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Abstract
The following system of equations {x1 · x1 = x2, x2 · x2 = x3, 22

x1
= x3, x4 · x5 = x2, x6 · x7 = x2} has exactly one solution

in (N \ {0, 1})7, namely (2, 4, 16, 2, 2, 2, 2). Conjecture 2.1 states that if a system S of equations has at most five equations
and at most finitely many solutions in (N \ {0, 1})7, then each such solution (x1, . . . , x7) satisfies x1, . . . , x7 6 16, where
S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , 7}}∪ {22

xj
= xk : j, k ∈ {1, . . . , 7}}. Conjecture 2.1 implies that there are infinitely

many composite numbers of the form 22
n

+ 1. Conjectures 3.1 and 4.1 are of similar kind. Conjecture 3.1 implies that if the
equation x! + 1 = y2 has at most finitely many solutions in positive integers x and y, then each such solution (x, y) belongs
to the set {(4, 5), (5, 11), (7, 71)}. Conjecture 4.1 implies that if the equation x(x+ 1) = y! has at most finitely many solutions
in positive integers x and y, then each such solution (x, y) belongs to the set {(1, 2), (2, 3)}. Semi-algorithms semj (j = 2, 3, 4)
that never terminate are described. For every j ∈ {2, 3, 4}, if Conjecture j.1 is true, then semj endlessly prints consecutive
positive integers starting from 1. For every j ∈ {2, 3, 4}, if Conjecture j.1 is false, then semj prints a finite number (including
zero) of consecutive positive integers starting from 1.
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1. Epistemic notions increase the scope of mathematics

Nicolas Goodman observed that epistemic notions increase the scope of mathematics, see [2]. For many finite sets X ⊆ Nm,
we know an algorithm that decides X , but no known algorithm computes a positive integer n satisfying X ⊆ [0, n]m. This
holds because, for many Diophantine equations, the number of rational solutions is finite by Faltings’ theorem. Faltings’
theorem tells us that certain curves have at most finitely many rational points, but no known proof gives any bound on the
sizes of the numerators and denominators of the coordinates of those points.

In Sections 2–4, our knowledge (including conjectures) about the set X is different. The considerations in Section 2
imply the existence of the set X2 ⊆ (N \ {0, 1})7 whose finiteness/infiniteness is unknown, although we conjecture that
card(X2) < ω ⇒ X2 ⊆ [2, 16]7. The considerations in Section 3 imply the existence of the set X3 ⊆ (N \ {0})6 whose finite-
ness/infiniteness is unknown, although we conjecture that card(X3) < ω ⇒ X3 ⊆ [1, (24!)!]6. The considerations in Sec-
tion 4 imply the existence of the set X4 ⊆ (N \ {0})6 whose finiteness/infiniteness is unknown, although we conjecture that
card(X4) < ω ⇒ X4 ⊆ [1, 720!]6. For every j ∈ {2, 3, 4}, we know an algorithm that decides the set Xj .

2. Composite numbers of the form 22n
+ 1

Let A denote the following system of equations:
{
xi · xj = xk : i, j, k ∈ {1, . . . , 7}

}
∪
{

22xj
= xk : j, k ∈ {1, . . . , 7}

}

The following subsystem of A
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has exactly one solution in (N \ {0, 1})7, namely (2, 4, 16, 2, 2, 2, 2).

Conjecture 2.1. If a system of equations S ⊆ A has at most five equations and at most finitely many solutions in (N \ {0, 1})7,
then each such solution (x1, . . . , x7) satisfies x1, . . . , x7 6 16.

Lemma 2.1 (see p. 109 in [8]). For every pair of non-negative integers x and y, the equation x + 1 = y holds if and only if

22x · 22x = 22y .

Theorem 2.1. Conjecture 2.1 implies that 22x1
+ 1 is composite for infinitely many integers x1 greater than 1.

Proof. Assume, on the contrary, that Conjecture 2.1 holds and 22x1
+ 1 is composite for at most finitely many integers x1

greater than 1. Then, the equation
x2 · x3 = 22x1

+ 1

has at most finitely many solutions in (N \ {0, 1})3. By Lemma 2.1, in positive integers greater than 1, the following
subsystem of A

has at most finitely many solutions in (N \ {0, 1})7 and expresses that




x2 · x3 = 22x1
+ 1

x4 = 22x1
+ 1

x5 = 22x1

x6 = 2222x1

x7 = 2222x1
+ 1

.

Since 641 · 6700417 = 22
5

+ 1 > 16, we get a contradiction.

Most mathematicians believe that 22
n

+ 1 is composite for every integer n > 5, see [3, p. 23].

Problem 2.1 (see p. 159 in [4]). Are there infinitely many composite numbers of the form 22
n

+ 1?

