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Abstract
Let G be a class of graphs. The strong rainbow number of the graph H in G is the minimum number of colors k such that
every graph G ∈ G admits an edge coloring with at most k colors in which all copies of H are rainbow (i.e., all edges of H
have different colors). In this paper, it is shown that the strong rainbow number of any 2-connected graph H in the class of
outerplanar graphs is bounded from above by a constant (depending only on H).
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1. Introduction

In this paper, we consider finite simple graphs. Throughout the paper, we use Cn,Kn, Pn, and Km,n to denote the cycle,
complete graph, path on n vertices, and the complete bipartite graph with m vertices in one part and n vertices in the
other part, respectively. The number of edges of a graph G is denoted by e(G), and the number of vertices of G is denoted
by v(G). An edge-colored graph is called rainbow if no two edges have the same color. A rainbow copy of a graph H in an
edge-colored graph G is a rainbow subgraph of G isomorphic to H. Edge colorings of graphs with constraints on special
subgraphs are very intensively studied. For graphs H and G, the anti-Ramsey number of H in G, denoted by ar(G,H), is
the maximum number of colors in an edge coloring of G containing no rainbow copy of H. This problem was introduced
by Erdős, Simonovits, and Sós [10] in 1973 and considered in the classical case when G is Kn. Since then, the study of
ar(G,H) for some special graphs H and G has attracted a lot of attention, see the dynamic survey [12]. During recent
years, the anti-Ramsey problem in planar graphs was extensively studied, see e.g. [17]. When, instead of coloring edges
to obtain all copies of H non-rainbow using the greatest possible number of colors, one aims to minimize the number of
colors to avoid the appearance of a non-rainbow copy of H, we get the dual version of the anti-Ramsey problem. This
variant was introduced by Axenovich, Füredi, and Mubayi [2] in a more general setting. Given graphs H and G, and an
integer q ≤ e(H), an (H, q)-coloring of G is an edge coloring of G in which every copy of H is colored with at least q colors.
Let r(G,H, q) denote the minimum number of colors in an (H, q)-coloring of G. By the definition 1 ≤ r(G,H, q) ≤ e(G).
The case r(Kn,Kp, q) was first studied systematically by Erdős and Gyárfás [9]. They obtained a general upper bound on
r(Kn,Kp, q) for general p and q:

r(Kn,Kp, q) ≤ cn

p−2

(p2)−q+1 ,

where c depends only on p, q (this bound was improved very recently, see [4,5]). They noted that determining r(Kn,Kp, q)

for small values of p, q leads to problems of varying difficulty. For example, any (K3, 3)-coloring of Kn is a proper edge
coloring of Kn and vice versa, therefore r(Kn,K3, 3) is equal to the chromatic index of Kn. On the other hand, determining
r(Kn,Kp, 2) is hopeless because it is equivalent to determining the classical Ramsey numbers for multicolorings. They
proved that the smallest q for which r(Kn,Kp, q) is linear in n is

(
p
2

)
− p + 3 and the smallest q for which r(Kn,Kp, q) is

quadratic in n equals to
(
p
2

)
−

⌊
p
2

⌋
+ 2 for p ≥ 4. They also showed that the smallest q for which r(Kn,Kp, q) =

(
n
2

)
− O(1)

is q =
(
p
2

)
−

⌊
p
4

⌋
+ 1. Sárközy and Selkow [23] studied the behavior of the function r(Kn,Kp, q) between the linear and

quadratic orders of magnitude. They proved that r(Kn,Kp, q) is linear in n for at most log2 p values of q. Recently, a family
of additional thresholds appeared in [3, 8, 11, 19, 20]. The bipartite case r(Kn,n,Kp,p, q) was considered by Axenovich,
Füredi, and Mubayi [2]. They proved that the smallest q for which r(Kn,n,Kp,p, q) is linear in n is p2 − 2p+ 3, the smallest
q for which r(Kn,n,Kp,p, q) is quadratic in n equals to p2 − p+ 2 and the smallest q for which r(Kn,n,Kp,p, q) = n2 −O(1) is
q = p2 −

