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Abstract

Let D be a digraph with n vertices and let σ1(D), σ2(D), . . . , σn(D) be the singular values of the adjacency matrix of D,
where σ1(D) ≥ σ2(D) ≥ · · · ≥ σn(D). The spectral norm of D is σ1(D). In this paper, we determine the orientations of
graphs with the first three largest values of the spectral norm over the family of all orientations of bicyclic graphs with at
least 12 vertices.
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1. Introduction

We consider digraphs without loops or multiple arcs. Let D be a digraph with vertex set V (D) and arc set E(D). The
notations and terminologies used but not defined here can be found in [4,5]. Denote by uv the arc from vertex u to vertex
v (i.e. the arc with tail u and head v). The out-degree (in-degree, respectively) of a vertex u of D, denoted by d+D(u) (d−D(u),
respectively), is the number of arcs of the form uv (vu, respectively) inD. A vertex uwith d+D(u) = 0 (d−D(u) = 0, respectively)
is called a sink (source, respectively) of D. The transpose D> of a digraph D is obtained from D by reversing all arcs.

The adjacency matrix of an n-vertex digraph D is the n × n matrix A(D) = (auv)u,v∈V (G), where auv = 1 if uv ∈ E(D)

and 0 otherwise. Let λ1(D), λ2(D), . . . , λn(D) denote the eigenvalues of A(D). Since A(D) is not necessarily symmetric, its
eigenvalues are not necessarily real numbers. The spectral radius of D is defined as ρ(D) = max{|λi| : i = 1, 2, . . . , n}.

We mention that a (simple undirected) graph G corresponds naturally to a digraph D(G) with the same vertex set such
that if there is an edge connecting vertices u and v in G, then there are arcs uv and vu in D(G). The adjacency matrix of
G is A(G) = A(D(G)). The spectral radius ρ(G) is the largest eigenvalue of its adjacency matrix.

For an n× n real matrix M , the singular values, σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) of M are the nonnegative square roots
of the eigenvalues of MTM or, equivalently, of MMT . The largest singular value, σ1(M), is called the spectral norm of M .
For a digraph D, the spectral norm σ1(D) is the spectral norm of A(D).

An orientation of a graph G is a digraph D obtained by choosing a direction for each edge of G. In this case, we say
that D is an orientation of G and G is the underlying graph of D. A source-sink orientation (SS-orientation for short) of a
graph G is an orientation such that each vertex is either a source or a sink. Monsalve and Rada [14] obtained that G has
a SS-orientation if and only if G is bipartite.

A connected graph G is a bicyclic graph if |E(G)| = |V (G)|+ 1. Let B1
n (B2

n, respectively) be the n-vertex bicyclic graph
obtained by adding two adjacent (nonadjacent, respectively) edges to the star Sn. LetDn,1,Dn,2 andDn,3 be the orientations
of B1

n as shown in Figure 1. Let D′n,3 be the orientation of B2
n as shown in Figure 1.

Some extremal problems in spectral digraph theory have attracted a great deal of research; some specific results on
extremal problems for digraphs can be found in [1–3,10,11,13]. Gregory and Kirkland [7] obtained lower and upper bounds
on the spectral norm of a tournament and determined the tournament with maximum spectral norm. In other words, they
found the orientation of Kn attaining maximum spectral norm over the set of all orientations of Kn. Hoppen, Monsalve
and Trevisan [9] obtained the extremal values of the spectral norm over the set of oriented trees, oriented unicyclic graphs
and connected digraphs with n vertices and n arcs. Garcı́a, Monsalve and Rada [6] obtained lower bounds for the spectral
norm of a digraph in terms of the structure of the digraph. In this paper, we found the orientations of bicyclic graphs
attaining the first three largest values of the spectral norm over the family of all orientations of bicyclic graphs.
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Dn,1 Dn,2

Dn,3 D′n,3

Figure 1: The digraphs Dn,1, Dn,2, Dn,3, and D′n,3.

2. Preliminaries

Consider a digraph D. For a vertex u of D that is neither source nor sink, let N−(u) = {w ∈ V (D) : wu ∈ E(D)}, and let
D′ = D(u) be the digraph with vertex set V (D) ∪ {u′} and arc set (E(D) \ {wu : w ∈ N−(u)}) ∪ {wu′ : w ∈ N−(u)}. Then u
is a source and u′ is a sink in D′. We say that D′ is obtained from D by stretching vertex u. If there exists a vertex in D′

that is neither a source nor a sink, then repeating this process, we may finally obtain a digraph D̃, in which all vertices are
either sources or sinks. The digraph D̃ is called the D-stretched digraph. Let D̃ = D if all vertices of D are either sources
or sinks.

Note that if D is an n-vertex digraph with ` arcs such that exactly k vertices are neither sinks nor sources, then the
D-stretched digraph D̃ has n + k vertices and ` arcs. Moreover, all vertices of D̃ are sinks or sources. Hence, D̃ is a
SS-orientation of a bipartite graph that will be denoted by HD. Obviously, HD is the underlying graph of the digraph D̃.

