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Abstract
Let G = (V,E) be a graph, where V and E are the vertex and edge sets, respectively. For two disjoint subsets A and B of
V , we say A dominates B if every vertex of B is adjacent to at least one vertex of A. A vertex partition π = {V1, V2, . . . , Vk}
of G is called a transitive partition of size k if Vi dominates Vj for all 1 ≤ i < j ≤ k. In this article, we initiate the study of
a generalization of transitive partition, namely d2-transitive partition. For two disjoint subsets A and B of V , we say A d2-
dominates B if, for every vertex of B, there exists a vertex in A such that the distance between them is at most two. A vertex
partition π = {V1, V2, . . . , Vk} of G is said to be a d2-transitive partition of size k if Vi d2-dominates Vj for all 1 ≤ i < j ≤ k.
The maximum integer k for which d2-transitive partition exists is called d2-transitivity of G, and it is denoted by Trd2(G).
The Maximum d2-Transitivity Problem is to find a d2-transitive partition of a given graph with the maximum number of
parts. We show that this problem can be solved in linear time for the complement of bipartite graphs and bipartite chain
graphs. On the other side, we prove that the decision version of the Maximum d2-Transitivity Problem is NP-complete for
split graphs and bipartite graphs.
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1. Introduction

Partitioning a graph is one of the fundamental problems in graph theory. In the partitioning problem, the objective is
to partition the vertex set (or edge set) into some parts with desired properties, such as independence, minimal edges
across partite sets, etc. In literature, partitioning the vertex set into certain parts so that the partite sets follow particular
domination relations among themselves has been studied. Let G be a graph with V (G) as its vertex set and E(G) as its
edge set. When the context is clear, V and E are used instead of V (G) and E(G). The neighbourhood of a vertex v ∈ V in
a graph G = (V,E) is the set of all the vertices adjacent to v and is denoted by N(v). The closed neighborhood of a vertex
v ∈ V , denoted as N [v], is defined by N [v] = N(v)∪ {v}. The degree of a vertex v in G, denoted as degG(v), is the number of
edges incident to v. A vertex v is said to dominate itself and all its neighbouring vertices. A dominating set of G = (V,E)

is a subset D of vertices such that every vertex x ∈ V \D has a neighbour y ∈ D; that is, x is dominated by some vertex y
of D. For two disjoint subsets A and B of V , we say A dominates B if every vertex of B is adjacent to at least one vertex of
the set A.

There has been a lot of research on graph partitioning problems that are based on a domination relationship between
the different sets. Cockayne and Hedetniemi introduced the concept of domatic partition of a graph G = (V,E) in 1977, in
which the vertex set is partitioned into k parts, say π = {V1, V2, . . . , Vk}, such that each Vi is a dominating set of G [3]. The
number that represents the highest possible order of a domatic partition is referred to as the domatic number of G, and it
is denoted by d(G). Another similar type of partitioning problem is the Grundy partition. Christen and Selkow introduced
a Grundy partition of a graph G = (V,E) in 1979 [2]. In the Grundy partitioning problem, the vertex set is partitioned
into k parts, say π = {V1, V2, . . . , Vk}, such that each Vi is an independent set and for all 1 ≤ i < j ≤ k, Vi dominates
Vj . The maximum order of such a partition is called the Grundy number of G, and it is denoted by Γ(G). In 2018, J.
T. Hedetniemi and S. T. Hedetniemi [8] introduced a transitive partition as a generalization of the Grundy partition. A
transitive partition of size k is defined as a partition of the vertex set into k parts, say π = {V1, V2, . . . , Vk}, such that for
all 1 ≤ i < j ≤ k, Vi dominates Vj . The maximum order of such a transitive partition is called transitivity of G and is
denoted by Tr(G). Recently, in 2020, Haynes et al. generalized the idea of domatic partition as well as transitive partition
and introduced the concept of upper domatic partition of a graph G, where the vertex set is partitioned into k parts, say
π = {V1, V2, . . . , Vk}, such that for every pair i, j, with 1 ≤ i < j ≤ k, either Vi dominates Vj or Vj dominates Vi or both [7].
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The maximum order of such an upper domatic partition is called upper domatic number of G, and it is denoted by D(G).
All these problems, domatic number [1, 17, 18], Grundy number [4, 5, 9, 15, 16], transitivity [6, 8, 12, 13], upper domatic
number [7, 14] have been extensively studied both from an algorithmic and structural point of view. Clearly, a Grundy
partition is a transitive partition with the additional restriction that each partite set must be independent. In a transitive
partition π = {V1, V2, . . . , Vk} of G, we have domination property in one direction, that is, Vi dominates Vj for 1 ≤ i < j ≤ k.
However, in a upper domatic partition π = {V1, V2, . . . , Vk} ofG, for all 1 ≤ i < j ≤ k, either Vi dominates Vj or Vj dominates
Vi or both. The definition of each vertex partitioning problem ensures the following inequalities for any graph G. For any
graph G, 1 ≤ Γ(G) ≤ Tr(G) ≤ D(G) ≤ n.

