Research Article

Algorithmic study of d_{2}-transitivity of graphs*

Subhabrata Paul ${ }^{\dagger}$, Kamal Santra
Department of Mathematics, Indian Institute of Technology Patna, Bihta 801106, Bihar, India

(Received: 26 September 2023. Received in revised form: 25 January 2024. Accepted: 14 February 2024. Published online: 4 April 2024.)
© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let $G=(V, E)$ be a graph, where V and E are the vertex and edge sets, respectively. For two disjoint subsets A and B of V, we say A dominates B if every vertex of B is adjacent to at least one vertex of A. A vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of G is called a transitive partition of size k if V_{i} dominates V_{j} for all $1 \leq i<j \leq k$. In this article, we initiate the study of a generalization of transitive partition, namely d_{2}-transitive partition. For two disjoint subsets A and B of V, we say $A d_{2}$ dominates B if, for every vertex of B, there exists a vertex in A such that the distance between them is at most two. A vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of G is said to be a d_{2}-transitive partition of size k if $V_{i} d_{2}$-dominates V_{j} for all $1 \leq i<j \leq k$. The maximum integer k for which d_{2}-transitive partition exists is called d_{2}-transitivity of G, and it is denoted by $\operatorname{Tr}_{d_{2}}(G)$. The Maximum d_{2}-Transitivity Problem is to find a d_{2}-transitive partition of a given graph with the maximum number of parts. We show that this problem can be solved in linear time for the complement of bipartite graphs and bipartite chain graphs. On the other side, we prove that the decision version of the Maximum d_{2}-Transitivity Problem is NP-complete for split graphs and bipartite graphs.

Keywords: d_{2}-transitivity; linear algorithm; NP-completeness; split graphs; bipartite graphs.
2020 Mathematics Subject Classification: 05C69, 05C70, 05C85.

1. Introduction

Partitioning a graph is one of the fundamental problems in graph theory. In the partitioning problem, the objective is to partition the vertex set (or edge set) into some parts with desired properties, such as independence, minimal edges across partite sets, etc. In literature, partitioning the vertex set into certain parts so that the partite sets follow particular domination relations among themselves has been studied. Let G be a graph with $V(G)$ as its vertex set and $E(G)$ as its edge set. When the context is clear, V and E are used instead of $V(G)$ and $E(G)$. The neighbourhood of a vertex $v \in V$ in a graph $G=(V, E)$ is the set of all the vertices adjacent to v and is denoted by $N(v)$. The closed neighborhood of a vertex $v \in V$, denoted as $N[v]$, is defined by $N[v]=N(v) \cup\{v\}$. The degree of a vertex v in G, denoted as $\operatorname{deg}_{G}(v)$, is the number of edges incident to v. A vertex v is said to dominate itself and all its neighbouring vertices. A dominating set of $G=(V, E)$ is a subset D of vertices such that every vertex $x \in V \backslash D$ has a neighbour $y \in D$; that is, x is dominated by some vertex y of D. For two disjoint subsets A and B of V, we say A dominates B if every vertex of B is adjacent to at least one vertex of the set A.

There has been a lot of research on graph partitioning problems that are based on a domination relationship between the different sets. Cockayne and Hedetniemi introduced the concept of domatic partition of a graph $G=(V, E)$ in 1977, in which the vertex set is partitioned into k parts, say $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, such that each V_{i} is a dominating set of G [3]. The number that represents the highest possible order of a domatic partition is referred to as the domatic number of G, and it is denoted by $d(G)$. Another similar type of partitioning problem is the Grundy partition. Christen and Selkow introduced a Grundy partition of a graph $G=(V, E)$ in 1979 [2]. In the Grundy partitioning problem, the vertex set is partitioned into k parts, say $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, such that each V_{i} is an independent set and for all $1 \leq i<j \leq k$, V_{i} dominates V_{j}. The maximum order of such a partition is called the Grundy number of G, and it is denoted by $\Gamma(G)$. In 2018, J. T. Hedetniemi and S. T. Hedetniemi [8] introduced a transitive partition as a generalization of the Grundy partition. A transitive partition of size k is defined as a partition of the vertex set into k parts, say $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, such that for all $1 \leq i<j \leq k, V_{i}$ dominates V_{j}. The maximum order of such a transitive partition is called transitivity of G and is denoted by $\operatorname{Tr}(G)$. Recently, in 2020, Haynes et al. generalized the idea of domatic partition as well as transitive partition and introduced the concept of upper domatic partition of a graph G, where the vertex set is partitioned into k parts, say $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, such that for every pair i, j, with $1 \leq i<j \leq k$, either V_{i} dominates V_{j} or V_{j} dominates V_{i} or both [7].

[^0]The maximum order of such an upper domatic partition is called upper domatic number of G, and it is denoted by $D(G)$. All these problems, domatic number [1, 17, 18], Grundy number [4, 5, 9, 15, 16], transitivity [$6,8,12,13]$, upper domatic number [7, 14] have been extensively studied both from an algorithmic and structural point of view. Clearly, a Grundy partition is a transitive partition with the additional restriction that each partite set must be independent. In a transitive partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of G, we have domination property in one direction, that is, V_{i} dominates V_{j} for $1 \leq i<j \leq k$. However, in a upper domatic partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of G, for all $1 \leq i<j \leq k$, either V_{i} dominates V_{j} or V_{j} dominates V_{i} or both. The definition of each vertex partitioning problem ensures the following inequalities for any graph G. For any graph $G, 1 \leq \Gamma(G) \leq \operatorname{Tr}(G) \leq D(G) \leq n$.