⌊
p
2

⌋
+ 1. Sárközy and Selkow [21] proved that r(Kn,n,Kp,p, q) is linear in n for at most log2 p + 1 values of q. For
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non-balanced bipartite graphs, i.e. for the function r(Kn,n,Ks,t, q), we refer the interested reader to [13, 18]. Besides the
cases, where G and H are complete or complete bipartite graphs, little is known about r(G,H, q). In [16], Krueger studied
the asymptotic behavior of r(Kn, Pm, q), Axenovich, Füredi, and Mubayi [2] proved that r(G,H, q) < cn

v−2
e−q+1 holds for any

two graphs G,H with n = v(G), v = v(H), e = e(H), 1 ≤ q ≤ e, where c = c(H, q) is a constant. Yet another approach
was considered in [6]: Burr, Erdős, Graham, and Sós investigated a function f(n, e,H), defined as the minimum number
of colors necessary to color the edges of a graph G on n vertices and e edges such that all copies of H in it are rainbow, see
also [7,22].

In this paper, we consider another approach: Let G be a class of graphs. We define the strong rainbow number of
H in G as srb(G, H) = max{r(G,H, e(H)) : G ∈ G}. We focus on the cases when G is the class of outerplanar or planar
graphs. Our main surprising result is that srb(G, H) can be bounded from above by a constant (depending only on H) for
the class of outerplanar graphs G and every 2-connected graph H. We also show that if G is the class of planar graphs,
then srb(G, C3) = 3 and there is no constant upper bound for srb(G, Ck) if k ≥ 4.

2. Results

A drawing of a graph maps each vertex to a point in the plane and each edge to a Jordan arc between its endvertices. A
drawing is planar if no two edges intersect each other, except at their endvertices. A planar graph is a graph that has a
planar drawing. A planar drawing partitions the plane into connected regions, called faces. There are two types of faces.
The bounded faces are internal, while the unbounded face is the outer face. An outerplanar drawing is a planar drawing
such that all the vertices are incident to the outer face. An outerplanar graph is a graph that admits an outerplanar draw-
ing. An outerplanar graph is maximal outerplanar if it is not possible to add an edge such that the resulting graph is still
outerplanar. For convenience, we often use the abbreviation plane (outerplane) graph for a particular planar (outerplanar)
drawing of a planar (outerplanar) graph.

Let G be a 2-connected plane graph. We define the (geometric) dual G∗ of G as follows. G∗ is a plane multigraph that
has precisely one vertex in each face of G. If e is an edge of G, then G∗ has an edge e∗ crossing e and joining the two vertices
of G∗ in the two faces of G that contain e on the boundary. Moreover, e∗ has no other points in common with G, and all
edges of G∗ are obtained in this way. Splitting the vertex v∗ of G∗ corresponding to the outer face of G into the number
of copies equal to the size of the outer face of G so that each copy is incident to exactly one edge corresponding to an edge
of the outer face results in the semidual graph G∗

s. Figure 1 gives an example of a plane graph G and its dual, semidual
graphs.

G G and G∗ G and G∗
s

Figure 1: Planar drawings of G, G∗ and G∗
s.

Outerplanar graphs
Theorem 2.1. If G is the class of outerplanar graphs, then srb(G, Ck) < 2k, for any k ≥ 3.

Proof. Since any outerplanar graph can be extended (by adding some edges) to a maximal outerplanar graph, it is sufficient
to prove that r(G,Ck, k) < 2k for every maximal outerplanar graph G. Every maximal outerplanar graph is 2-connected
( [14], page 107). Every 2-connected outerplanar graph has a unique Hamiltonian cycle [24], hence every 2-connected
outerplanar graph has a unique outerplanar drawing. Consequently, every maximal outerplanar graph has a unique
embedding. Therefore, in the following we do not distinguish G and its outerplanar drawing.