In this article, we introduce a similar graph partitioning problem, namely d2-transitive partition, which is a general-
ization of transitive partition. For two disjoint subsets A and B, we say A d2-dominates B if, for every vertex of B, there
exists a vertex in A, such that the distance between them is at most two. A d2-transitive partition of size k is defined as
a partition of the vertex set into k parts, say π = {V1, V2, . . . , Vk}, such that for all 1 ≤ i < j ≤ k, Vi d2-dominates Vj . The
maximum order of such a d2-transitive partition is called d2-transitivity of G and is denoted by Trd2(G). The Maximum
d2-Transitivity Problem and its corresponding decision version are defined as follows:

Maximum d2-Transitivity Problem (Md2TP)
Instance: A graph G = (V,E)

Solution: A d2-transitive partition of G
Measure: Order of the d2-transitive partition of G

Maximum d2-Transitivity Decision Problem (Md2TDP)
Instance: A graph G = (V,E), integer k
Question: Does G have a d2-transitive partition of order at least k?

Every transitive partition is also a d2-transitive partition. Therefore, for any graph G, 1 ≤ Tr(G) ≤ Trd2(G) ≤ n.
Also, the difference between Trd2

(G) and Tr(G) can be arbitrarily large. For complete bipartite graphs Kt,t, Trd2
(G) = 2t

whereas Tr(G) = t + 1. From the complexity point of view, there are some graph classes where transitivity can be solved
in linear time, but d2-transitivity is NP-complete. For example, in split graphs, the transitivity problem can be solved in
linear time [13], but later in this paper, we show that d2-transitivity is NP-complete in split graphs. There are some vertex
partition parameters where the value of the parameter in a subgraph can be greater than the original graph. The upper
domatic number is one such example. But in the case of a d2-transitive partition, Trd2

(H) ≤ Trd2
(G), for every subgraph

H of G. As a consequence, for a disconnected graph, the d2-transitivity is equal to the maximum d2-transitivity among all
of its components. Therefore, we focus only on connected graphs in this paper.

In this paper, we study the computational complexity of the d2-transitivity of graphs. The main contributions are
summarized below:

1. We show that the d2-transitivity can be computed in linear time for the complement of bipartite graphs and bipartite
chain graphs.

2. We show that the Md2TDP is NP-complete for split graphs and bipartite graphs.

The rest of the paper is organized as follows. Section 2 contains basic definitions and notations that are followed
throughout the article. Some basic properties of d2-transitivity of graphs are also discussed in Section 2. Section 3 describes
linear-time algorithms for the complement of bipartite graphs and bipartite chain graphs. In Section 4, it is shown that
the Md2TDP is NP-complete in split graphs and bipartite graphs. Finally, Section 5 concludes the article.