In this article, we introduce a similar graph partitioning problem, namely d_{2}-transitive partition, which is a generalization of transitive partition. For two disjoint subsets A and B, we say $A d_{2}$-dominates B if, for every vertex of B, there exists a vertex in A, such that the distance between them is at most two. A d_{2}-transitive partition of size k is defined as a partition of the vertex set into k parts, say $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, such that for all $1 \leq i<j \leq k, V_{i} d_{2}$-dominates V_{j}. The maximum order of such a d_{2}-transitive partition is called d_{2}-transitivity of G and is denoted by $\operatorname{Tr}_{d_{2}}(G)$. The Maximum d_{2}-Transitivity Problem and its corresponding decision version are defined as follows:

Maximum d_{2}-Transitivity Problem ($\mathbf{M} d_{2} \mathbf{T P}$)
Instance: A graph $G=(V, E)$
Solution: A d_{2}-transitive partition of G
Measure: Order of the d_{2}-transitive partition of G
Maximum d_{2}-Transitivity Decision Problem ($\mathbf{M} d_{2}$ TDP)
Instance: A graph $G=(V, E)$, integer k
Question: Does G have a d_{2}-transitive partition of order at least k ?
Every transitive partition is also a d_{2}-transitive partition. Therefore, for any graph $G, 1 \leq \operatorname{Tr}(G) \leq \operatorname{Tr}_{d_{2}}(G) \leq n$. Also, the difference between $\operatorname{Tr}_{d_{2}}(G)$ and $\operatorname{Tr}(G)$ can be arbitrarily large. For complete bipartite graphs $K_{t, t}, \operatorname{Tr}_{d_{2}}(G)=2 t$ whereas $\operatorname{Tr}(G)=t+1$. From the complexity point of view, there are some graph classes where transitivity can be solved in linear time, but d_{2}-transitivity is NP-complete. For example, in split graphs, the transitivity problem can be solved in linear time [13], but later in this paper, we show that d_{2}-transitivity is NP-complete in split graphs. There are some vertex partition parameters where the value of the parameter in a subgraph can be greater than the original graph. The upper domatic number is one such example. But in the case of a d_{2}-transitive partition, $\operatorname{Tr}_{d_{2}}(H) \leq T r_{d_{2}}(G)$, for every subgraph H of G. As a consequence, for a disconnected graph, the d_{2}-transitivity is equal to the maximum d_{2}-transitivity among all of its components. Therefore, we focus only on connected graphs in this paper.

In this paper, we study the computational complexity of the d_{2}-transitivity of graphs. The main contributions are summarized below:

1. We show that the d_{2}-transitivity can be computed in linear time for the complement of bipartite graphs and bipartite chain graphs.
2. We show that the $\mathrm{M} d_{2}$ TDP is NP-complete for split graphs and bipartite graphs.

The rest of the paper is organized as follows. Section 2 contains basic definitions and notations that are followed throughout the article. Some basic properties of d_{2}-transitivity of graphs are also discussed in Section 2 . Section 3 describes linear-time algorithms for the complement of bipartite graphs and bipartite chain graphs. In Section 4, it is shown that the $\mathrm{M} d_{2}$ TDP is NP-complete in split graphs and bipartite graphs. Finally, Section 5 concludes the article.

2. Preliminaries

Definitions and notations

Let $G=(V, E)$ be a graph with V and E as its vertex and edge sets, respectively. A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is said to be a subgraph of a graph $G=(V, E)$ if and only if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For a subset $S \subseteq V$, the induced subgraph on S of G is defined as the subgraph of G whose vertex set is S and edge set consists of all of the edges in E that have both endpoints in S, and it is denoted by $G[S]$. The complement of a graph $G=(V, E)$ is the graph $\bar{G}=(\bar{V}, \bar{E})$, such that $\bar{V}=V$ and $\bar{E}=\{u v \mid u v \notin E\}$. For any $x, y \in V$, the distance between x and y is defined as the number of edges in the shortest path starting at x and ending at y in G, and it is denoted by $d(x, y)$. The diameter of a graph G is defined as the greatest length of the shortest path between each pair of vertices, and it is denoted by $\operatorname{diam}(G)$. Let G be a graph; the square of G is a graph with the same set of vertices as G and for any $x, y \in V, x y$ is an edge in the square graph if and only if $d(x, y) \leq 2$.

The square graph of a graph G is denoted by G^{2}. A subset of $S \subseteq V$ is said to be an independent set of G if every pair of vertices in S are non-adjacent. A subset of $K \subseteq V$ is said to be a clique of G if every pair of vertices in K are adjacent. The cardinality of a clique of maximum size is called clique number of G, and it is denoted by $\omega(G)$.