Obviously, D̃ doesn’t depend on the order in which the vertices of D are stretched. In the sense of isomorphism, these
maximal vertex-disjoint digraphs whose vertices are either sources or sinks of D̃ may be viewed as maximal arc-disjoint
subdigraphs whose vertices are either sources or sinks of D. Thus we call these maximal vertex-disjoint digraphs whose
vertices are either sources or sinks of D̃ the maximal SS-subdigraphs of D̃ or D.

Lemma 2.1 (see [9]). If D is an orientation of a graph G, then σ1(D) ≤ ρ(G), with equality if and only if D is an
SS-orientation of a bipartite graph G.

Lemma 2.2 (see [9]). Let D be a digraph and let HD be the underlying graph of D̃. Then σ1(D) = σ1(D̃) = ρ(HD).

Theorem 2.1. Let D be an orientation of a graph on n vertices, and D1, . . . , Dk be the maximal SS-subdigraphs of D. Then

σ1(D) = max
1≤i≤k

σ1(Di).

Proof. Note that D1, . . . , Dk are the maximal vertex-disjoint SS-subdigraphs of D̃. By labelling the vertices of D̃ properly,
A(D̃) is a diagonal block matrix with diagonal blocks A(D1), . . . , A(Dk). Obviously, the singular values of A(D̃) consist of
the singular values of A(D1), . . . , A(Dk). Thus

σ1(D̃) = max
1≤i≤k

σ1(Di).

By Lemma 2.2, we have σ1(D) = σ1(D̃).

94



K. Wei and J. Li / Discrete Math. Lett. 12 (2023) 93–97 95

For integers a and b with b ≥ a, the tree obtained by adding an edge between the centers of two vertex-disjoint stars
Sa+1 and Sb+1 is denoted by Sn,a. Obviously, the star Sn

∼= Sn,0. Let S′n,3 be the tree obtained by attaching two pendent
edge to two pendent vertices of Sn−2.

Lemma 2.3 (see [8]). Let T be a n-vertex tree and T 6∼= Sn, Sn,1, Sn,2, S
′
n,3. Then

ρ(T ) < ρ(S′n,3) < ρ(Sn,2) < ρ(Sn,1) < ρ(Sn).

Let C4 = v1v2v3v4. Let Un,1 be the unicyclic graph obtained from C4 by attaching n− 4 pendent vertices to v1 and Un,2

be the unicyclic graph obtained from C4 by attaching n− 5 pendent vertices to v1 and a pendent vertex to v2.

Lemma 2.4 (see [12]). Let G be a n-vertex unicyclic bipartite graph different from Un,1 and Un,2. Then

ρ(G) < ρ(Un,2) < ρ(Un,1),

where

ρ(Un,1) =

√
n+
√
n2 − 8n+ 32

2
.

Let Bn be the graph obtained by joining n − 5 pendent vertices to a vertex of degree three of the complete bipartite
graph K2,3.

Lemma 2.5 (see [16]). Let G be a bicyclic bipartite graphs with n ≥ 5 vertices, then

ρ(G) ≤ ρ(Bn) =

√
(n+ 1) +

√
n2 − 10n+ 61

2
,

with equality if and only if G ∼= Bn.

Lemma 2.6 (see [15]). Let G be a connected graph. If H is a proper subgraph of G, then ρ(H) < ρ(G).

3. Main results

Theorem 3.1. Let D be an orientation of a bicyclic graph with n ≥ 10 vertices. Then

σ1(D) ≤

√
(n+ 1) +

√
n2 − 6n+ 25

2

with equality if and only if D ∼= Dn,1 or D>n,1.

Proof. Note that Un+1,1 is the underlying graph of D̃n,1 and D̃>n,1. By Lemma 2.2, we have

σ1(Dn,1) = σ1(D>n,1) = ρ(Un+1,1) =

√
(n+ 1) +

√
n2 − 6n+ 25

2
.

LetD1, . . . , Dk be maximal vertex-disjoint SS-subdigraphs of D̃ andHi be the underlying graph ofDi for 1 ≤ i ≤ k. Without
loss of generality, we assume that

σ1(D1) = max
1≤i≤k

σ1(Di).

By Theorem 2.1 and Lemma 2.2, we have σ1(D) = σ1(D1) = ρ(H1). Note that H1 is a tree, a bipartite unicyclic graph or a
bipartite bicyclic graph and ∆(H1) ≤ n− 1.