2. Preliminaries

Definitions and notations
Let G = (V,E) be a graph with V and E as its vertex and edge sets, respectively. A graph H = (V ′, E′) is said to be a
subgraph of a graph G = (V,E) if and only if V ′ ⊆ V and E′ ⊆ E. For a subset S ⊆ V , the induced subgraph on S of G is
defined as the subgraph of G whose vertex set is S and edge set consists of all of the edges in E that have both endpoints
in S, and it is denoted by G[S]. The complement of a graph G = (V,E) is the graph G = (V ,E), such that V = V and
E = {uv|uv /∈ E}. For any x, y ∈ V , the distance between x and y is defined as the number of edges in the shortest path
starting at x and ending at y in G, and it is denoted by d(x, y). The diameter of a graph G is defined as the greatest length
of the shortest path between each pair of vertices, and it is denoted by diam(G). Let G be a graph; the square of G is a
graph with the same set of vertices as G and for any x, y ∈ V , xy is an edge in the square graph if and only if d(x, y) ≤ 2.
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The square graph of a graph G is denoted by G2. A subset of S ⊆ V is said to be an independent set of G if every pair of
vertices in S are non-adjacent. A subset of K ⊆ V is said to be a clique of G if every pair of vertices in K are adjacent. The
cardinality of a clique of maximum size is called clique number of G, and it is denoted by ω(G).

A graph is called bipartite if its vertex set can be partitioned into two independent sets. A bipartite graphG = (X∪Y,E)

is called a bipartite chain graph if there exists an ordering of vertices of X and Y , say σX = (x1, x2, . . . , xn1) and σY =

(y1, y2, . . . , yn2
), such that N(xn1

) ⊆ N(xn1−1) ⊆ . . . ⊆ N(x2) ⊆ N(x1) and N(yn2
) ⊆ N(yn2−1) ⊆ . . . ⊆ N(y2) ⊆ N(y1). Such

an ordering of X and Y is called a chain ordering, and it can be computed in linear time [11]. A graph G = (V,E) is said
to be a split graph if V can be partitioned into an independent set S and a clique K.

Basic properties of d2-transitivity
In this subsection, we present some basic properties of d2-transitivity. First, we show the following bounds for d2-transitivity.

Lemma 2.1. For any graph G, ∆(G) + 1 ≤ Trd2
(G) ≤ min{n, (∆(G))2 + 1}, where ∆(G) is the maximum degree of G.

Proof. Let x be a vertex of G with degree ∆(G). Consider a vertex partition π = {V1, V2, . . . , V∆(G)+1} such that each Vi for
2 ≤ i ≤ ∆(G)+1 contains exactly one vertex fromNG[x] and all the other vertices are in V1. Clearly, π forms a d2-transitive
partition of G. Therefore, Trd2(G) ≥ ∆(G) + 1.

Let Trd2(G) = k. Clearly, Trd2(G) ≤ n, where n is the number of vertices of G. Let π = {V1, V2, . . . , Vk} be a d2-transitive
partition of G of size k. Also, let x ∈ Vk and NG(x) = {x1, x2, . . . , xl}. First, we show that

l∑
i=1

deg(xi) ≥ k − 1.

If l ≥ k− 1, then we are done. Otherwise, let us assume that l < k− 1. Hence, there are some sets in π that do not contain
any vertex from NG(x). Let Vi be such a set in π and y ∈ Vi d2-dominates x. This implies that y is adjacent to some vertex
of NG(x), and hence one vertex from Vi contributes one to the sum

∑l
i=1 deg(xi). Also, if Vj is a set in π that contains a

vertex from NG(x), then the vertex x contributes one to the sum
∑l

i=1 deg(xi). In either case, we have a contribution of one
to the sum corresponding to each set in π, except the last set, Vk. Hence,

∑l
i=1 deg(xi) ≥ k− 1. Since the maximum degree

is ∆(G), we have (∆(G))2 ≥ k − 1. Therefore, Trd2
(G) ≤ min{n, (∆(G))2 + 1}.