A graph is called bipartite if its vertex set can be partitioned into two independent sets. A bipartite graph $G=(X \cup Y, E)$ is called a bipartite chain graph if there exists an ordering of vertices of X and Y, say $\sigma_{X}=\left(x_{1}, x_{2}, \ldots, x_{n_{1}}\right)$ and $\sigma_{Y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n_{2}}\right)$, such that $N\left(x_{n_{1}}\right) \subseteq N\left(x_{n_{1}-1}\right) \subseteq \ldots \subseteq N\left(x_{2}\right) \subseteq N\left(x_{1}\right)$ and $N\left(y_{n_{2}}\right) \subseteq N\left(y_{n_{2}-1}\right) \subseteq \ldots \subseteq N\left(y_{2}\right) \subseteq N\left(y_{1}\right)$. Such an ordering of X and Y is called a chain ordering, and it can be computed in linear time [11]. A graph $G=(V, E)$ is said to be a split graph if V can be partitioned into an independent set S and a clique K.

Basic properties of $\boldsymbol{d}_{\mathbf{2}}$-transitivity

In this subsection, we present some basic properties of d_{2}-transitivity. First, we show the following bounds for d_{2}-transitivity
Lemma 2.1. For any graph $G, \Delta(G)+1 \leq \operatorname{Tr}_{d_{2}}(G) \leq \min \left\{n,(\Delta(G))^{2}+1\right\}$, where $\Delta(G)$ is the maximum degree of G.
Proof. Let x be a vertex of G with degree $\Delta(G)$. Consider a vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{\Delta(G)+1}\right\}$ such that each V_{i} for $2 \leq i \leq \Delta(G)+1$ contains exactly one vertex from $N_{G}[x]$ and all the other vertices are in V_{1}. Clearly, π forms a d_{2}-transitive partition of G. Therefore, $\operatorname{Tr}_{d_{2}}(G) \geq \Delta(G)+1$.

Let $\operatorname{Tr}_{d_{2}}(G)=k$. Clearly, $\operatorname{Tr}_{d_{2}}(G) \leq n$, where n is the number of vertices of G. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a d_{2}-transitive partition of G of size k. Also, let $x \in V_{k}$ and $N_{G}(x)=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. First, we show that

$$
\sum_{i=1}^{l} \operatorname{deg}\left(x_{i}\right) \geq k-1
$$

If $l \geq k-1$, then we are done. Otherwise, let us assume that $l<k-1$. Hence, there are some sets in π that do not contain any vertex from $N_{G}(x)$. Let V_{i} be such a set in π and $y \in V_{i} d_{2}$-dominates x. This implies that y is adjacent to some vertex of $N_{G}(x)$, and hence one vertex from V_{i} contributes one to the sum $\sum_{i=1}^{l} \operatorname{deg}\left(x_{i}\right)$. Also, if V_{j} is a set in π that contains a vertex from $N_{G}(x)$, then the vertex x contributes one to the sum $\sum_{i=1}^{l} \operatorname{deg}\left(x_{i}\right)$. In either case, we have a contribution of one to the sum corresponding to each set in π, except the last set, V_{k}. Hence, $\sum_{i=1}^{l} \operatorname{deg}\left(x_{i}\right) \geq k-1$. Since the maximum degree is $\Delta(G)$, we have $(\Delta(G))^{2} \geq k-1$. Therefore, $\operatorname{Tr}_{d_{2}}(G) \leq \min \left\{n,(\Delta(G))^{2}+1\right\}$.

Note that the above bounds are tight. For the graph K_{n}, both lower and upper bounds are reached and for the graph C_{n} with $n \geq 5$, the upper bound is reached. The d_{2}-transitivity of paths and cycles in the following propositions is immediately found by using the above bound.

Proposition 2.1. If P_{n} is a path on n vertices, then the d_{2}-transitivity of P_{n} is given as follows:

$$
\operatorname{Tr}_{d_{2}}\left(P_{n}\right)= \begin{cases}1 & n=1 \\ 2 & n=2 \\ 3 & n=3,4 \\ 4 & n=5,6 \\ 5 & n \geq 7\end{cases}
$$

Proposition 2.2. If C_{n} is a cycle on n vertices, then the d_{2}-transitivity of C_{n} is given as follows:

$$
\operatorname{Tr}_{d_{2}}\left(C_{n}\right)= \begin{cases}3 & n=3, \\ 4 & n=4, \\ 5 & n \geq 5\end{cases}
$$

Next, we characterize graphs with small d_{2}-transitivity.
Lemma 2.2. Let G be a connected graph.
(a) $\operatorname{Tr}_{d_{2}}(G)=1$ if and only if $G=K_{1}$.
(b) $\operatorname{Tr}_{d_{2}}(G)=2$ if and only if $G=K_{2}$.
(c) $\operatorname{Tr}_{d_{2}}(G)=3$ if and only if $G \in\left\{P_{3}, K_{3}, P_{4}\right\}$.

Proof. The proofs of the statements (a) and (b) are trivial and hence we omit them. In what follows, we prove (c). If $G \in\left\{P_{3}, K_{3}, P_{4}\right\}$, then clearly, $\operatorname{Tr}_{d_{2}}(G)=3$. Conversely, let $\operatorname{Tr}_{d_{2}}(G)=3$. Now by Lemma 2.1, we have $\Delta(G)+1 \leq 3$, that is, $\Delta(G) \leq 2$. Therefore, G is either a path or a cycle. From Proposition 2.1, we know that P_{3} and P_{4} are the only two paths for which d_{2}-transitivity is 3 . On the other hand, from Proposition 2.2 , we know that C_{3} (equivalently K_{3}) is the only cycle for which d_{2}-transitivity is 3 . Therefore, if $\operatorname{Tr}_{d_{2}}(G)=3$, then $G \in\left\{P_{3}, K_{3}, P_{4}\right\}$.