Let G be a maximal outerplane graph and let G∗
s be its semidual. By [15], G∗

s is a tree with vertices of degree 3 and 1
only. Now we show that G∗

s has an edge coloring with at most 2k − 3 colors such that no two edges within distance k − 2

have the same color. Here, the distance of two edges in G∗
s is defined as the distance of the corresponding vertices in the

line graph of G∗
s. (The line graph of a graph F , denoted by L(F ), is the graph whose vertices are the edges of F , where two

vertices of L(F ) are adjacent if and only if the corresponding edges are adjacent in F .) Let L(G∗
s) denote the line graph

74



J. Czap / Discrete Math. Lett. 12 (2023) 73–77 75

of G∗
s, and let Lk−2(G∗

s) be its (k − 2)th power, which is the graph obtained from L(G∗
s) by adding the edges between pairs

of vertices at distance at most k − 2. Since G∗
s is a tree with maximum degree 3, the maximum degree of Lk−2(G∗

s) is not
greater than 2(2 + 4 + 8 + · · ·+ 2k−2) = 2(2k−1 − 2) = 2k − 4. Therefore, Lk−2(G∗

s) admits a proper vertex coloring with at
most 2k− 3 colors. This coloring induces an edge coloring of G∗

s such that any two edges within distance k− 2 have distinct
colors.

Let C be a cycle in G of length k and let x, y be two of its edges. Now we show that the edges x∗
s, y

∗
s of G∗

s which correspond
to x, y are at distance at most k − 2 in G∗

s. Let [C] be the subgraph of G consisting of C and the edges which are in its
interior. The graph G is maximal outerplanar, hence [C] is maximal outerplanar as well. The outerplanar drawing of a
k-vertex maximal outerplanar graph has k − 2 interior faces ( [14], page 106). Therefore, a longest path in the semidual
of [C] has at most k vertices, consequently, at most k − 1 edges. From this it follows that the edges x∗

s, y
∗
s are at distance

at most k − 2 in [C]∗s, hence they are at distance at most k − 2 in G∗
s. This means that every edge coloring of G∗

s such that
any two edges within distance k − 2 receive distinct colors induces an edge coloring of G such that any cycle of length k is
rainbow.

The upper bound for srb(G, Ck) in Theorem 2.1 is exponential. Next, we show that this cannot be improved in general.

Theorem 2.2. For every even integer k ≥ 4, there is an outerplanar graph G such that r(G,Ck, k) ≥ 2
k
2 .

Proof. Let G0 = C4. For i ≥ 0, Gi+1 is the outerplane graph obtained from Gi by replacing each edge uv incident with the
outer face with a triangle uvwu, see Figure 2 for an illustration.

G0 G1 G2

Figure 2: The graphs G0, G1, and G2.

Now, we show that any two edges incident with the outer face of Gi are incident with a cycle of length 2i+4. We proceed
by induction on i. The case i = 0 trivially holds. Assume that the claim holds for i = j. Now consider the case i = j + 1.
Let e1 and e2 be two edges of Gj+1 incident with the outer face. We distinguish two cases.

Case 1: e1 and e2 do not share a vertex of degree 2 in Gj+1.
Let e1 = u1u2, e2 = v1v2 and assume that u2, v2 have degree 2 in Gj+1. Let u3 be the other neighbor of u2 and let v3 be the
other neighbor of v2. The edges u1u3 and v1v3 are incident with the outer face of Gj , therefore (by the inductive hypothesis)
there is a cycle C in Gj of length 2j + 4 incident with both of them. If we remove the edges u1u3 and v1v3 from C and add
the edges u1u2, u2u3, v1v2, and v2v3, then we obtain a cycle in Gj+1 of length (2j + 4)− 2 + 4 = 2(j + 1) + 4 which contains
the edges e1 and e2.

Case 2: e1 and e2 share a vertex of degree 2 in Gj+1.
In this case, we choose a third edge e3 incident with the outer face of Gj+1. Since e1 and e3 do not share a vertex of degree
2 in Gj+1 we can find a cycle of length 2(j + 1) + 4 which contains both of them. Clearly, this cycle must contain e2 as well.

Now, consider an edge coloring of Gi in which any cycle of length 2(i + 2) is rainbow. In this coloring, no two edges
incident with the outer face have the same color, since any two such edges are incident with a common cycle of length
2i+4. It is easy to see that exactly 2i+2 edges of Gi are incident with its outer face, so the coloring uses at least 2i+2 colors.