Note that the above bounds are tight. For the graphKn, both lower and upper bounds are reached and for the graph Cn

with n ≥ 5, the upper bound is reached. The d2-transitivity of paths and cycles in the following propositions is immediately
found by using the above bound.

Proposition 2.1. If Pn is a path on n vertices, then the d2-transitivity of Pn is given as follows:

Trd2(Pn) =



1 n = 1,

2 n = 2,

3 n = 3, 4,

4 n = 5, 6,

5 n ≥ 7.

Proposition 2.2. If Cn is a cycle on n vertices, then the d2-transitivity of Cn is given as follows:

Trd2(Cn) =


3 n = 3,

4 n = 4,

5 n ≥ 5.

Next, we characterize graphs with small d2-transitivity.

Lemma 2.2. Let G be a connected graph.

(a) Trd2
(G) = 1 if and only if G = K1.

(b) Trd2
(G) = 2 if and only if G = K2.

(c) Trd2(G) = 3 if and only if G ∈ {P3,K3, P4}.
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Proof. The proofs of the statements (a) and (b) are trivial and hence we omit them. In what follows, we prove (c). If
G ∈ {P3,K3, P4}, then clearly, Trd2

(G) = 3. Conversely, let Trd2
(G) = 3. Now by Lemma 2.1, we have ∆(G) + 1 ≤ 3, that is,

∆(G) ≤ 2. Therefore, G is either a path or a cycle. From Proposition 2.1, we know that P3 and P4 are the only two paths
for which d2-transitivity is 3. On the other hand, from Proposition 2.2, we know that C3 (equivalently K3) is the only cycle
for which d2-transitivity is 3. Therefore, if Trd2(G) = 3, then G ∈ {P3,K3, P4}.

Next, we characterize the graphs having d2-transitivity equal to n, where n is the number of vertices of the graph.

Lemma 2.3. Let G be a graph with n vertices. Then Trd2(G) = n if and only if diam(G) ≤ 2.

Proof. If Trd2
(G) = n, then every vertex in G d2-dominates every other vertex in G. Therefore, the distance between every

pair of vertices is at most two. Therefore, diam(G) ≤ 2.
On the other hand, if diam(G) ≤ 2, then the distance between every pair of vertices is at most two. Hence, by putting

every vertex in different sets, we get a d2-transitive partition of size n. Therefore, Trd2(G) = n.

Remark 2.1. Many important graph classes, including threshold graphs, (2K2, P4)-free graphs, connected strongly regular
graphs, have a diameter of at most two. Lemma 2.3 implies that for these graph classes, we can solve Md2TP trivially.

3. Algorithms for Md2TP

In this section, we find the d2-transitivity for the complement of bipartite graphs and bipartite chain graphs.

The complement of bipartite graphs
In this subsection, we find the d2-transitivity of the complement of bipartite graphs. LetG be the complement of a bipartite
graph G = (X ∪ Y,E).

Lemma 3.1. Let G be the complement of a bipartite graph G = (X ∪ Y,E) with |X| = n and |Y | = m. Also, let

X ′ = {x ∈ X | degG(x) = m} and Y ′ = {y ∈ Y | degG(y) = n}.

If G[X ′ ∪ Y ′] has a maximum matching of size t, then Trd2
(G) = n+m− t.