Next, we characterize the graphs having d_{2}-transitivity equal to n, where n is the number of vertices of the graph.
Lemma 2.3. Let G be a graph with n vertices. Then $T r_{d_{2}}(G)=n$ if and only if diam $(G) \leq 2$.
Proof. If $\operatorname{Tr}_{d_{2}}(G)=n$, then every vertex in $G d_{2}$-dominates every other vertex in G. Therefore, the distance between every pair of vertices is at most two. Therefore, $\operatorname{diam}(G) \leq 2$.

On the other hand, if $\operatorname{diam}(G) \leq 2$, then the distance between every pair of vertices is at most two. Hence, by putting every vertex in different sets, we get a d_{2}-transitive partition of size n. Therefore, $\operatorname{Tr}_{d_{2}}(G)=n$.

Remark 2.1. Many important graph classes, including threshold graphs, $\left(2 K_{2}, P_{4}\right)$-free graphs, connected strongly regular graphs, have a diameter of at most two. Lemma 2.3 implies that for these graph classes, we can solve $M d_{2} T P$ trivially.

3. Algorithms for $\mathbf{M} d_{2} \mathbf{T P}$

In this section, we find the d_{2}-transitivity for the complement of bipartite graphs and bipartite chain graphs.

The complement of bipartite graphs

In this subsection, we find the d_{2}-transitivity of the complement of bipartite graphs. Let G be the complement of a bipartite graph $\bar{G}=(X \cup Y, \bar{E})$.

Lemma 3.1. Let G be the complement of a bipartite graph $\bar{G}=(X \cup Y, \bar{E})$ with $|X|=n$ and $|Y|=m$. Also, let

$$
X^{\prime}=\left\{x \in X \mid \operatorname{deg} g_{\bar{G}}(x)=m\right\} \quad \text { and } \quad Y^{\prime}=\left\{y \in Y \mid \operatorname{deg} \bar{G}_{\bar{G}}(y)=n\right\} .
$$

If $\bar{G}\left[X^{\prime} \cup Y^{\prime}\right]$ has a maximum matching of size t, then $\operatorname{Tr}_{d_{2}}(G)=n+m-t$.
Proof. Let $M=\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ be a maximum matching in $\bar{G}\left[X^{\prime} \cup Y^{\prime}\right]$ of size t and $e_{i}=x_{i} y_{i}$ for all $1 \leq i \leq t$. Let $X_{t}=$ $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and $Y_{t}=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$. Note that since $\bar{G}\left[X^{\prime} \cup Y^{\prime}\right]$ forms a complete bipartite graph, M saturates either X^{\prime} or Y^{\prime}. So, without loss of generality, let us assume that $Y_{t}=Y^{\prime}$. Consider a vertex partition, say $\pi=\left\{V_{1}, V_{2}, \ldots, V_{n+m-t}\right\}$, of G of size $n+m-t$ as follows: $V_{i}=\left\{x_{i}, y_{i}\right\}$ for all $1 \leq i \leq t$, and every V_{j} contains exactly one vertex from $\left(X \backslash X_{t}\right) \cup\left(Y \backslash Y_{t}\right)$ for all $t+1 \leq j \leq n+m-t$. We show that π is a d_{2}-transitive partition of G. Note that every vertex of $Y \backslash Y_{t}$ is adjacent to at least one vertex of $X \backslash X^{\prime}$ in G. Therefore, every pair of vertices of $\left(X \backslash X_{t}\right) \cup\left(Y \backslash Y_{t}\right)$ are within distance two from each other. Therefore, $V_{p} d_{2}$-dominates V_{q} for all $t+1 \leq p<q \leq n+m-t$. Also, since every set in $\left\{V_{1}, V_{2}, \ldots, V_{t}\right\}$ contains vertices from X and Y both, $V_{i} d_{2}$-dominates every set in π for all $1 \leq i \leq t$. Therefore, π is a d_{2}-transitive partition of G. Hence, $\operatorname{Tr}_{d_{2}}(G) \geq n+m-t$.

On the other hand, let us assume that G has a d_{2}-transitive partition, say π, of size more than $n+m-t$. Since there are $n+m-2 t$ vertices in $\left(X \backslash X_{t}\right) \cup\left(Y \backslash Y_{t}\right)$, at most $n+m-2 t$ many sets of π contains vertices from $\left(X \backslash X_{t}\right) \cup\left(Y \backslash Y_{t}\right)$. Therefore, there are at least $t+1$ many remaining sets in π that contain vertices from $X_{t} \cup Y_{t}$. By the pigeonhole principle, there are at least two sets in π, say V_{i} and V_{j}, such that V_{i} contains vertices only from X_{t} and V_{j} contains vertices only from Y_{t}. But, in that case, neither set d_{2}-dominates the other because the distance between any vertex of X_{t} and any vertex of Y_{t} is more than two. This contradicts the fact that π is a d_{2}-transitive partition of G. So, we have

$$
\operatorname{Tr}_{d_{2}}(G) \leq n+m-t
$$

Therefore, the d_{2}-transitivity of G is $n+m-t$.
From Lemma 3.1, we can compute the d_{2}-transitivity as follows: given the complement of a bipartite graph G, first, we compute the sizes of X^{\prime} and Y^{\prime} in linear time. The size t of the maximum matching M is clearly the minimum of these sizes. Then $\operatorname{Tr}_{d_{2}}(G)=n+m-t$. Hence, we have the following theorem.

