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Abstract
Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble
each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t-reachable if at
least t pebbles can be moved to the vertex using rubbling moves. The optimal t-rubbling number of a graph is the minimum
number of pebbles in a pebble distribution that makes every vertex t-reachable. The optimal t-rubbling numbers of complete
graphs and paths are determined.
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1. Introduction

Graph pebbling is a simple model for the transportation of perishable resources. Let G be a connected simple graph with
vertex set V . A pebble distribution p : V → {0, 1, 2, . . .} on G is a placement of some pebbles at the vertices of G. A pebbling
move (v�u) removes two pebbles from v and places one pebble at the adjacent vertex u. We think of the lost pebble as the
cost of transportation along the edge vu. A vertex r is t-reachable from a pebble distribution if at least t pebbles can be
moved to r by a sequence of moves. A pebble distribution is t-solvable if every vertex is t-reachable. A recent guide to the
extensive literature of graph pebbling can be found in [13]. Another useful reference is [12].

The t-pebbling number of G is the smallest number πt(G) of pebbles in a pebble distribution that forces the pebble
distribution to be t-solvable. The optimal t-pebbling number of G is the least number π∗

t (G) of pebbles we need to create
a t-solvable pebble distribution. Deciding whether π∗

1(G) ≤ k is an NP-complete problem [18]. The t-pebbling number of
some graph families has been found [6,8,11,16,17]. Some optimal t-pebbling numbers were determined in [10,19–21].

Graph rubbling allows for an extra move. A strict rubbling move (v, w� u) removes one pebble each from the distinct
vertices v and w and places one pebble at the common neighbor vertex u. This time the pebbles are moved along the
edges vu and wu and this transportation costs one pebble. A rubbling move is a pebbling or a strict rubbling move. Graph
rubbling was introduced in [4] and further developed in [1–3,7,9,14,15].

The t-rubbling number of G is the smallest number ρt(G) of pebbles in a pebble distribution that forces the pebble
distribution to be t-solvable. The optimal t-rubbling number is the least number ρ∗t (G) of pebbles we need to create a
t-solvable pebble distribution. In this paper we determine the optimal t-rubbling numbers of complete graphs and paths.

2. Preliminaries

We start with some basic results about graph rubbling. If the total number of pebbles on the vertices that are adjacent to
a vertex v is a, then the maximum number of pebbles we can transfer to v using only these pebbles is

⌊
a
2

⌋
. This is because

the pebbles can be paired up and used in rubbling moves until we run out of pebbles. Transferring pebbles between the
vertices adjacent to v, instead of directly moving them to v, has no benefit.

Since the expression
⌊
a
2

⌋
plays an important role in our calculations, we collect some tools that help handling it. Let

pty(k) be the parity of the integer k. That is, pty(k) := 0 if k is even and pty(a) := 1 if a is odd. Then
⌊
1
2a
⌋
= 1

2 (a− pty(a)).
For x ∈ R and a ∈ Z we often use the identities

d−xe = −bxc, ba+ xc = a+ bxc, da+ xe = a+ dxe.
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We will denote the vertex set of the graph G by V = {v1, . . . , vn}. Let mi be the maximum number of pebbles that we
can move to vertex vi using rubbling moves. A pebble distribution is t-solvable if mi ≥ t for all i. A pebble distribution is
called t-optimal if it is t-solvable and contains ρ∗t (G) pebbles.

The transition digraph of a sequence of rubbling moves onG is a directed multigraph with vertex set V . Every rubbling
move in the rubbling sequence contributes two arrows to the transition digraph. The move (v, w�u) adds the arrows (v, u)

and (w, u). The No-Cycle Lemma of [4] essentially states that if a vertex is t-reachable, then it is also t-reachable with a
rubbling sequence whose transition digraph has no directed cycles. In particular, we can avoid moving pebbles back and
forth along an edge.

If a pebble distribution is s-solvable and another pebble distribution is t-solvable, then the sum of these pebble distri-
butions is clearly (s+ t)-solvable. Hence ρ∗s+t(G) ≤ ρ∗s(G) + ρ∗t (G).

3. Optimal t-rubbling on the complete graph

In this section we find the optimal t-rubbling number ρ∗t (Kn) of the complete graph Kn with n vertices. It was shown in [4]
that ρ∗(Kn) = 2 for n ≥ 2.

Proposition 3.1. If n and t are positive integers, then ρ∗t (Kn) =
⌈

2nt
n+1

⌉
.

