-1}{j-1}+n\binom{n+j-2}{j-2} \\
& =\frac{-3+j^{2}+2 j^{3}+3\left(1+j^{2}\right) n+2 j n^{2}}{(n+j)(n+j-1)}\binom{j+n}{j+1} \tag{8}
\end{align*}
$$

Now, dividing by $\binom{j+n-1}{j}$, we obtain the next result.
Theorem 3.1. For fixed n and j, the average outer site-perimeter for the class of size $\binom{j+n-1}{j}$ of all combinations of $[n]$ with repetition and with j parts, is

$$
\frac{3-j^{2}-2 j^{3}-3\left(1+j^{2}\right) n-2 j n^{2}}{(1+j)(1-j-n)}
$$

Example 3.1. When $n=3$ and $j=4$, the list of the 15 combinations with repetition given in (5) has average outer siteperimeter of $61 / 5$ as asserted by Theorem 3.1.

4. Inner site-perimeter

The inner site-perimeter is defined as the number of cells inside the bargraph that have at least one-edge lying on the bargraph perimeter; for example, see [2,3]. The inner site-perimeter is illustrated in the right-hand portion of Figure 1.1.

Let $P_{n}(p, q)$ be the generating function for the number of combinations π of $[n]$ according to the statistics card tracked by p and $i p$ (i.e., inner site-perimeter) tracked by q.

Notationally, we use $P_{n}\left(p, q \mid j_{1}, j_{2}, \ldots, j_{s}\right)$ to mean the generating function for combinations of $[n]$ that end with the parts $j_{1}, j_{2}, \ldots j_{s}$.

The strategy for obtaining the generating function in this section is to express $P_{n}(p, q \mid j n)$ in terms of $P_{j+1}(p, q \mid j(j+1))$. This will enable us to solve for the generating function recursively as specified later, in Equation (17).

Also, we define $P_{0}(p, q)=1$. First, let us write a recurrence relation for $P_{n}(p, q)$. Since each combination of $[n]$ either contains n or not, we have

$$
\begin{equation*}
P_{n}(p, q)=P_{n-1}(p, q)+P_{n}(p, q \mid n) \tag{9}
\end{equation*}
$$

where $P_{n}(p, q \mid n)$ is the generating function for the number of combinations of $[n]$ that contain n, again according to the statistics card and $i p$. Since each combination π of $[n]$ that contains n either has only one element, or the second maximal element in π is either $j(1 \leq j \leq n-1)$ or n, we obtain

$$
\begin{align*}
P_{n}(p, q \mid n) & =p q^{n}+\sum_{j=1}^{n-1} P_{n}(p, q \mid j n)+P_{n}(p, q \mid n n) \tag{10}\\
& =p q^{n}+\sum_{j=1}^{n-1} q^{n-1-j} P_{j+1}(p, q \mid j(j+1))+P_{n}(p, q \mid n n) \tag{11}
\end{align*}
$$

where the summand $q^{n-1-j} P_{j+1}(p, q \mid j(j+1))$ is a replacement for the summand of the previous line $P_{n}(p, q \mid j n)$ by exchanging n with $j+1$ and compensating with q^{n-1-j}. Now, focusing on $P_{n}(p, q \mid n n)$, we obtain

$$
\begin{align*}
P_{n}(p, q \mid n n) & =p^{2} q^{2 n}+\sum_{j=1}^{n-1} P_{n}(p, q \mid j n n)+P_{n}(p, q \mid n n n) \\
& =p^{2} q^{2 n}+\sum_{j=1}^{n-1} p q^{n+1-j} P_{n}(p, q \mid j n)+p q^{2} P_{n}(p, q \mid n n) . \tag{12}
\end{align*}
$$

Hence

$$
\begin{equation*}
P_{n}(p, q \mid n n)=\frac{p^{2} q^{2 n}}{1-p q^{2}}+\frac{p}{1-p q^{2}} \sum_{j=1}^{n-1} q^{n+1-j} P_{n}(p, q \mid j n) \tag{13}
\end{equation*}
$$