Primes of the form 22
n

+ 1 are called Fermat primes, as Fermat conjectured that every integer of the form 22
n

+ 1 is
prime, see [4, p. 1]. Fermat remarked that 22

0

+ 1 = 3, 22
1

+ 1 = 5, 22
2

+ 1 = 17, 22
3

+ 1 = 257, and 22
4

+ 1 = 65537 are all
prime, see [4, p. 1].

Problem 2.2 (see p. 158 in [4]). Are there infinitely many prime numbers of the form 22
n

+ 1?

3. The Brocard-Ramanujan equation x! + 1 = y2

Let B denote the following system of equations:

{xi · xj = xk : i, j, k ∈ {1, . . . , 6}} ∪ {xj ! = xk : (j, k ∈ {1, . . . , 6}) ∧ (j 6= k)}.
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The following subsystem of B

has exactly two solutions in positive integers, namely (1, . . . , 1) and (2, 2, 4, 24, 24!, (24!)!).

Conjecture 3.1. If a system of equations S ⊆ B has at most finitely many solutions in positive integers x1, . . . , x6, then each
such solution (x1, . . . , x6) satisfies x1, . . . , x6 6 (24!)!.

Lemma 3.1. For every pair of positive integers x and y, the equation x! · y = y! holds if and only if

(x + 1 = y) ∨ (x = y = 1).

Theorem 3.1. Conjecture 3.1 implies that if the equation x1! + 1 = x2
2 has at most finitely many solutions in positive integers

x1 and x2, then each such solution (x1, x2) belongs to the set {(4, 5), (5, 11), (7, 71)}.

Proof. The following system of equations B1

is a subsystem of B. By Lemma 3.1, in positive integers, the system B1 expresses that x1 = . . . = x6 = 1 or




x1! + 1 = x2
2

x3 = x1!

x4 = (x1!)!

x5 = x1! + 1

x6 = (x1! + 1)! .

If the equation x1! + 1 = x2
2 has at most finitely many solutions in positive integers x1 and x2, then B1 has at most finitely

many solutions in positive integers x1, . . . , x6 and Conjecture 3.1 implies that every tuple (x1, . . . , x6) of positive integers
that solves B1 satisfies (x1! + 1)! = x6 6 (24!)!. Hence, x1 ∈ {1, . . . , 23}. If x1 ∈ {1, . . . , 23}, then x1! + 1 is a square only for
x1 ∈ {4, 5, 7}.

It is conjectured that x! + 1 is a square only for x ∈ {4, 5, 7}, see [10, p. 297]. A weak form of Szpiro’s conjecture implies
that the equation x! + 1 = y2 has only finitely many solutions in positive integers, see [7].

4. The Erdős’ equation x(x + 1) = y!

Let C denote the following system of equations:

{xi · xj = xk : (i, j, k ∈ {1, . . . , 6}) ∧ (i 6= j)} ∪ {xj ! = xk : (j, k ∈ {1, . . . , 6}) ∧ (j 6= k)}.
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The following subsystem of C

has exactly three solutions in positive integers, namely (1, . . . , 1), (1, 1, 2, 2, 2, 2), and (2, 2, 3, 6, 720, 720!).

Conjecture 4.1. If a system of equations S ⊆ C has at most finitely many solutions in positive integers x1, . . . , x6, then each
such solution (x1, . . . , x6) satisfies x1, . . . , x6 6 720! .

Theorem 4.1. Conjecture 4.1 implies that if the equation x1(x1 + 1) = x2! has at most finitely many solutions in positive
integers x1 and x2, then each such solution (x1, x2) belongs to the set {(1, 2), (2, 3)}.

Proof. The following system of equations C1

is a subsystem of C. By Lemma 3.1, in positive integers, the system C1 expresses that x1 = . . . = x6 = 1 or




x1 · (x1 + 1) = x2!

x3 = x1 · (x1 + 1)

x4 = x1!

x5 = x1 + 1

x6 = (x1 + 1)! .

If the equation x1(x1 + 1) = x2! has at most finitely many solutions in positive integers x1 and x2, then C1 has at most
finitely many solutions in positive integers x1, . . . , x6 and Conjecture 4.1 implies that every tuple (x1, . . . , x6) of positive
integers that solves C1 satisfies x2! = x3 6 720!. Hence, x2 ∈ {1, . . . , 720}. If x2 ∈ {1, . . . , 720}, then x2! is a product of two
consecutive positive integers only for x2 ∈ {2, 3} because the following MuPAD program

for x2 from 1 to 720 do

x1:=round(sqrt(x2!+(1/4))-(1/2)):

if x1*(x1+1)=x2! then print(x2) end_if:

end_for:

returns 2 and 3.