If H1 is a tree with s vertices, then s ≤ n+ 2. Recall that ∆(H1) ≤ n− 1. Thus, H1 6∼= Sn+2 and H1 6∼= Sn+2,1 for s = n+ 2,
and H1 6∼= Sn+1 for s = n+ 1. By Lemma 2.3, we have ρ(H1) ≤ ρ(Sn+2,2) for s = n+ 2 and ρ(H1) ≤ ρ(Sn+1,1) for s = n+ 1. If
s ≤ n, then ρ(H1) ≤ ρ(Ss) ≤ ρ(Sn). Obviously, Sn and Sn+1,1 are the proper subgraphs of Sn+2,2. By Lemma 2.6, we have
ρ(H1) ≤ ρ(Sn+2,2). By Sachs theorem,

φ(Sn+2,2, x) = xn+2 − (n+ 1)xn + (2n− 4)xn−2.

Thus,

σ1(D) ≤ ρ(Sn+2,2) =

√
(n+ 1) +

√
n2 − 6n+ 17

2
< σ1(Dn,1).
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Suppose that H1 is a bipartite unicyclic graph with s vertices. Then s ≤ n+ 1. If s ≤ n, then by Lemma 2.4,

ρ(H1) ≤ ρ(Un,1) < ρ(Un+1,1) = σ1(Dn,1).

Suppose that s = n + 1. Then by Lemma 2.4, ρ(H1) ≤ ρ(Un+1,1). If the equality holds, then H1
∼= Un+1,1. Thus D̃ = D(v)

and D̃ is the SS-orientation of Un+1,1, where v is the unique vertex nither sink nor source. Therefore, D can be obtained
from D̃ by identifying a sink u1 with a source u2. Thus D ∼= Dn,1 or D>n,1.

Suppose now that H1 is a bipartite bicyclic graph with s vertices. Then s ≤ n. By Lemma 2.5,

ρ(H1) ≤ ρ(Bs) ≤ ρ(Bn) =

√
(n+ 1) +

√
n2 − 10n+ 61

2
< σ1(Dn,1)

for n ≥ 10.

Lemma 3.1. The inequalities ρ(S′n+2,3) > ρ(Un+1,2) and ρ(S′n+2,3) > ρ(Bn) hold for n ≥ 12.

Proof. By Sachs theorem, we have

φ(S′n+2,3, x) = xn+2 − (n+ 1)xn + (2n− 3)xn−2 − (n− 3)xn−4,

φ(Un+1,2, x) = xn+1 − (n+ 1)xn−1 + (3n− 10)xn−3 − (n− 4)xn−5,

and
φ(Bn, x) = xn − (n+ 1)xn−2 + (3n− 15)xn−4.

Let ρ1 = ρ(Un+1,2) and ρ2 = ρ(Bn). By direct calculation, we have

φ(S′n+2,3, ρ1) = φ(S′n+2,3, ρ1)− ρ1φ(Un+1,2, ρ1) = ρn−41 (−(n− 7)ρ21 − 1) < 0

and
φ(S′n+2,3, ρ2) = φ(S′n+2,3, ρ2)− ρ22φ(Bn, ρ2) = ρn−22 ((−n+ 12)ρ22 − (n− 3)) < 0.

Theorem 3.2. Let D be an oriented bicyclic graph with n ≥ 12 vertices different from Dn,1 and D>n,1. Then

σ1(D) ≤

√
(n+ 1) +

√
n2 − 6n+ 17

2

with equality if and only if D ∼= Dn,2 or D>n,2.

Proof. Note that Sn+2,2 is the underlying graph of D̃n,2 and D̃>n,2. By Lemma 2.2, we have

σ1(Dn,2) = σ1(D>n,2) = ρ(Sn+2,2) =

√
(n+ 1) +

√
n2 − 6n+ 17

2
.

Let σ1(D) = σ1(D1) = ρ(H1), where D1 and H1 are defined as Theorem 3.1. As above, we may get that ρ(H1) ≤ ρ(Sn+2,2)

with equality if and only if H1
∼= Sn+2,2 for H is a tree, and ρ(H1) ≤ ρ(Sn+2,2) for H1 is a bipartite bicyclic graph. Note

that D is different from Dn,1 and D>n,1. If H1 is a bipartite unicyclic graph, then H1 6∼= Un+1,1. By Lemma 2.4, we have
ρ(H1) ≤ ρ(Un+1,2). By Lemmas 2.3 and 3.1, ρ(H1) ≤ ρ(Sn+2,2) with equality if and only if H1

∼= Sn+2,2. If the equality
holds, then H1

∼= Sn+2,2. Thus D̃ = D(u)(v) and D̃ is the SS-orientation of Sn+2,2, where u and v are the vertices nither
sink nor source. Therefore, D can be obtained from D̃ by identifying a sink u1 with a source u2 and identifying a sink u3

with a source u4, respectively. Thus D ∼= Dn,2 or D>n,2.

Since the proof of the next result is similar to the proof of Theorem 3.2, we omit it.

Theorem 3.3. Let D be an oriented bicyclic graph with n ≥ 12 vertices different from Dn,1, D>n,1, Dn,2 and D>n,2. Then

σ1(D) ≤

√
n+
√
n2 − 4n+ 12

2

with equality if and only if D ∼= Dn,3, D>n,3, D′n,3 or D′>n,3.
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