Now, we substitute the latter equation into Equation (10) to obtain

$$
\begin{align*}
P_{n}(p, q \mid n) & =p q^{n}+\sum_{j=1}^{n-1} P_{n}(p, q \mid j n)+\frac{p^{2} q^{2 n}}{1-p q^{2}}+\frac{p}{1-p q^{2}} \sum_{j=1}^{n-1} q^{n+1-j} P_{n}(p, q \mid j n) \\
& =p q^{n}+\frac{p^{2} q^{2 n}}{1-p q^{2}}+\sum_{j=1}^{n-1}\left(1+\frac{p q^{n+1-j}}{1-p q^{2}}\right) P_{n}(p, q \mid j n) \\
& =p q^{n}+\frac{p^{2} q^{2 n}}{1-p q^{2}}+\sum_{j=1}^{n-1}\left(1+\frac{p q^{n+1-j}}{1-p q^{2}}\right) q^{n-1-j} P_{j+1}(p, q \mid j(j+1)) \tag{14}
\end{align*}
$$

where the last line follows using (11).
Next, for $j>1$, we have

$$
\begin{aligned}
& P_{j+1}(p, q \mid j(j+1))=p^{2} q^{2 j+1}+\sum_{i=1}^{j} P_{j+1}(p, q \mid i j(j+1)) \\
& =p^{2} q^{2 j+1}+\sum_{i=1}^{j-1} q^{2(j-1-i)} P_{i+2}(p, q \mid i(i+1)(i+2))+P_{j+1}(p, q \mid j j(j+1)) \\
& =p^{2} q^{2 j+1}+p \sum_{i=1}^{j-1} q^{2 j+1-2 i} P_{i+1}(p, q \mid i(i+1))+p q^{2} P_{j+1}(p, q \mid j(j+1))
\end{aligned}
$$

Hence for $j>1$, we have

$$
\begin{equation*}
P_{j+1}(p, q \mid j(j+1))=\frac{p^{2} q^{2 j+1}}{1-p q^{2}}+\frac{p}{1-p q^{2}} \sum_{i=1}^{j-1} q^{2 j+1-2 i} P_{i+1}(p, q \mid i(i+1)) \tag{15}
\end{equation*}
$$

Thus, for $j>2$, we obtain

$$
\begin{gather*}
P_{j+1}(p, q \mid j(j+1))-q^{2} P_{j}(p, q \mid(j-1) j)=\frac{p}{1-p q^{2}} q^{3} P_{j}(p, q \mid(j-1) j) \tag{16}\\
P_{j+1}(p, q \mid j(j+1))=q^{2}\left(\frac{p q}{1-p q^{2}}+1\right) P_{j}(p, q \mid(j-1) j) \tag{17}
\end{gather*}
$$

Since $P_{3}(p, q \mid 23)=\frac{1}{1-p q} \frac{p^{2} q^{5}}{1-p q^{2}}$, by iteration for $j \geq 2$, we have

$$
\begin{equation*}
P_{j+1}(p, q \mid j(j+1))=P_{3}(p, q \mid 23) q^{2 j-4}\left(\frac{p q}{1-p q^{2}}+1\right)^{j-2} \tag{18}
\end{equation*}
$$

Substitute this into Equation (14) to obtain

$$
\begin{align*}
P_{n}(p, q \mid n) & =p q^{n}+\frac{p^{2} q^{2 n}}{1-p q^{2}}+\left(1+\frac{p q^{n}}{1-p q^{2}}\right) q^{n-2} P_{2}(p, q \mid 12) \\
& +\sum_{j=2}^{n-1}\left(1+\frac{p q^{n+1-j}}{1-p q^{2}}\right) q^{n-1-j} P_{3}(p, q \mid 23) q^{2 j-4}\left(1+\frac{p q}{1-p q^{2}}\right)^{j-2} \\
& =p q^{n}+\frac{p^{2} q^{2 n}}{1-p q^{2}}+\left(1+\frac{p q^{n}}{1-p q^{2}}\right) q^{n-2} P_{2}(p, q \mid 12) \\
& +\frac{1}{1-p q^{2}} \sum_{j=2}^{n-1} q^{n-1-j} \frac{p^{2} q^{5}}{1-p q} q^{2 j-4}\left(1+\frac{p q}{1-p q^{2}}\right)^{j-2}\left(1+\frac{p q^{n+1-j}}{1-p q^{2}}\right) \\
& =p q^{n}+\frac{p^{2} q^{2 n}}{1-p q^{2}}+\left(1+\frac{p q^{n}}{1-p q^{2}}\right) q^{n-2} P_{2}(p, q \mid 12) \\
& +\frac{p^{2} q^{n}}{(1-p q)\left(1-p q^{2}\right)} \sum_{j=2}^{n-1} q^{j}\left(1+\frac{p q}{1-p q^{2}}\right)^{j-2}\left(1+\frac{p q^{n+1-j}}{1-p q^{2}}\right) . \\
& =\frac{p q^{n}\left(1-p q^{2}\right)\left(1-q+p q-2 p q^{2}+p q^{3}-p q^{1+n}\left(1+\frac{p q}{1-p q^{2}}\right)^{n}\right)}{(1-p q)(1+p(1-q) q)\left(1-q-2 p q^{2}+p q^{3}\right)} . \tag{19}
\end{align*}
$$