Proof. Let M = {e1, e2, . . . , et} be a maximum matching in G[X ′ ∪ Y ′] of size t and ei = xiyi for all 1 ≤ i ≤ t. Let Xt =

{x1, x2, . . . , xt} and Yt = {y1, y2, . . . , yt}. Note that since G[X ′∪Y ′] forms a complete bipartite graph, M saturates either X ′
or Y ′. So, without loss of generality, let us assume that Yt = Y ′. Consider a vertex partition, say π = {V1, V2, . . . , Vn+m−t},
ofG of size n+m− t as follows: Vi = {xi, yi} for all 1 ≤ i ≤ t, and every Vj contains exactly one vertex from (X \Xt)∪(Y \Yt)
for all t + 1 ≤ j ≤ n + m − t. We show that π is a d2-transitive partition of G. Note that every vertex of Y \ Yt is adjacent
to at least one vertex of X \X ′ in G. Therefore, every pair of vertices of (X \Xt) ∪ (Y \ Yt) are within distance two from
each other. Therefore, Vp d2-dominates Vq for all t+ 1 ≤ p < q ≤ n+m− t. Also, since every set in {V1, V2, . . . , Vt} contains
vertices from X and Y both, Vi d2-dominates every set in π for all 1 ≤ i ≤ t. Therefore, π is a d2-transitive partition of G.
Hence, Trd2

(G) ≥ n+m− t.
On the other hand, let us assume that G has a d2-transitive partition, say π, of size more than n + m − t. Since there

are n+m− 2t vertices in (X \Xt) ∪ (Y \ Yt), at most n+m− 2t many sets of π contains vertices from (X \Xt) ∪ (Y \ Yt).
Therefore, there are at least t+ 1 many remaining sets in π that contain vertices from Xt∪Yt. By the pigeonhole principle,
there are at least two sets in π, say Vi and Vj , such that Vi contains vertices only fromXt and Vj contains vertices only from
Yt. But, in that case, neither set d2-dominates the other because the distance between any vertex of Xt and any vertex of
Yt is more than two. This contradicts the fact that π is a d2-transitive partition of G. So, we have

Trd2
(G) ≤ n+m− t.

Therefore, the d2-transitivity of G is n+m− t.

From Lemma 3.1, we can compute the d2-transitivity as follows: given the complement of a bipartite graph G, first, we
compute the sizes of X ′ and Y ′ in linear time. The size t of the maximum matching M is clearly the minimum of these
sizes. Then Trd2

(G) = n+m− t. Hence, we have the following theorem.

Theorem 3.1. The Maximum d2-Transitivity Problem can be solved in linear time for the complement of bipartite graphs.
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Bipartite chain graphs
In this subsection, we find the d2-transitivity of a given bipartite chain graph G. To find the d2-transitivity of a given
bipartite chain graph G, first we show that the d2-transitive partition of a graph G is the same as the transitivity of its
square graph, namely G2. Then we show that if G is a connected bipartite chain graph, then G2 is the complement of
another bipartite chain graph H, that is, G2 = H.

Lemma 3.2. For any graph G, Trd2
(G) = Tr(G2).

Proof. Let Trd2
(G) = k and π = {V1, V2, . . . , Vk} be a d2-transitive partition of G. Then, by the definition of d2-transitive

partition, Vi d2-dominates Vj for all 1 ≤ i < j ≤ k. So, for all y ∈ Vj , there exists a x ∈ Vi, such that d(x, y) ≤ 2 in G. From
the definition of G2, it follows that there is an edge xy in G2. This implies that Vi dominates Vj in G2 and hence π is a
transitive partition of G2 of size k. Therefore, Trd2

(G) ≤ Tr(G2).
On the other hand, let Tr(G2) = k and π = {V1, V2, . . . , Vk} be a transitive partition of G2. By the definition of transitive

partition, Vi dominates Vj for all 1 ≤ i < j ≤ k. So, for all y ∈ Vj , there exists a x ∈ Vi, such that xy is an edge in G2. From
the definition of G2, it follows that d(x, y) ≤ 2 inG. This implies that Vi d2-dominates Vj inG, and hence π is a d2-transitive
partition of G of size k. Therefore, Trd2

(G) ≥ Tr(G2). So, we have Trd2
(G) = Tr(G2).

Next, we show that if G is a connected bipartite chain graph, then G2 = H, where H is another bipartite chain graph.