Theorem 3.1. The Maximum $d_{2}-T_{\text {Ransitivity }}$ Problem can be solved in linear time for the complement of bipartite graphs.

Bipartite chain graphs

In this subsection, we find the d_{2}-transitivity of a given bipartite chain graph G. To find the d_{2}-transitivity of a given bipartite chain graph G, first we show that the d_{2}-transitive partition of a graph G is the same as the transitivity of its square graph, namely G^{2}. Then we show that if G is a connected bipartite chain graph, then G^{2} is the complement of another bipartite chain graph H, that is, $G^{2}=\bar{H}$.

Lemma 3.2. For any graph G, $\operatorname{Tr}_{d_{2}}(G)=\operatorname{Tr}\left(G^{2}\right)$.
Proof. Let $\operatorname{Tr}_{d_{2}}(G)=k$ and $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a d_{2}-transitive partition of G. Then, by the definition of d_{2}-transitive partition, $V_{i} d_{2}$-dominates V_{j} for all $1 \leq i<j \leq k$. So, for all $y \in V_{j}$, there exists a $x \in V_{i}$, such that $d(x, y) \leq 2$ in G. From the definition of G^{2}, it follows that there is an edge $x y$ in G^{2}. This implies that V_{i} dominates V_{j} in G^{2} and hence π is a transitive partition of G^{2} of size k. Therefore, $\operatorname{Tr}_{d_{2}}(G) \leq \operatorname{Tr}\left(G^{2}\right)$.

On the other hand, let $\operatorname{Tr}\left(G^{2}\right)=k$ and $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a transitive partition of G^{2}. By the definition of transitive partition, V_{i} dominates V_{j} for all $1 \leq i<j \leq k$. So, for all $y \in V_{j}$, there exists a $x \in V_{i}$, such that $x y$ is an edge in G^{2}. From the definition of G^{2}, it follows that $d(x, y) \leq 2$ in G. This implies that $V_{i} d_{2}$-dominates V_{j} in G, and hence π is a d_{2}-transitive partition of G of size k. Therefore, $\operatorname{Tr}_{d_{2}}(G) \geq \operatorname{Tr}\left(G^{2}\right)$. So, we have $\operatorname{Tr}_{d_{2}}(G)=\operatorname{Tr}\left(G^{2}\right)$.

Next, we show that if G is a connected bipartite chain graph, then $G^{2}=\bar{H}$, where H is another bipartite chain graph.
Lemma 3.3. If G is a connected bipartite chain graph, then G^{2} is the complement of another bipartite chain graph, H.
Proof. Let $G=(X \cup Y, E)$ be a connected bipartite chain graph with chain ordering $\sigma_{X}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $\sigma_{Y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ such that $N\left(x_{m}\right) \subseteq N\left(x_{m-1}\right) \subseteq \ldots \subseteq N\left(x_{1}\right)$ and $N\left(y_{n}\right) \subseteq N\left(y_{n-1}\right) \subseteq \ldots \subseteq N\left(y_{1}\right)$. Note that every pair of vertices of X are at a distance of two as $N\left(y_{1}\right)=X$. Hence, X forms a clique in G^{2}. Similarly, Y forms another clique in G^{2}. Moreover, for any two vertices $x \in X$ and $y \in Y$, the distance between x and y is either 1 or greater or equal to 3 . Hence, all the edges of G are present in G^{2}, and there is no other edge in G^{2}. Now, the complement of G^{2} is a bipartite graph. Let H be the bipartite graph such that $\bar{H}=G^{2}$. Next, we prove that H is a bipartite chain graph. Since the edges across X and Y are the same in G and $G^{2}, N\left(x_{m}\right) \subseteq N\left(x_{m-1}\right) \subseteq \ldots \subseteq N\left(x_{1}\right)$ and $N\left(y_{n}\right) \subseteq N\left(y_{n-1}\right) \subseteq \ldots \subseteq N\left(y_{1}\right)$ in G^{2} as well. Therefore, in H, we have $N\left(x_{1}\right) \subseteq N\left(x_{2}\right) \subseteq \ldots \subseteq N\left(x_{m}\right)$ and $N\left(y_{1}\right) \subseteq N\left(y_{2}\right) \subseteq \ldots \subseteq N\left(y_{n}\right)$. Therefore, vertices of H have chain ordering and hence H is a bipartite chain graph.