Now, by substituting this into Equation (9), we obtain

$$
\begin{align*}
P_{n}(p, q) & =1+\sum_{j=1}^{n} P_{n}(p, q \mid j) \\
& =1+p q\left(1-p q^{2}\right) \times \frac{\left(1-(1+2 p) q^{2}-p q^{3}+p q^{4}-q^{n}\left(1-(1+p) q^{2}-p q^{3}+p q^{4}\right)+p q^{2+2 n}\left(1+\frac{p q}{1-p q^{2}}\right)^{n}\right)}{(1-p q)\left(1-q-2 p q^{2}+p q^{3}\right)\left(1-(1+p) q^{2}-p q^{3}+p q^{4}\right)} \tag{20}
\end{align*}
$$

where the simplification is a result of summing a finite geometric series. Differentiating with respect to q and putting $q=1$, we find the generating function for the total inner site-perimeter to be

$$
\begin{equation*}
\left.\frac{\partial P_{n}(p, q)}{\partial q}\right|_{q=1}=\frac{3-4 p+n p+2 p^{2}-n p^{2}}{(1-p) p}-\frac{\left(3-4 p-2 n p+2 p^{2}+n p^{2}-n p^{3}\right)}{(1-p) p}\left(\frac{1}{1-p}\right)^{n} \tag{21}
\end{equation*}
$$

Next, we extract the coefficient of this partial derivative to obtain

$$
\begin{align*}
{\left.\left[p^{j}\right] \frac{\partial P_{n}(p, q)}{\partial q}\right|_{q=1} } & =-3\binom{n+j}{j+1}+(1+2 n)\binom{n+j-1}{j}+(n-1)\binom{n+j-2}{j-1}+(2 n-1) \sum_{i=2}^{j}\binom{n+j-1-i}{j-i}+1 \\
& =(2 n-1)\binom{j+n-2}{j-2}+(n-1)\binom{j+n-2}{j-1}+(2 n+1)\binom{j+n-1}{j}-3\binom{j+n}{j+1}+1 \tag{22}
\end{align*}
$$

Dividing by $\binom{j+n-1}{j}$, we obtain the next theorem.
Theorem 4.1. For fixed n and j, the average inner site-perimeter for the class of size $\binom{j+n-1}{j}$ of all combinations of $[n]$ with repetition and with j parts, is

$$
\frac{(2 j-1) n}{1+j}+j-2+\frac{3}{1+j}-\frac{j}{n}+\frac{(j-1) j}{j+n-1}+\frac{1}{\binom{j+n-1}{j}} .
$$

Example 4.1. When $n=3$ and $j=4$, the list of the 15 combinations with repetition given in (5) has average inner siteperimeter of $113 / 15$ as asserted by Theorem 4.1.

References

[1] G. Andrews, K. Eriksson, Integer Partitions, Cambridge University, Cambridge, 2004.
[2] A. Blecher, C. Brennan, A. Knopfmacher, The inner site-perimeter of compositions, Quaest. Math. 43 (2020) 55-66
[3] A. Blecher, C. Brennan, A. Knopfmacher, The inner site-perimeter of bargraphs, Online J. Anal. Combin. 16 (2021) \#2.
[4] A. Blecher, C. Brennan, A. Knopfmacher, The site-perimeter of compositions, Discrete Math. Appl. 32 (2022) 75-89.
[5] M. Bousquet-Mélou, A. Rechnitzer, The site-perimeter of bargraphs, Adv. Appl. Math. 31 (2003) 86-112.
[6] T. Mansour, Semi-perimeter and inner site-perimeter of k-ary words and bargraphs, Art Discrete Appl. Math. 4 (2021) \#P1.06.
[7] T. Mansour, A. Shabani, Enumerations on bargraphs, Discrete Math. Lett. 2 (2019) 65-94.
[8] T. Mansour, A. Shabani, Combinations as bargraphs, Discrete Math. Lett. 8 (2022) 106-110.

[^0]: *Corresponding author (arnold.knopfmacher@wits.ac.za).