Proof. Consider a t-optimal pebble distribution with ai pebbles on vertex vi for all i. Let a :=
∑n

i=1 ai. Then

t ≤ mi = ai +

⌊
a− ai

2

⌋
≤ 1

2
ai +

1

2
a.

Adding these inequalities for all i gives
nt ≤ 1

2
a+

1

2
na =

1

2
(n+ 1)a.

This implies 2nt
n+1 ≤ a. Since a is an integer, we must have

⌈
2nt
n+1

⌉
≤ a = ρ∗t (Kn).

Now we show that
⌈

2nt
n+1

⌉
pebbles are sufficient. Let s :=

⌊
2t

n+1

⌋
and 2t = s(n+ 1) + r with 0 ≤ r ≤ n. Then⌈

2nt

n+ 1

⌉
=

⌈
2(n+ 1)t− 2t

n+ 1

⌉
= 2t−

⌊
2t

n+ 1

⌋
= s(n+ 1) + r − s = sn+ r.

We verify that the pebble distribution

ai :=

{
s, i ∈ {1, . . . , n− 1}
s+ r, i = n

containing
⌈

2nt
n+1

⌉
pebbles is t-optimal. If i ∈ {1, . . . , n− 1}, then

mi = ai +

⌊
(n− 1)s+ r

2

⌋
= s+

⌊
2t− 2s

2

⌋
= s+ t− s = t.

We also have
mn = an +

⌊
(n− 1)s

2

⌋
= s+ r +

⌊
2t− 2s− r

2

⌋
= s+ r + t− s+

⌊
−r
2

⌋
= t+ r −

⌈r
2

⌉
≥ t.

4. Optimal t-rubbling on the path

In this section we find the optimal t-rubbling number ρ∗t (Pn) of the path Pn with n vertices. It was shown in [4] that
ρ∗(Pn) =

⌈
n+1
2

⌉
for n ≥ 1.

Preliminary results
We start with developing some tools. Consider a pebble distribution with ai pebbles on vertex vi of Pn for i ∈ {1, . . . , n}. For
i ∈ {2, . . . , n+1} let li be the maximum number of pebbles we can move to vertex vi−1 using only the pebbles on v1, . . . , vi−1.
For i ∈ {0, . . . , n − 1} let ri be the maximum number of pebbles we can move to vertex vi+1 using only the pebbles on
vi+1, . . . , vn. We define l1 := 0 and rn := 0 to simplify some formulas. Note that m1 = r0 and mn = ln+1. We define

λi := pty(li), µi := pty(li + ri), νi := pty(ri).
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The No-Cycle Lemma implies the following result.

Corollary 4.1. For i ∈ {1, . . . , n} we have

(1) mi = ai +
⌊
1
2 (li + ri)

⌋
= ai +

1
2 (li + ri − µi);

(2) li+1 = ai +
⌊
1
2 li
⌋
= ai +

1
2 (li − λi);

(3) ri−1 = ai +
⌊
1
2ri
⌋
= ai +

1
2 (ri − νi).

We can now express mi without ai.

Proposition 4.1. For i ∈ {1, . . . , n} we have

(1) mi = li+1 +
1
2 (ri + λi − µi);

(2) mi = ri−1 +
1
2 (li + νi − µi).

Proof. Formulas (2) and (3) of Corollary 4.1 imply ai = li+1 − 1
2 (li − λi) and ai = ri−1 − 1

2 (ri − νi). Substituting these into
Corollary 4.1(1) give the desired results.

We prove an identity.

Proposition 4.2. If k ∈ {1, . . . , n} then
k∑

i=1

li = 2

k∑
i=1

ai − 2lk+1 −
k∑

i=1

λi.

Proof. We use induction on k. The statement is true for k = 1 since

l1 = 0 = 2a1 − 2a1 − 0 = 2a1 − 2l2 − λ1.

The inductive step uses Corollary 4.1(2):
k+1∑
i=1

li = 2

k∑
i=1

ai − 2lk+1 −
k∑

i=1

λi + lk+1 = 2

k∑
i=1

ai − lk+1 −
k∑

i=1

λi

= 2

k+1∑
i=1

ai − 2ak+1 − lk+1 + λk+1 −
k+1∑
i=1

λi = 2

k+1∑
i=1

ai − 2lk+2 −
k+1∑
i=1

λi.

