Research Article

Combinatorial identities and hypergeometric functions, II

Horst Alzer*

Morsbacher Straße 10, 51545 Waldbröl, Germany
(Received: 6 November 2023. Received in revised form: 17 January 2024. Accepted: 22 January 2024. Published online: 3 April 2024.)
© 2024 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Properties of the classical Gaussian hypergeometric function are applied to prove some combinatorial identities. Among others, a corrected and simplified version of a formula of D. Lim [Notes Number Theory Discrete Math. 29 (2023) 421-425] is offered.

Keywords: combinatorial identity; hypergeometric function; Knuth's old sums.
2020 Mathematics Subject Classification: 05A19, 33C05.

1. Introduction and statement of the results

Two classical results in the theory of combinatorial identities state that

$$
\begin{gather*}
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} 2^{-k}\binom{2 k}{k}=2^{-2 n}\binom{2 n}{n} \tag{1}\\
\sum_{k=0}^{2 n+1}(-1)^{k}\binom{2 n+1}{k} 2^{-k}\binom{2 k}{k}=0 \tag{2}
\end{gather*}
$$

These formulas are known as Knuth's old sums and also as the Reed Dawson identities, see [9, p. 71]. The following related identities are due to Riordan [9, p. 72]:

$$
\begin{gather*}
\sum_{k=0}^{2 n-1}(-1)^{k}\binom{2 n}{k+1} 2^{-k}\binom{2 k}{k}=2^{-2 n+1} n\binom{2 n}{n}, \tag{3}\\
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n+1}{k+1} 2^{-k}\binom{2 k}{k}=2^{-2 n}(2 n+1)\binom{2 n}{n} . \tag{4}
\end{gather*}
$$

We remark that (3) corrects a misprint given in [9, p. 72], where $2^{-2 n+1}$ is replaced by $2^{-2 n-1}$.
The work on the present article was inspired by the paper [5] of Lim. He used properties of the Gaussian hypergeometric function

$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}, \quad(a)_{k}=a(a+1) \cdots(a+k-1),
$$

to prove a generalization of (3) and (4):

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n+j}{k+j} 2^{-k}\binom{2 k}{k} \frac{(j+1)_{k}}{(2)_{k}}= \begin{cases}\binom{2 n+j}{j} \frac{(1 / 2)_{n}}{(1)_{n}}, & \text { if } n \text { is even } \tag{5}\\ \frac{1}{2}\binom{2 n+j+1}{j} \frac{(3 / 2)_{n}}{(2)_{n}}, & \text { if } n \text { is odd. }\end{cases}
$$

Unfortunately, this result is stated incorrectly. Here, a correct version of (5), written in a simpler and slightly more elegant form, is offered. Moreover, four closely related identities are presented. In particular, extensions of (1), (2), (3), and (4) are obtained. Just like Lim [5], the results in this paper are proved by making use of the function ${ }_{2} F_{1}$. Additional combinatorial identities that were deduced by using properties of hypergeometric functions can be found, for example, in the recently published papers [1,3,7,8]. Readers are also refered to Bailey's fundamental book "Generalized Hypergeometric Series" [2].

[^0]As usual, $[x]$ denotes the greatest integer less than or equal to x.
Theorem 1.1. Let $n \geq 0$ and $j \geq 0$ be integers. Then

$$
\begin{align*}
& \sum_{k=0}^{n} \frac{(-1 / 2)^{k}}{k+1}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}=\frac{1}{2^{n}}\binom{n}{[n / 2]}\binom{n+j}{n}, \tag{6}\\
& \sum_{k=0}^{n} \frac{(-1 / 2)^{k}}{(k+1)(k+2)}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}=\left\{\begin{array}{cc}
\frac{1}{3 \cdot 2^{n}} \frac{2 n+3}{n+2}\binom{n}{n / 2}\binom{n+j}{n}, & \text { if } n \text { is even }, \\
\frac{1}{3 \cdot 2^{n-1}}\binom{n}{(n-1) / 2}\binom{n+j}{n}, & \text { if } n \text { is odd },
\end{array}\right. \tag{7}\\
& \sum_{k=0}^{n}\left(\frac{-1}{2}\right)^{k}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}= \begin{cases}\frac{1}{2^{n}}\binom{n}{n / 2}\binom{n+j}{n}, & \text { if } n \text { is even, } \\
0, & \text { if } n \text { is odd },\end{cases} \tag{8}\\
& \sum_{k=0}^{n} \frac{1}{2^{k}\binom{2 n}{k}}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}=2^{2 n} \frac{\binom{n+j}{n}\binom{n-1 / 4}{n}}{\binom{2 n}{n}}, \tag{9}\\
& \sum_{k=0}^{n} \frac{1}{2^{k}\binom{2 n+1}{k}}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}=2^{2 n+1} \frac{\binom{n+j}{n}}{\binom{2 n+1}{n}}\left\{\binom{n+3 / 4}{n+1}-\binom{n+1 / 4}{n+1}\right\} . \tag{10}
\end{align*}
$$