From Lemma 3.2 and Lemma 3.3, we know that finding the d_{2}-transitivity of a bipartite chain graph G is the same as finding the transitivity of the complement of another bipartite chain graph H. From the proof of Lemma 3.3, it follows that we can obtain H by taking the complement of G and then deleting edges inside X and Y. Note that H contains some isolated vertices as $N\left(x_{m}\right)=N\left(y_{n}\right)=\emptyset$. Hence, we can compute H in linear time. Moreover, the transitivity of the complement of a bipartite chain graph can be computed in linear time [13]. Therefore, we have the following theorem:

Theorem 3.2. The Maximum $^{2} d_{2}$-Transitivity Problem can be solved in linear time for bipartite chain graphs.

4. NP-completeness of $\mathbf{M} d_{2} \mathbf{T D P}$

In this section, we present two NP-completeness results for Maximum d_{2}-Transitivity Decision Problem, namely in split graphs and bipartite graphs.

Split graphs

In this subsection, we show that the Maximum d_{2}-Transitivity Decision Problem ($\mathrm{M} d_{2} \mathrm{TDP}$) is NP-complete for split graphs, which form an important subclass of the class of chordal graphs.

Theorem 4.1. The Maximum d_{2}-Transitivity $D_{\text {ecision }}$ Problem is NP-complete for split graphs.
Proof. Given a vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of a given split graph, we can verify in polynomial time whether π is a d_{2}-transitive partition of that graph or not. Hence, the Maximum d_{2}-Transitivity Decision Problem (M d_{2} TDP) is in NP. To prove that this problem is NP-hard, we show a polynomial time reduction from the Maximum Transitivity Decision Problem in general graphs, which is known to be NP-complete [10]. The reduction is as follows: given an instance of the Maximum Transitivity Decision Problem, that is, a graph $G=(V, E)$ and an integer k, we first subdivide each edge of G exactly once. Let u_{i} be the subdivision vertex corresponding to the edge $e_{i} \in E$ for every $1 \leq i \leq m$. Then we put edges between every pair of subdivision vertices. Let the new graph be $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Clearly, G^{\prime} is a split graph having $n+m$ vertices and $\frac{m^{2}+3 m}{2}$ edges. The construction of G^{\prime} is illustrated in Figure 4.1.

G

G^{\prime}

Figure 4.1: Construction of G^{\prime} in Theorem 4.1.

Claim 4.1. The graph G has a transitive partition of size k if and only if G^{\prime} has a d_{2}-transitive partition of size $k+m$.
Proof of Claim 4.1. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a transitive partition of G of size k. Let us consider a vertex partition, say $\pi^{\prime}=\left\{V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k+m}^{\prime}\right\}$ of G^{\prime}, as follows: $V_{i}^{\prime}=V_{i}$ for all $1 \leq i \leq k$ and $V_{k+j}^{\prime}=\left\{u_{j}\right\}, 1 \leq j \leq m$. We show that π^{\prime} is a d_{2}-transitive partition of G^{\prime}. For any pair of sets V_{i}^{\prime} and V_{j}^{\prime} with $1 \leq i<j \leq k, V_{i}^{\prime} d_{2}$-dominates V_{j}^{\prime} in G^{\prime} as V_{i} dominates V_{j} in G. Also, the set $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ induces a complete graph in G^{\prime}. Hence, $V_{i}^{\prime} d_{2}$-dominates V_{j}^{\prime} in G^{\prime} for $k+1 \leq i<j \leq k+m$. Finally, every vertex of G^{\prime}, other than the subdivision vertices, is adjacent to at least one subdivision vertex in G^{\prime}. Hence, $V_{i}^{\prime} d_{2}$-dominates V_{j}^{\prime} in G^{\prime} for $1 \leq i \leq k$ and $k+1 \leq j \leq k+m$. Therefore, π^{\prime} is a d_{2}-transitive partition of G^{\prime} of size $k+m$.

Conversely, let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k+m}\right\}$ be a d_{2}-transitive partition of G^{\prime} of size $k+m$. Let $V_{p_{1}}, V_{p_{2}}, \ldots, V_{p_{t}}$ be the sets in π that do not contain any subdivision vertex, where $p_{1}<p_{2}<\ldots<p_{t}$. Since there are m subdivision vertices in G^{\prime}, there exist at least k such sets in π. Therefore, $t \geq k$. Let us consider the vertex partition, say $\pi^{\prime}=\left\{V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right\}$ of G as follows: $V_{i}^{\prime}=V_{p_{i}}$ for $2 \leq i \leq k$, and V_{1}^{\prime} contains the rest of the vertices of G. Since $V_{p_{i}} d_{2}$-dominates $V_{p_{j}}$ in G^{\prime}, every vertex of $V_{p_{j}}$ must be adjacent to some vertex of $V_{p_{i}}$ in G. Therefore, π^{\prime} is a transitive partition of G of size k.

From Claim 4.1, it follows that the Maximum d_{2}-Transitivity Decision Problem is NP-complete for split graphs. This completes the proof of Theorem 4.1

Bipartite graphs

In this subsection, we show that the Maximum d_{2}-Transitivity Decision Problem is NP-complete for bipartite graphs as well.

Theorem 4.2. The Maximum $d_{2}-T_{\text {Ransitivity }} D_{\text {ecision }} P_{\text {roblem }}$ is NP-complete for bipartite graphs.