Lemma 3.3. If G is a connected bipartite chain graph, then G2 is the complement of another bipartite chain graph, H.

Proof. Let G = (X ∪ Y,E) be a connected bipartite chain graph with chain ordering σX = (x1, x2, . . . , xm) and σY =

(y1, y2, . . . , yn) such that N(xm) ⊆ N(xm−1) ⊆ . . . ⊆ N(x1) and N(yn) ⊆ N(yn−1) ⊆ . . . ⊆ N(y1). Note that every pair of
vertices of X are at a distance of two as N(y1) = X. Hence, X forms a clique in G2. Similarly, Y forms another clique
in G2. Moreover, for any two vertices x ∈ X and y ∈ Y , the distance between x and y is either 1 or greater or equal to 3.
Hence, all the edges of G are present in G2, and there is no other edge in G2. Now, the complement of G2 is a bipartite
graph. Let H be the bipartite graph such that H = G2. Next, we prove that H is a bipartite chain graph. Since the edges
across X and Y are the same in G and G2, N(xm) ⊆ N(xm−1) ⊆ . . . ⊆ N(x1) and N(yn) ⊆ N(yn−1) ⊆ . . . ⊆ N(y1) in G2 as
well. Therefore, in H, we have N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(xm) and N(y1) ⊆ N(y2) ⊆ . . . ⊆ N(yn). Therefore, vertices of H
have chain ordering and hence H is a bipartite chain graph.

From Lemma 3.2 and Lemma 3.3, we know that finding the d2-transitivity of a bipartite chain graph G is the same as
finding the transitivity of the complement of another bipartite chain graph H. From the proof of Lemma 3.3, it follows
that we can obtain H by taking the complement of G and then deleting edges inside X and Y . Note that H contains
some isolated vertices as N(xm) = N(yn) = ∅. Hence, we can compute H in linear time. Moreover, the transitivity of the
complement of a bipartite chain graph can be computed in linear time [13]. Therefore, we have the following theorem:

Theorem 3.2. The Maximum d2-Transitivity Problem can be solved in linear time for bipartite chain graphs.

4. NP-completeness of Md2TDP

In this section, we present two NP-completeness results for Maximum d2-Transitivity Decision Problem, namely in split
graphs and bipartite graphs.

Split graphs
In this subsection, we show that the Maximum d2-Transitivity Decision Problem (Md2TDP) is NP-complete for split graphs,
which form an important subclass of the class of chordal graphs.

Theorem 4.1. The Maximum d2-Transitivity Decision Problem is NP-complete for split graphs.

Proof. Given a vertex partition π = {V1, V2, . . . , Vk} of a given split graph, we can verify in polynomial time whether π
is a d2-transitive partition of that graph or not. Hence, the Maximum d2-Transitivity Decision Problem (Md2TDP) is in
NP. To prove that this problem is NP-hard, we show a polynomial time reduction from the Maximum Transitivity Decision
Problem in general graphs, which is known to be NP-complete [10]. The reduction is as follows: given an instance of the
Maximum Transitivity Decision Problem, that is, a graph G = (V,E) and an integer k, we first subdivide each edge of G
exactly once. Let ui be the subdivision vertex corresponding to the edge ei ∈ E for every 1 ≤ i ≤ m. Then we put edges
between every pair of subdivision vertices. Let the new graph be G′ = (V ′, E′). Clearly, G′ is a split graph having n + m

vertices and m2+3m
2 edges. The construction of G′ is illustrated in Figure 4.1.
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Figure 4.1: Construction of G′ in Theorem 4.1.

Claim 4.1. The graph G has a transitive partition of size k if and only if G′ has a d2-transitive partition of size k +m.