Remark 1.1. (i) Identity (6) is a corrected version of (5).
(ii) The special cases $j=1$ in (6) and $j=0$ in (8) lead to (3), (4) and (1), (2), respectively.
(iii) From (6) and (7) we obtain, for odd n, the following identity:

$$
\sum_{k=0}^{n} \frac{(-1 / 2)^{k}}{k+1}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}=\frac{3}{2} \sum_{k=0}^{n} \frac{(-1 / 2)^{k}}{(k+1)(k+2)}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}
$$

(iv) Applying (6) and (8) gives, for even n, the following identity:

$$
\sum_{k=0}^{n} \frac{(-1 / 2)^{k}}{k+1}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}=\sum_{k=0}^{n}\left(\frac{-1}{2}\right)^{k}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k}
$$

This identity is equivalent to

$$
{ }_{2} F_{1}(-n, 1 / 2 ; 2 ; 2)={ }_{2} F_{1}(-n, 1 / 2 ; 1 ; 2),
$$

which is a special case of a formula given in [4, (18)].

An application of (8) leads to a relative of (8).

Corollary 1.1. Let $n \geq 0$ and $j \geq 0$ be integers. Then

$$
\sum_{k=0}^{n+1}\left(\frac{-1}{2}\right)^{k}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n+1-k}= \begin{cases}\frac{-1}{2^{n}}\binom{n}{n / 2}\binom{n+j}{n}, & \text { if } n \text { is even } \tag{11}\\ \frac{1}{2^{n+1}}\binom{n+1}{(n+1) / 2}\binom{n+1+j}{n+1}, & \text { if } n \text { is } \text { odd }\end{cases}
$$

Remark 1.2. Identity (11) with $j=0$ gives striking companions to (1), (2) and (3), (4):

$$
\begin{gathered}
\sum_{k=1}^{2 n+1}(-1)^{k}\binom{2 n}{k-1} 2^{-k}\binom{2 k}{k}=-2^{-2 n}\binom{2 n}{n} \\
\sum_{k=1}^{2 n+2}(-1)^{k}\binom{2 n+1}{k-1} 2^{-k}\binom{2 k}{k}=2^{-2 n-2}\binom{2 n+2}{n+1} .
\end{gathered}
$$

2. Proofs

Proof of Theorem 1.1. We need the following formulas (see [6, p. 493]):

$$
\begin{gather*}
{ }_{2} F_{1}(-n, a ; 2 a+1 ; 2)=\frac{1}{\sqrt{\pi}} \Gamma(a+1 / 2)\left(\frac{1+(-1)^{n}}{2} \frac{\Gamma((n+1) / 2)}{\Gamma(a+(n+1) / 2)}+\frac{1-(-1)^{n}}{2} \frac{\Gamma(n / 2+1)}{\Gamma(a+n / 2+1}\right), \tag{12}\\
{ }_{2} F_{1}(-n, a ; 2 a ; 2)=\left(1+(-1)^{n}\right) \frac{n!\Gamma(a+1 / 2)}{2^{n+1} \Gamma(n / 2+1) \Gamma(a+(n+1) / 2)}, \tag{13}\\
{ }_{2} F_{1}(-n, a ;-2 n ; 2)=\frac{2^{2 n} n!}{(2 n)!}\left(\frac{a+1}{2}\right){ }_{n} \tag{14}\\
{ }_{2} F_{1}(-n, a ;-2 n-1 ; 2)=\frac{2^{2 n+1} n!}{(2 n+1)!}\left\{\left(\frac{a+1}{2}\right)_{n+1}-\left(\frac{a}{2}\right)_{n+1}\right\} . \tag{15}
\end{gather*}
$$

Moreover, we make use of the formulas

$$
\begin{equation*}
{ }_{2} F_{1}(-2 n, a ; 2 a+2 ; 2)=\left(1+\frac{2 n}{a+1}\right) \frac{(1 / 2)_{n}}{(a+3 / 2)_{n}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}(-2 n-1, a ; 2 a+2 ; 2)=\frac{1}{a+1} \frac{(3 / 2)_{n}}{(a+3 / 2)_{n}} \tag{17}
\end{equation*}
$$

which are given in [4, (19), (30)].
We define

$$
\begin{equation*}
T_{n}(j, c)=\sum_{k=0}^{n}\left(\frac{-1}{2}\right)^{k}\binom{2 k}{k}\binom{n+j}{n-k} \frac{(j+1)_{k}}{(c)_{k}} . \tag{18}
\end{equation*}
$$