Proof. Given a vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of a bipartite graph, we can verify in polynomial time whether π is a d_{2}-transitive partition of that graph or not. Hence, the Maximum d_{2}-Transitivity Decision Problem is in NP. To prove that this problem is NP-hard, we show a polynomial time reduction from the Maximum Transitivity Decision Problem in general graphs, which is known to be NP-complete [10]. The reduction is as follows: given an instance of the Maximum Transitivity Decision Problem, that is, a graph $G=(V, E)$ and an integer k, we construct another graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ vertices and edges of G, respectively. For each vertex $v_{i} \in V$, we take two vertices v_{i}^{1} and v_{i}^{2} in V^{\prime}, and for each edge $e_{j} \in E$, we take two vertices u_{j}^{1} and u_{j}^{2} in V^{\prime}. Hence, $V^{\prime}=V_{1} \cup V_{2} \cup U_{1} \cup U_{2}$, where $V_{1}=\left\{v_{1}^{1}, v_{2}^{1}, \ldots, v_{n}^{1}\right\}, V_{2}=\left\{v_{1}^{2}, v_{2}^{2}, \ldots, v_{n}^{2}\right\}, U_{1}=\left\{u_{1}^{1}, u_{2}^{1}, \ldots, u_{m}^{1}\right\}$ and $U_{2}=\left\{u_{1}^{2}, u_{2}^{2}, \ldots, u_{m}^{2}\right\}$. Next, we add edges between v_{i}^{1} and u_{j}^{1} if e_{j} is incident on v_{i} in G. Similarly, we add edges between v_{i}^{2} and u_{j}^{2} if e_{j} is incident on v_{i} in G. Finally, we add edges between every vertex of U_{1} and every vertex of U_{2}; that is, U_{1} and U_{2} induce a complete bipartite graph in G^{\prime}. Clearly, G^{\prime} is a bipartite graph with $V_{1} \cup U_{2}$ and $V_{2} \cup U_{1}$ forming the bipartition, and G^{\prime} has $2(m+n)$ vertices and $m^{2}+4 m$ edges. The construction is illustrated in Figure 4.2.

Claim 4.2. The graph G has a transitive partition of size k if and only if G^{\prime} has a d_{2}-transitive partition of size $k+2 m$.
Proof of Claim 4.2. Let $\pi=\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$ be a transitive partition of G of size k. Let us consider the following vertex partition, say $\pi^{\prime}=\left\{W_{1}^{\prime}, W_{2}^{\prime}, \ldots, W_{k+2 m}^{\prime}\right\}$ of G^{\prime} as follows: for each $1 \leq i \leq k, W_{i}^{\prime}$ is defined as $W_{i}^{\prime}=\left\{v_{j}^{1}, v_{j}^{2} \mid v_{j} \in W_{i}\right\}$ and for each $k+1 \leq i \leq 2 m$, W_{i}^{\prime} contains exactly one vertex from $U_{1} \cup U_{2}$. Clearly, π^{\prime} is a vertex partition of G^{\prime} of size $k+2 m$. We show that π^{\prime} is a d_{2}-transitive partition of G^{\prime}. Note that, by the construction of G^{\prime}, it follows that if $e_{t}=v_{p} v_{q}$ is an edge in G, then $d\left(v_{p}^{1}, v_{q}^{1}\right)=d\left(v_{p}^{2}, v_{q}^{2}\right)=2$ in G^{\prime}. Hence, since W_{i} dominates W_{j} in $G, W_{i}^{\prime} d_{2}$-dominates W_{j}^{\prime} in G^{\prime} for all $1 \leq i<j \leq k$.

G

Figure 4.2: Construction of G^{\prime} in Theorem 4.2.

Also, since $U_{1} \cup U_{2}$ induces a complete bipartite graph in $G^{\prime}, W_{i}^{\prime} d_{2}$-dominates W_{j}^{\prime} for all $k+1 \leq i<j \leq k+2 m$. Note that every vertex of U_{1} is at a distance of two from every vertex of V_{2}, and every vertex of U_{2} is at a distance of two from every vertex of V_{1}. Therefore, every W_{j}^{\prime} for $k+1 \leq j \leq k+2 m$, is d_{2}-dominated by every W_{i}^{\prime}, where $1 \leq i \leq k$. Therefore, π^{\prime} is a d_{2}-transitive partition of G^{\prime} of size $k+2 m$.