Proof of Claim 4.1. Let π = {V1, V2, . . . , Vk} be a transitive partition of G of size k. Let us consider a vertex partition,
say π′ = {V ′1 , V ′2 , . . . , V ′k+m} of G′, as follows: V ′i = Vi for all 1 ≤ i ≤ k and V ′k+j = {uj}, 1 ≤ j ≤ m. We show that π′ is a
d2-transitive partition of G′. For any pair of sets V ′i and V ′j with 1 ≤ i < j ≤ k, V ′i d2-dominates V ′j in G′ as Vi dominates Vj
inG. Also, the set {u1, u2, . . . , um} induces a complete graph inG′. Hence, V ′i d2-dominates V ′j inG′ for k+1 ≤ i < j ≤ k+m.
Finally, every vertex of G′, other than the subdivision vertices, is adjacent to at least one subdivision vertex in G′. Hence,
V ′i d2-dominates V ′j in G′ for 1 ≤ i ≤ k and k + 1 ≤ j ≤ k +m. Therefore, π′ is a d2-transitive partition of G′ of size k +m.

Conversely, let π = {V1, V2, . . . , Vk+m} be a d2-transitive partition of G′ of size k + m. Let Vp1
, Vp2

, . . . , Vpt
be the sets

in π that do not contain any subdivision vertex, where p1 < p2 < . . . < pt. Since there are m subdivision vertices in G′,
there exist at least k such sets in π. Therefore, t ≥ k. Let us consider the vertex partition, say π′ = {V ′1 , V ′2 , . . . , V ′k} of G as
follows: V ′i = Vpi

for 2 ≤ i ≤ k, and V ′1 contains the rest of the vertices of G. Since Vpi
d2-dominates Vpj

in G′, every vertex
of Vpj

must be adjacent to some vertex of Vpi
in G. Therefore, π′ is a transitive partition of G of size k.

From Claim 4.1, it follows that the Maximum d2-Transitivity Decision Problem is NP-complete for split graphs. This
completes the proof of Theorem 4.1

Bipartite graphs
In this subsection, we show that the Maximum d2-Transitivity Decision Problem is NP-complete for bipartite graphs as
well.

Theorem 4.2. The Maximum d2-Transitivity Decision Problem is NP-complete for bipartite graphs.

Proof. Given a vertex partition π = {V1, V2, . . . , Vk} of a bipartite graph, we can verify in polynomial time whether π is
a d2-transitive partition of that graph or not. Hence, the Maximum d2-Transitivity Decision Problem is in NP. To prove
that this problem is NP-hard, we show a polynomial time reduction from the Maximum Transitivity Decision Problem in
general graphs, which is known to be NP-complete [10]. The reduction is as follows: given an instance of the Maximum
Transitivity Decision Problem, that is, a graph G = (V,E) and an integer k, we construct another graph G′ = (V ′, E′).
Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} vertices and edges of G, respectively. For each vertex vi ∈ V , we take two
vertices v1

i and v2
i in V ′, and for each edge ej ∈ E, we take two vertices u1

j and u2
j in V ′. Hence, V ′ = V1∪V2∪U1∪U2, where

V1 = {v1
1 , v

1
2 , . . . , v

1
n}, V2 = {v2

1 , v
2
2 , . . . , v

2
n}, U1 = {u1

1, u
1
2, . . . , u

1
m} and U2 = {u2

1, u
2
2, . . . , u

2
m}. Next, we add edges between v1

i

and u1
j if ej is incident on vi in G. Similarly, we add edges between v2

i and u2
j if ej is incident on vi in G. Finally, we add

edges between every vertex of U1 and every vertex of U2; that is, U1 and U2 induce a complete bipartite graph inG′. Clearly,
G′ is a bipartite graph with V1 ∪ U2 and V2 ∪ U1 forming the bipartition, and G′ has 2(m+ n) vertices and m2 + 4m edges.
The construction is illustrated in Figure 4.2.

Claim 4.2. The graph G has a transitive partition of size k if and only if G′ has a d2-transitive partition of size k + 2m.

