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Abstract

Properties of the classical Gaussian hypergeometric function are applied to prove some combinatorial identities. Among
others, a corrected and simplified version of a formula of D. Lim [Notes Number Theory Discrete Math. 29 (2023) 421-425]
is offered.
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1. Introduction and statement of the results

Two classical results in the theory of combinatorial identities state that
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These formulas are known as Knuth’s old sums and also as the Reed Dawson identities, see [9, p. 71]. The following
related identities are due to Riordan [9, p. 72]:
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We remark that (3) corrects a misprint given in [9, p. 72], where 272" *! is replaced by 27271,

The work on the present article was inspired by the paper [5] of Lim. He used properties of the Gaussian hypergeometric
function
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to prove a generalization of (3) and (4):
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Unfortunately, this result is stated incorrectly. Here, a correct version of (5), written in a simpler and slightly more elegant
form, is offered. Moreover, four closely related identities are presented. In particular, extensions of (1), (2), (3), and (4) are
obtained. Just like Lim [5], the results in this paper are proved by making use of the function 5 ;. Additional combinatorial
identities that were deduced by using properties of hypergeometric functions can be found, for example, in the recently
published papers[1,3,7,8]. Readers are also refered to Bailey’s fundamental book “Generalized Hypergeometric Series” [2].
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As usual, [z] denotes the greatest integer less than or equal to z.

Theorem 1.1. Let n > 0 and j > 0 be integers. Then
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Remark 1.1. (i) Identity (6) is a corrected version of (5).

(ii) The special cases j = 1in (6) and j = 0in (8) lead to (3), (4) and (1), (2), respectively.

(iii) From (6) and (7) we obtain, for odd n, the following identity:
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(iv) Applying (6) and (8) gives, for even n, the following identity:

S 0D 2@ 0

This identity is equivalent to

2F‘1(—’I7,7 1/2, 2; 2) = 2F1(—’I7,, 1/2, 1; 2),

which is a special case of a formula given in [4, (18)].
An application of (8) leads to a relative of (8).

Corollary 1.1. Let n > 0 and j > 0 be integers. Then
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Remark 1.2. Identity (11) with j = 0 gives striking companions to (1), (2) and (3), (4):
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2. Proofs

Proof of Theorem 1.1. We need the following formulas (see [6, p. 493]):
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From (21) and (22) we obtain (6).
(ii). From (19) with ¢ = 1 and (13) with ¢ = 1/2, we obtain
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From (23) and (24), we conclude that (8) is valid.
(iii). Formula (14) with a = 1/2 gives
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From (29), (30), (31), and (32), we conclude that (7) holds. O

Proof of Corollary 1.1. Let
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Using the recurrence relation
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Consequently, (11) is obtained from (33), (34), and (35). O
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