Conversely, let $\pi=\left\{W_{1}, W_{2}, \ldots, W_{k+2 m}\right\}$ be a d_{2}-transitive partition of G^{\prime} of size $k+2 m$. Let $W_{p_{1}}, W_{p_{2}}, \ldots, W_{p_{t}}$ be the sets in π that do not contain any vertex from $U_{1} \cup U_{2}$, where $p_{1}<p_{2}<\ldots<p_{t}$. Since there are $2 m$ vertices in $U_{1} \cup U_{2}$, there exist at least k such sets in π. Therefore, $t \geq k$. Note that since the distance between any vertex of V_{1} and any vertex of V_{2} is more than two, if $W_{p_{t}}$ contains a vertex from V_{1} (or V_{2}), then $W_{p_{i}}$ for all $i<t$ contains at least one vertex from V_{1} (respectively from V_{2}). Let us assume that $W_{p_{t}}$ contains vertices from V_{1}. Consider a vertex partition, say $\pi^{\prime}=\left\{W_{1}^{\prime}, W_{2}^{\prime}, \ldots, W_{k}^{\prime}\right\}$, of G as follows: $W_{i}^{\prime}=\left\{v_{j} \mid v_{j}^{1} \in W_{p_{i}}\right\}$ for each $2 \leq i \leq k$, and W_{1}^{\prime} contains every other vertex of G. Note that if $v_{r}^{1} \in W_{p_{j}}$ for some $2 \leq j \leq k$, then every $W_{p_{i}}$, with $i<j$, contains at least one vertex, say v_{s}^{1}, such that $d\left(v_{s}^{1}, v_{r}^{1}\right)=2$ in G^{\prime}. By the construction of G^{\prime}, it follows that v_{s} and v_{r} are adjacent in G. Hence, W_{i}^{\prime} dominates W_{j}^{\prime} for all $1 \leq i<j \leq k$. Therefore, π^{\prime} is a transitive partition of G of size k. For the case where $W_{p_{t}}$ does not contain any vertex from V_{1}, that is, it contains vertices from V_{2} only, we can argue in a similar way by considering vertices from V_{2} and show that π^{\prime} is a transitive partition of G of size k.

Claim 4.2 shows that the Maximum d_{2}-Transitivity Decision Problem is NP-complete for bipartite graphs. This completes the proof of Theorem 4.2

5. Conclusion

In this paper, we have introduced the notion of d_{2}-transitivity in graphs, which is a generalization of transitivity. First, we have shown some basic properties for d_{2}-transitivity. We have also proved that the d_{2}-transitivity can be computed in linear time for the complement of bipartite graphs and bipartite chain graphs. On the other side, we have shown that the Maximum d_{2}-Transitivity Decision Problem is NP-complete for split graphs and bipartite graphs. It would be interesting to investigate the complexity status of this problem in other graph classes. Designing an approximation algorithm for this problem would be another challenging open problem. We know that for a graph G, the upper bound of transitivity is equal to the lower bound of d_{2}-transitivity of G, namely $\Delta(G)+1$. Naturally, for the complete graph on n vertices K_{n}, these two parameters are equal. It would be an interesting open problem to characterize the graphs where these two parameters are the same.

Acknowledgements

S. Paul was supported by the SERB MATRICS Research Grant (No. MTR/2019/000528). The work of K. Santra is supported by the Department of Science and Technology (DST) (INSPIRE Fellowship, Ref No: DST/INSPIRE/03/2016/000291), Govt. of India.

References

[1] G. J. Chang, The domatic number problem, Discrete Math. 125 (1994) 115-122.
[2] C. A. Christen, S. M. Selkow, Some perfect coloring properties of graphs, J. Combin. Theory Ser. B 27 (1979) 49-59.
[3] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261.
[4] B. Effantin, A note on Grundy colorings of central graphs, Australas. J. Combin. 68 (2017) 346-356.
[5] Z. Füredi, A. Gyárfás, G. N. Sárközy, S. Selkow, Inequalities for the first-fit chromatic number, J. Graph Theory 59 (2008) 75-88.
[6] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. McRae, N. Phillips, The transitivity of special graph classes, J. Combin. Math. Combin. Comput. 110 (2019) $181-204$.
[7] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. McRae, N. Phillips, The upper domatic number of a graph, AKCE Int. J. Graphs Comb. 17 (2020) 139-148.
[8] J. T. Hedetniemi, S. T. Hedetniemi, The transitivity of a graph, J. Combin. Math. Combin. Comput. 104 (2018) 75-91.
[9] S. M. Hedetniemi, S. T. Hedetniemi, T. Beyer, A linear algorithm for the Grundy (coloring) number of a tree, Congr. Numer. 36 (1982) $351-363$.
[10] S. M. Hedetniemi, S. T. Hedetniemi, A. A. McRae, D. Parks, J. A. Telle, Iterated colorings of graphs, Discrete Math. 278 (2004) 81-108.
[11] P. Heggernes, D. Kratsch, Linear-time certifying recognition algorithms and forbidden induced subgraphs, Nord. J. Comput. 14 (2007) 87-108.
[12] S. Paul, K. Santra, Transitivity on subclasses of bipartite graphs, J. Comb. Optim. 45 (2013) 1-16.
[13] S. Paul, K. Santra, Transitivity on subclasses of chordal graphs, arXiv:2211.13931 [math.CO], (2022).
[14] L. Samuel, M. Joseph, New results on upper domatic number of graphs, Commun. Comb. Optim. 5 (2020) 125-137.
[15] M. Zaker, Grundy chromatic number of the complement of bipartite graphs, Australas. J. Combin. 31 (2005) 325-330.
[16] M. Zaker, Results on the grundy chromatic number of graphs, Discrete Math. 306 (2006) 3166-3173.
[17] B. Zelinka, Domatically critical graphs, Czechoslovak Math. J. 30 (1980) 486-489.
[18] B. Zelinka, On k-domatic numbers of graphs, Czechoslovak Math. J. 33 (1983) 309-313.

[^0]: *Both authors contributed equally to this work.
 ${ }^{\dagger}$ Corresponding author (subhabrata@iitp.ac.in).