This means that r(Gi, C2(i+2), 2(i+ 2)) ≥ 2i+2 or equivalently (with k = 2(i+ 2)) r(G k
2−2, Ck, k) ≥ 2

k
2 .

Theorem 2.3. If G is the class of outerplanar graphs and H is a 2-connected graph on k vertices, then srb(G, H) < 2k.

Proof. Clearly, if H is not outerplanar, then r(G,H, e(H)) = 1 for any outerplanar graph G. So we can assume that H is
outerplanar. The boundary of the outer face of any 2-connected outerplane graph is a cycle, therefore we can use the same
arguments as in the proof of Theorem 2.1.

It is worth mentioning that 2-connectedness of H is necessary in Theorem 2.3. To see this, take an outerplane graph H1

and let v be an arbitrary vertex of H1. Now, take n copies of H1 and identify all v’s. The resulting graph Hn is outerplanar,
see Figure 3 for an illustration.
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H1

v

H1 H1

v

H1

H1 H1

H1 H2 H3

Figure 3: The graphs H1, H2, and H3.

Since any two edges of Hn are incident with a common H2 we have r(Hn, H2, e(H2)) = e(Hn) for every n ≥ 2.

Conjecture 2.1. For any positive integer K and any 1-connected (not 2-connected) outerplanar graph H there is an outer-
planar graph G such that r(G,H, e(H)) > K.

Planar graphs
Theorem 2.4. If G is the class of planar graphs, then srb(G, C3) = 3.

Proof. Clearly, srb(G, C3) ≥ 3. So it is sufficient to show that srb(G, C3) ≤ 3. Every planar graph admits a proper vertex
coloring with at most four colors [1]. Let G be a planar graph and c be its proper vertex coloring which uses at most four
colors. Let the colors be the elements of the group (Z2 × Z2,+). Color each edge e = uv of G with color c(u) + c(v). In the
obtained edge coloring of G every C3 is rainbow, see Figure 4. So r(G,C3, 3) ≤ 3.

(0, 1)

(1, 0) (1, 1)

(1, 1) (1, 0)

(0, 1)

(0, 0)

(1, 0) (1, 1)

(1, 0) (1, 1)

(0, 1)

(0, 0)

(0, 1) (1, 1)

(0, 1) (1, 1)

(1, 0)

(0, 0)

(0, 1) (1, 0)

(0, 1) (1, 0)

(1, 1)

Figure 4: Admissible colorings of C3.

Now we prove that there is no constant upper bound for srb(G, Ck) if k ≥ 4.

Theorem 2.5. For any two positive integers K and k there is a planar graph G such that r(G,Ck, k) > K.

Proof. Let Gn be a planar graph with vertex set V (Gn) = {v, w, u1, u2, . . . , un} and edge set E(Gn) = {vui, wui : i =

1, 2 . . . , n} ∪ {uiui+1 : i = 1, 2 . . . , n− 1}, see Figure 5 for illustration.

u1 u2 u3 un−2 un−1 un

w

v

Figure 5: The graph Gn.

It suffices to show that for sufficiently large n > K any two edges incident with v are incident with a common cycle Ck,
because this implies r(Gn, Ck, k) ≥ n. Let n = max{K + 1, 3k} and let vui, vuj , i < j, be two edges of Gn.

If i > k, then w, uj , v, ui, ui−1, ui−2, . . . , ui−(k−4), w is a cycle of length k containing vui, vuj .
If j < 2k, then w, ui, v, uj , uj+1, uj+2, . . . , uj+(k−4), w is a cycle of length k containing vui, vuj .
If i ≤ k and j ≥ 2k, then w, ui, v, uj , uj−1, uj−2, . . . , uj−(k−4), w is a cycle of length k containing vui, vuj .

Theorem 2.6. If G is the class of planar graphs, then srb(G,K4) = 6.

Proof. We proceed as in the proof of Theorem 2.4. We color the vertices with colors 0, 1, 2, 4.

We finish the paper with the following conjecture.

Conjecture 2.2. If G is the class of planar graphs and H is a 3-connected planar graph, then srb(G, H) can be bounded
from above by a constant (depending only on H).
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