The following result is an important special case.

Corollary 4.2. If n is a positive integer, then
n∑

i=1

li = 2

n∑
i=1

ai − 2ln+1 −
n∑

i=1

λi.

Reversing the path gives the following result.

Corollary 4.3. If n is a positive integer, then
n∑

i=1

ri = 2

n∑
i=1

ai − 2r0 −
n∑

i=1

νi.

Now we prove a formula connecting the sum of the mi with the sum of the ai.

Proposition 4.3. If n is a positive integer, then

n∑
i=1

ai =
1

3
(m1 +mn +

n∑
i=1

mi +
1

2

n∑
i=1

(λi + νi + µi)).

Proof. Applying the previous two corollaries to the sum of the formulas in Corollary 4.1(1) gives
n∑

i=1

mi =

n∑
i=1

ai +
1

2

n∑
i=1

li +
1

2

n∑
i=1

ri −
1

2

n∑
i=1

µi

=

n∑
i=1

ai + (

n∑
i=1

ai − ln+1 −
1

2

n∑
i=1

λi) + (

n∑
i=1

ai − r0 −
1

2

n∑
i=1

νi)−
1

2

n∑
i=1

µi

= 3

n∑
i=1

ai −m1 −mn −
1

2

n∑
i=1

(λi + νi + µi).
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The case t = 3s

Proposition 4.4. If s and n are positive integers, then ρ∗3s(Pn) ≤ s(n+ 2).

Proof. It is clear that the pebble distribution with 2 pebbles each on vertices v1 and vn and 1 pebble each on vertices
v2, . . . , vn−1 is 3-solvable and contains n + 2 pebbles. Multiplying the number of pebbles on every vertex by s creates a
3s-solvable distribution with s(n+ 2) pebbles.

Proposition 4.5. If s and n are positive integers, then ρ∗3s(Pn) ≥ s(n+ 2).

Proof. Consider a 3s-solvable pebble distribution with ai pebbles on vertex vi of Pn for all i. Since mi ≥ 3s for all i ∈
{1, . . . , n}, Proposition 4.3 implies

n∑
i=1

ai ≥
1

3
(3s+ 3s+ n3s) = s(n+ 2).

Corollary 4.4. If s and n are positive integers, then ρ∗3s(Pn) = s(n+ 2).

The case t = 3s + 1

Proposition 4.6. If s is a non-negative and n is a positive integer, then ρ∗3s+1(Pn) ≤
⌈
n+1
2

⌉
+ s(n+ 2).

Proof. Since ρ∗(Pn) =
⌈
n+1
2

⌉
and ρ∗3s(Pn) = s(n+ 2), the result follows from the inequality ρ∗s+t(G) ≤ ρ∗s(G) + ρ∗t (G).

To find a lower bound for ρ∗3s+1(Pn), we need a preliminary result.

Lemma 4.1. For i ∈ {1, . . . , n− 1} we have

mi +mi+1 =
3

2
(ri + li+1) +

1

2
(λi + νi+1 − µi − µi+1).

Proof. Proposition 4.1 implies

mi +mi+1 = li+1 +
1

2
(ri + λi − µi) + ri +

1

2
(li+1 + νi+1 − µi+1),

which simplifies to the desired formula.

Proposition 4.7. If s is a non-negative and n is a positive integer, then ρ∗3s+1(Pn) ≥
⌈
n+1
2

⌉
+ s(n+ 2).

Proof. Consider a (3s + 1)-solvable pebble distribution with ai pebbles on vertex vi of Pn for all i. First we show that the
inequality

mi +mi+1 + λi+1 + νi ≥ 6s+ 3

holds for all i ∈ {1, . . . , n − 1}. Note that mi +mi+1 ≥ 6s + 2 by (3s + 1)-solvability. If li+1 or ri is odd, then λi+1 + νi ≥ 1

and the inequality holds.
Next assume that li+1 and ri are both even. Then µi = λi and µi+1 = νi+1, which implies λi+νi+1−µi−µi+1 = 0. Hence

mi+mi+1 = 3
2 (ri+ li+1) by Lemma 4.1. This implies that mi+mi+1 is divisible by 3. Since we also have mi+mi+1 ≥ 6s+2,

we must have mi +mi+1 ≥ 6s+ 3 as desired.
Using Proposition 4.3 and our inequality, now we have

n∑
i=1

ai =
1

3
(m1 +mn +

n∑
i=1

mi +
1

2

n∑
i=1

(λi + νi + µi))