Proof of Claim 4.2. Let π = {W1,W2, . . . ,Wk} be a transitive partition of G of size k. Let us consider the following vertex
partition, say π′ = {W ′1,W ′2, . . . ,W ′k+2m} of G′ as follows: for each 1 ≤ i ≤ k, W ′i is defined as W ′i = {v1

j , v
2
j |vj ∈ Wi} and for

each k + 1 ≤ i ≤ 2m, W ′i contains exactly one vertex from U1 ∪ U2. Clearly, π′ is a vertex partition of G′ of size k + 2m. We
show that π′ is a d2-transitive partition of G′. Note that, by the construction of G′, it follows that if et = vpvq is an edge in
G, then d(v1

p, v
1
q ) = d(v2

p, v
2
q ) = 2 in G′. Hence, since Wi dominates Wj in G, W ′i d2-dominates W ′j in G′ for all 1 ≤ i < j ≤ k.
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Figure 4.2: Construction of G′ in Theorem 4.2.

Also, since U1 ∪ U2 induces a complete bipartite graph in G′, W ′i d2-dominates W ′j for all k + 1 ≤ i < j ≤ k + 2m. Note that
every vertex of U1 is at a distance of two from every vertex of V2, and every vertex of U2 is at a distance of two from every
vertex of V1. Therefore, every W ′j for k + 1 ≤ j ≤ k + 2m, is d2-dominated by every W ′i , where 1 ≤ i ≤ k. Therefore, π′ is a
d2-transitive partition of G′ of size k + 2m.

Conversely, let π = {W1,W2, . . . ,Wk+2m} be a d2-transitive partition ofG′ of size k+2m. LetWp1 ,Wp2 , . . . ,Wpt be the sets
in π that do not contain any vertex from U1∪U2, where p1 < p2 < . . . < pt. Since there are 2m vertices in U1∪U2, there exist
at least k such sets in π. Therefore, t ≥ k. Note that since the distance between any vertex of V1 and any vertex of V2 is more
than two, if Wpt

contains a vertex from V1 (or V2), then Wpi
for all i < t contains at least one vertex from V1 (respectively

from V2). Let us assume that Wpt contains vertices from V1. Consider a vertex partition, say π′ = {W ′1,W ′2, . . . ,W ′k}, of G
as follows: W ′i = {vj |v1

j ∈ Wpi} for each 2 ≤ i ≤ k, and W ′1 contains every other vertex of G. Note that if v1
r ∈ Wpj for some

2 ≤ j ≤ k, then every Wpi
, with i < j, contains at least one vertex, say v1

s , such that d(v1
s , v

1
r) = 2 in G′. By the construction

of G′, it follows that vs and vr are adjacent in G. Hence, W ′i dominates W ′j for all 1 ≤ i < j ≤ k. Therefore, π′ is a transitive
partition of G of size k. For the case where Wpt does not contain any vertex from V1, that is, it contains vertices from V2

only, we can argue in a similar way by considering vertices from V2 and show that π′ is a transitive partition of G of size
k.

Claim 4.2 shows that the Maximum d2-Transitivity Decision Problem is NP-complete for bipartite graphs. This com-
pletes the proof of Theorem 4.2

5. Conclusion

In this paper, we have introduced the notion of d2-transitivity in graphs, which is a generalization of transitivity. First,
we have shown some basic properties for d2-transitivity. We have also proved that the d2-transitivity can be computed in
linear time for the complement of bipartite graphs and bipartite chain graphs. On the other side, we have shown that the
Maximum d2-Transitivity Decision Problem is NP-complete for split graphs and bipartite graphs. It would be interesting
to investigate the complexity status of this problem in other graph classes. Designing an approximation algorithm for this
problem would be another challenging open problem. We know that for a graph G, the upper bound of transitivity is equal
to the lower bound of d2-transitivity of G, namely ∆(G) + 1. Naturally, for the complete graph on n vertices Kn, these two
parameters are equal. It would be an interesting open problem to characterize the graphs where these two parameters
are the same.
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