Using

$$
\binom{2 k}{k}=2^{2 k} \frac{(1 / 2)_{k}}{k!}, \quad\binom{n+j}{n-k}=(-1)^{k}\binom{n+j}{n} \frac{(-n)_{k}}{(j+1)_{k}} \quad \text { and } \quad(-n)_{k}=0 \quad(k>n)
$$

we obtain the representation

$$
\begin{equation*}
T_{n}(j, c)=\binom{n+j}{n} \sum_{k=0}^{\infty} \frac{(-n)_{k}(1 / 2)_{k}}{(c)_{k}} \frac{2^{k}}{k!}=\binom{n+j}{n}{ }_{2} F_{1}(-n, 1 / 2 ; c ; 2) \tag{19}
\end{equation*}
$$

(i). We apply (12) with $a=1 / 2$ and the formula

$$
\Gamma\left(n+\frac{1}{2}\right)=\sqrt{\pi} \frac{(2 n)!}{n!2^{2 n}}
$$

Then

$$
\begin{equation*}
{ }_{2} F_{1}(-n, 1 / 2 ; 2 ; 2)=\frac{1}{\sqrt{\pi}}\left(\frac{1+(-1)^{n}}{2} \frac{\Gamma((n+1) / 2)}{\Gamma(n / 2+1)}+\frac{1-(-1)^{n}}{2} \frac{\Gamma(n / 2+1)}{\Gamma((n+3) / 2)}\right)=\frac{1}{2^{n}}\binom{n}{[n / 2]}, \tag{20}
\end{equation*}
$$

so that (19) with $c=2$ and (20) lead to

$$
\begin{equation*}
T_{n}(j, 2)=\frac{1}{2^{n}}\binom{n}{[n / 2]}\binom{n+j}{n} \tag{21}
\end{equation*}
$$

Since

$$
\frac{(j+1)_{k}}{(2)_{k}}=\frac{1}{k+1}\binom{k+j}{k}
$$

we conclude from (18) that

$$
\begin{equation*}
T_{n}(j, 2)=\sum_{k=0}^{n} \frac{(-1 / 2)^{k}}{k+1}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k} . \tag{22}
\end{equation*}
$$

From (21) and (22) we obtain (6).
(ii). From (19) with $c=1$ and (13) with $a=1 / 2$, we obtain

$$
\begin{align*}
T_{n}(j, 1)=\binom{n+j}{n}{ }_{2} F_{1}(-n, 1 / 2 ; 1 ; 2) & =\binom{n+j}{n}\left(1+(-1)^{n}\right) \frac{n!}{2^{n+1} \Gamma(n / 2+1)^{2}} \tag{23}\\
& =\left\{\begin{array}{cc}
\frac{1}{2^{n}}\binom{n}{n / 2}\binom{n+j}{n}, & \text { if } n \text { is even } \\
0, & \text { if } n \text { is odd }
\end{array}\right.
\end{align*}
$$

We have

$$
\frac{(j+1)_{k}}{(1)_{k}}=\binom{k+j}{k},
$$

so that (18) yields

$$
\begin{equation*}
T_{n}(j, 1)=\sum_{k=0}^{n}\left(\frac{-1}{2}\right)^{k}\binom{2 k}{k}\binom{k+j}{k}\binom{n+j}{n-k} . \tag{24}
\end{equation*}
$$

From (23) and (24), we conclude that (8) is valid.
(iii). Formula (14) with $a=1 / 2$ gives

$$
\begin{equation*}
{ }_{2} F_{1}(-n, 1 / 2 ;-2 n ; 2)=\frac{2^{2 n} n!}{(2 n)!}(3 / 4)_{n}=2^{2 n} \frac{\binom{n-1 / 4}{n}}{\binom{2 n}{n}} . \tag{25}
\end{equation*}
$$

We now use (18), (19) with $c=-2 n$, (25) and

$$
\frac{(j+1)_{k}}{(-2 n)_{k}}=(-1)^{k} \frac{\binom{k+j}{k}}{\binom{2 n}{k}} .
$$

This leads to (9).
(iv). We apply (15) with $a=1 / 2$. Then

$$
\begin{equation*}
{ }_{2} F_{1}(-n, 1 / 2 ;-2 n-1 ; 2)=\frac{2^{2 n+1} n!}{(2 n+1)!}\left\{(3 / 4)_{n+1}-(1 / 4)_{n+1}\right\}=\frac{2^{2 n+1}}{\binom{2 n+1}{n}}\left\{\binom{n+3 / 4}{n+1}-\binom{n+1 / 4}{n+1}\right\} . \tag{26}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{(j+1)_{k}}{(-2 n-1)_{k}}=(-1)^{k} \frac{\binom{k+j}{k}}{\binom{2+1}{k}} . \tag{27}
\end{equation*}
$$