=
1

3
(m1 +mn) +

1

6

n∑
i=1

(2mi + λi + νi + µi)

=
1

3
(m1 +mn) +

1

6
(m1 +mn + λ1 + νn + µn) +

1

6

n−1∑
i=1

(mi +mi+1 + λi+1 + νi + µi)

≥ 1

3
(m1 +mn) +

1

6
(m1 +mn) +

1

6

n−1∑
i=1

(6s+ 3)

≥ 2

3
(3s+ 1) +

2

6
(3s+ 1) +

1

6
(n− 1)(6s+ 3)

= 3s+ 1 + (n− 1)s+
1

2
(n− 1)

= (n+ 2)s+
1

2
(n+ 1).
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Corollary 4.5. If s is a non-negative and n is a positive integer, then ρ∗3s+1(Pn) =
⌈
n+1
2

⌉
+ s(n+ 2).

The case t = 3s + 2

Proposition 4.8. If s is a non-negative and n is a positive integer, then ρ∗3s+2(Pn) ≤ n+ 1 + s(n+ 2).

Proof. It is clear that the pebble distribution with 2 pebbles on vertex v1 and 1 pebble each on vertices v2, . . . , vn is 2-solvable
and contains n+ 1 pebbles. Since ρ∗3s(Pn) = s(n+ 2), the result follows from the inequality ρ∗s+t(G) ≤ ρ∗s(G) + ρ∗t (G).

Finding a lower bound is a bit harder than it was in the previous two cases. We need a tool often used in optimal pebbling.
A smoothing move removes two pebbles at a vertex of degree two and places one pebble each on the two neighboring vertices.
The proof of the following is essentially the same as that of [5, Lemma 6].

Proposition 4.9. Let v be a vertex of degree two with at least two pebbles and u be a vertex different from v. If u is t-
reachable from a pebble distribution, then u is also t-reachable from the pebble distribution created by a smoothing move at
v.

Proposition 4.10. If the pebble distribution on Pn with ai pebbles on vertex vi is t-solvable, then

4

5
t− 2

5
ai −

2

5
+

1

10
(λi + νi) ≤

1

2
(li + ri)

for all i ∈ {2, . . . , n− 1}.

Proof. Proposition 4.1(2) and Corollary 4.1(2) imply

t ≤ mi+1 = ri +
1

2
(li+1 + νi+1 − µi+1)

= ri +
1

2
(ai +

1

2
(li − λi) + νi+1 − µi+1)

= ri +
1

2
ai +

1

4
(li − λi) +

1

2
(νi+1 − µi+1)

≤ ri +
1

2
ai +

1

4
(li − λi) +

1

2
.

Hence 4t ≤ 4ri + 2ai + li − λi + 2. Similar argument shows 4t ≤ 4li + 2ai + ri − νi + 2. Adding these two inequalities gives
the desired result.

Proposition 4.11. Let t = 3s+2 and consider a vertex vi with at least s+3 pebbles for some i ∈ {2, . . . , n− 1}. If the pebble
distribution is t-solvable, then vi is also t-reachable after a smoothing move at vi.

Proof. Consider a t-solvable pebble distribution with ai pebbles on vertex vi of Pn for all i. Let ãi be the number of pebbles
at vertex vi after the smoothing move. Also let l̃i, m̃i, r̃i, λ̃i, µ̃i, and ν̃i be the usual values after the smoothing move.
Proposition 4.10 implies

2s+
1

10
(λi + νi) =

4

5
(3s+ 2)− 2

5
(s+ 3)− 2

5
+

1

10
(λi + νi) ≤

1

2
(li + ri).

Corollary 4.1(1) now gives
m̃i = ãi +

1

2
(l̃i + r̃i − µ̃i)

= ai − 2 +
1

2
(li + 1 + ri + 1− µi)

= ai +
1

2
(li + ri)−

1

2
µi − 1

≥ s+ 3 + 2s+
1

10
(λi + νi)−

1

2
µi − 1

= 3s+ 2 +
1

10
(λi + νi)−

1

2
µi.

Since m̃i is an integer, we must have m̃i ≥ 3s+ 2 = t.

Proposition 4.12. Assume n ≥ 2 and t = 3s + 2. There is a solvable pebble distribution on Pn with ρ∗t (Pn) many pebbles
such that a1 ≥ 2s+ 1 or an ≥ 2s+ 1.

