
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 13 (2024) 1–5
DOI: 10.47443/dml.2023.211

Research Article

Combinatorial identities and hypergeometric functions, II

Horst Alzer∗

Morsbacher Straße 10, 51545 Waldbröl, Germany

(Received: 6 November 2023. Received in revised form: 17 January 2024. Accepted: 22 January 2024. Published online: 3 April 2024.)

© 2024 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Properties of the classical Gaussian hypergeometric function are applied to prove some combinatorial identities. Among
others, a corrected and simplified version of a formula of D. Lim [Notes Number Theory Discrete Math. 29 (2023) 421–425]
is offered.
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1. Introduction and statement of the results

Two classical results in the theory of combinatorial identities state that
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These formulas are known as Knuth’s old sums and also as the Reed Dawson identities, see [9, p. 71]. The following
related identities are due to Riordan [9, p. 72]:
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We remark that (3) corrects a misprint given in [9, p. 72], where 2−2n+1 is replaced by 2−2n−1.
The work on the present article was inspired by the paper [5] of Lim. He used properties of the Gaussian hypergeometric

function
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to prove a generalization of (3) and (4):
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Unfortunately, this result is stated incorrectly. Here, a correct version of (5), written in a simpler and slightly more elegant
form, is offered. Moreover, four closely related identities are presented. In particular, extensions of (1), (2), (3), and (4) are
obtained. Just like Lim [5], the results in this paper are proved by making use of the function 2F1. Additional combinatorial
identities that were deduced by using properties of hypergeometric functions can be found, for example, in the recently
published papers [1,3,7,8]. Readers are also refered to Bailey’s fundamental book “Generalized Hypergeometric Series” [2].
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As usual, [x] denotes the greatest integer less than or equal to x.

Theorem 1.1. Let n ≥ 0 and j ≥ 0 be integers. Then
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Remark 1.1. (i) Identity (6) is a corrected version of (5).

(ii) The special cases j = 1 in (6) and j = 0 in (8) lead to (3), (4) and (1), (2), respectively.

(iii) From (6) and (7) we obtain, for odd n, the following identity:
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(iv) Applying (6) and (8) gives, for even n, the following identity:
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This identity is equivalent to
2F1(−n, 1/2; 2; 2) = 2F1(−n, 1/2; 1; 2),

which is a special case of a formula given in [4, (18)].

An application of (8) leads to a relative of (8).

Corollary 1.1. Let n ≥ 0 and j ≥ 0 be integers. Then
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Remark 1.2. Identity (11) with j = 0 gives striking companions to (1), (2) and (3), (4):
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2. Proofs

Proof of Theorem 1.1. We need the following formulas (see [6, p. 493]):
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From (21) and (22) we obtain (6).
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We have
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From (23) and (24), we conclude that (8) is valid.
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Using the recurrence relation (
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Consequently, (11) is obtained from (33), (34), and (35).
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