From (18), (19) with $c=-2 n-1$ and (26), (27), we obtain (10).
(v). We have

$$
\begin{equation*}
\frac{(j+1)_{k}}{(3)_{k}}=\frac{2}{(k+1)(k+2)}\binom{k+j}{k} . \tag{28}
\end{equation*}
$$

Applying (16) with $a=1 / 2$, (18), (19), (28) and

$$
\frac{(1 / 2)_{n}}{(2)_{n}}=\frac{1}{2^{2 n}(n+1)}\binom{2 n}{n}
$$

we obtain

$$
\begin{equation*}
T_{2 n}(j, 3)=2 \sum_{k=0}^{2 n} \frac{(-1 / 2)^{k}}{(k+1)(k+2)}\binom{2 k}{k}\binom{k+j}{k}\binom{2 n+j}{2 n-k} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2 n}(j, 3)=\binom{2 n+j}{2 n}\left(1+\frac{4 n}{3}\right) \frac{(1 / 2)_{n}}{(2)_{n}}=\frac{4 n+3}{3(n+1) 2^{2 n}}\binom{2 n+j}{2 n}\binom{2 n}{n} . \tag{30}
\end{equation*}
$$

Next, we apply (17) with $a=1 / 2$, (18), (19), (28) and

$$
\frac{(3 / 2)_{n}}{(2)_{n}}=\frac{1}{2^{2 n}}\binom{2 n+1}{n}
$$

This leads to

$$
\begin{equation*}
T_{2 n+1}(j, 3)=2 \sum_{k=0}^{2 n+1} \frac{(-1 / 2)^{k}}{(k+1)(k+2)}\binom{2 k}{k}\binom{k+j}{k}\binom{2 n+1+j}{2 n+1-k} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2 n+1}(j, 3)=\binom{2 n+1+j}{2 n+1} \frac{2 \cdot(3 / 2)_{n}}{3 \cdot(2)_{n}}=\frac{2}{3 \cdot 2^{2 n}}\binom{2 n+1+j}{2 n+1}\binom{2 n+1}{n} \tag{32}
\end{equation*}
$$

From (29), (30), (31), and (32), we conclude that (7) holds.
Proof of Corollary 1.1. Let

$$
S_{n}(j)=\sum_{k=0}^{n} a_{k}(j)\binom{n+j}{k+j} \quad \text { and } \quad a_{k}(j)=\left(\frac{-1}{2}\right)^{k}\binom{2 k}{k}\binom{k+j}{k} .
$$

Using the recurrence relation

$$
\binom{n+1+j}{k+j}=\binom{n+j}{k+j}+\binom{n+j}{k+j-1}
$$

we have

$$
\begin{equation*}
S_{n+1}(j)-S_{n}(j)=\sum_{k=0}^{n+1} a_{k}(j)\binom{n+j}{k+j-1} \tag{33}
\end{equation*}
$$

From (8), it follows that

$$
\begin{equation*}
S_{n+1}(j)-S_{n}(j)=-S_{n}(j)=-\frac{1}{2^{n}}\binom{n}{n / 2}\binom{n+j}{n}, \quad \text { if } n \text { is even } \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n+1}(j)-S_{n}(j)=S_{n+1}(j)=\frac{1}{2^{n+1}}\binom{n+1}{(n+1) / 2}\binom{n+1+j}{n+1}, \quad \text { if } n \text { is odd. } \tag{35}
\end{equation*}
$$

Consequently, (11) is obtained from (33), (34), and (35).

Acknowledgement

The author thanks K. C. Richards and the two referees for their helpful comments.

References

[1] H. Alzer, K. C. Richards, Combinatorial identities and hypergeometric functions, Rocky Mountain J. Math. 52 (2022) 1921-1928.
[2] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University, Cambridge, 1935.
[3] W. Chu, E. Kiliç, Binomial sums involving Catalan numbers, Rocky Mountain J. Math. 51 (2021) 1221-1225.
[4] Y. Kim, A. K. Rathie, R. B. Paris, Evaluations of some terminating hypergeometric ${ }_{2} F_{1}(2)$ series with applications, Turkish J. Math. 42 (2018) $2563-2575$.
[5] D. Lim, A note on a generalization of Riordan's combinatorial identity via a hypergeometric approach, Notes Number Theory Discrete Math. 29 (2023) $421-425$.
[6] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Gordon and Breach, New York, 1986.
[7] A. K. Rathie, I. Kim, R. B. Paris, A note on a generalization of two well-known combinatorial identities via a hypergeometric approach, Integers 22 (2022) \#A28.
[8] A. K. Rathie, D. Lim, A note on generalization of combinatorial identities due to Gould and Touchard, Axioms 12 (2023) \#268.
[9] J. Riordan, Combinatorial Identities, Robert E. Krieger, Huntington, 1979.

[^0]: *E-mail address: h.alzer@gmx.de