90



N. Sieben / Discrete Math. Lett. 12 (2023) 86–92 91

Proof. Consider a t-optimal pebble distribution. Applying all available smoothing moves at vertices v2, . . . , vn−1 must end
in finitely many steps. This results in a t-solvable pebble distribution with ai pebbles on vertex vi for all i. Since no
smoothing move is available, we must have ai ≤ s+ 2 for all i ∈ {2, . . . , n− 1}. Using Corollary 4.1(2) repeatedly, we have

l2 ≤ a1 +
1

2
l1 = a1,

l3 ≤ a2 +
1

2
l2 ≤ a2 +

1

2
a1,

l4 ≤ a3 +
1

2
l3 ≤ a3 +

1

2
a2 +

1

22
a1,

...

ln+1 ≤ an +
1

2
ln ≤ an +

1

2
an−1 +

1

22
an−2 + · · ·+

1

2n−2
a2 +

1

2n−1
a1.

The assumption a1, an ≤ 2s gives the contradiction

3s+ 2 = mn = ln+1 ≤ an + (
1

2
+

1

22
+ · · ·+ 1

2n−2
)(s+ 2) +

1

2n−1
a1

≤ 2s+ (1− 1

2n−2
)(s+ 2) +

1

2n−1
2s

= 2s+ s+ 2− 1

2n−2
s− 2

2n−2
+

1

2n−1
2s

= 3s+ 2− 1

2n−3
.

Proposition 4.13. If n ≥ 1 then ρ∗3s+2(Pn) ≤ ρ∗3s+2(Pn+1)− s− 1.

Proof. Consider a (3s+ 2)-optimal pebble distribution on Pn+1 with ai pebbles on vi for all i. By the previous proposition,
we can assume without loss of generality that an+1 ≥ 2s+ 1. We create a new pebble distribution on Pn with

ãi :=

{
ai, i ∈ {1, . . . , n− 1}
an + an+1 − s− 1, i = n

pebbles on vi. We show that this new pebble distribution containing ρ∗3s+2(Pn+1)− s− 1 pebbles is (3s+ 2)-solvable on Pn.
We have

ln−1 = an +
1

2
(rn − νn) = an +

1

2
(an+1 − νn)

= an + an+1 −
1

2
(an+1 + νn) ≤ an + an+1 −

1

2
(2s+ 2)

= an + an+1 − s− 1 = ãn.

Since the original pebble distribution is (3s + 2)-solvable, the No-Cycle-Lemma implies that the new distribution is also
(3s+ 2)-solvable for v1, . . . , vn−1.

Now we show that it is also solvable for vn. We have

m̃n = ãn +
1

2
(l̃n + r̃n − µ̃n)

= an + an+1 − s− 1 +
1

2
(ln − λn)

= an +
1

2
(ln + rn − µn)−

1

2
(rn − µn − λn) + an+1 − s− 1

= mn −
1

2
(an+1 − µn − λn) + an+1 − s− 1

≥ 3s+ 2 +
1

2
an+1 − s− 1

≥ 3s+ 2 + s+
1

2
− s− 1 = 3s+ 2− 1

2
.

This implies m̃n ≥ 3s+ 2 since m̃n is an integer.

Proposition 4.14. If s is a non-negative and n is a positive integer, then ρ∗3s+2(Pn) ≥ n+ 1 + s(n+ 2).
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Proof. We use induction on n. We clearly have ρ∗3s+2(P1) = 3s + 2, so the statement holds for n = 1. The inductive step
follows from the computation

ρ∗3s+2(Pn+1) ≥ ρ∗3s+2(Pn) + n+ 1

≥ n+ 1 + s(n+ 2) + s+ 1

= (n+ 1) + 1 + s((n+ 1) + 2).

Combining the three cases provides the main result.

Theorem 4.1. If s is non-negative and n is a positive integer, then

(1) ρ∗3s(Pn) = s(n+ 2);

(2) ρ∗3s+1(Pn) =
⌈
n+1
2

⌉
+ s(n+ 2);

(3) ρ∗3s+2(Pn) = n+ 1 + s(n+ 2).

It is easy to see that the three cases can be combined into the formula

ρ∗t (Pn) =

⌊
t

3

⌋
(n+ 2) +

⌈
(t− 3

⌊
t
3

⌋
)(n+ 1)

2

⌉
.
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