The question of solving the equation x(x + 1) = y! was posed by Erdős, see [1]. Luca proved that the abc conjecture
implies that the equation x(x + 1) = y! has only finitely many solutions in positive integers, see [5].

5. Conjectures 3.1 and 4.1 cannot be generalized to an arbitrary number of variables

Let f(1) = 2, f(2) = 4, and let f(n + 1) = f(n)! for every integer n > 2. Let W1 denote the system of equations {x1! = x1}.
For an integer n > 2, letWn denote the following system of equations:

69



A. Tyszka / Discrete Math. Lett. 12 (2023) 66–72 70

For every positive integer n, the systemWn has exactly two solutions in positive integers x1, . . . , xn, namely (1, . . . , 1) and
(f(1), . . . , f(n)). For a positive integer n, let Ψn denote the following statement: if a system of equations

S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xj ! = xk : j, k ∈ {1, . . . , n}}

has at most finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6

f(n). The statements Ψn are discussed in [9].

Theorem 5.1. Every factorial Diophantine equation can be algorithmically transformed into an equivalent system of equa-
tions of the forms xi · xj = xk and xj ! = xk. (It means that this system of equations satisfies a modified version of Lemma 4
in [8].)

Proof. It follows from Lemmas 2–4 of [8] and Lemma 3.1.

For every n ∈ N \ {0}, the statement Ψn is dubious. By Theorem 5.1, this statement implies that there is an algorithm
which takes as input a factorial Diophantine equation and returns an integer which is greater than the solutions in pos-
itive integers, if these solutions form a finite set. This conclusion is strange because properties of factorial Diophantine
equations are similar to properties of exponential Diophantine equations and a computable upper bound on non-negative
integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [6].

6. Equivalent forms of Conjectures 2.1–4.1

If k ∈ [1019, 1020 − 1] ∩ N, then there are uniquely determined non-negative integers a(0), . . . , a(19) ∈ {0, . . . , 9} such that
(
a(19) > 1

)
∧
(
k = a(19) · 1019 + a(18) · 1018 + . . . + a(1) · 101 + a(0) · 100

)
.

Definition 6.1. For an integer k ∈ [1019, 1020 − 1], Sk stands for the smallest system of equations S satisfying conditions (1)
and (2).

(1) If i ∈ {0, 4, 8, 16} and a(i) is even, then the equation xa(i+1) · xa(i+2) = xa(i+3) belongs to S when it belongs to A.

(2) If i ∈ {0, 4, 8, 16} and a(i) is odd, then the equation 22xa(i+1)
= xa(i+2) belongs to S when it belongs to A.

Lemma 6.1. {Sk : k ∈ [1019, 1020 − 1] ∩ N} = {S : (S ⊆ A) ∧ (card(S) 6 5)}.

Proof. It follows from the equality 5 · 4 = 20.

For a positive integer n, let pn denote the n-th prime number.

Theorem 6.1. The following semi-algorithm sem2 never terminates.

Start

i := 1

i := i+ 1

∀ n ∈ {1, . . . , 7} an := 2 + the exponent of

pn in the prime decomposition of 215 · i

k := 1019

k := k + 1

j := 1

j := j + 1

∀ n ∈ {1, . . . , 7} bn := 2 + the exponent

of pn in the prime decomposition of j

Is
(
max (b1, . . . , b7) > max (a1, . . . , a7)

)
∧(

(a1, . . . , a7) solves Sk ⇒ (b1, . . . , b7) solves Sk
)
?

Is k < 1020 − 1?

Print i

No

Yes
Yes

No
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If Conjecture 2.1 is true, then sem2 endlessly prints consecutive positive integers starting from 1. If Conjecture 2.1 is false,
then sem2 prints a finite number (including zero) of consecutive positive integers starting from 1.

Proof. It follows from Lemma 6.1.

Theorem 6.2. The following semi-algorithm sem3 never terminates.

Start

i := 1

i := i+ 1

∀ n ∈ {1, . . . , 6} an := 1+ the exponent of

pn in the prime decomposition of 2(24!)! ·i

S := {xi · xj = xk : (i, j, k ∈ {1, . . . , 6}) ∧ (ai · aj = ak)}∪
{xj! = xk : (j, k ∈ {1, . . . , 6}) ∧ (j 6= k) ∧ (aj! = ak)}

j := 1

∀ n ∈ {1, . . . , 6} bn := 1+ the exponent

of pn in the prime decomposition of j

Is (max (b1, . . . , b6) > max (a1, . . . , a6))∧
((b1, . . . , b6) solves S) ?

j := j + 1

Print i

No

Yes

If Conjecture 3.1 is true, then sem3 endlessly prints consecutive positive integers starting from 1. If Conjecture 3.1 is false,
then sem3 prints a finite number (including zero) of consecutive positive integers starting from 1.

Theorem 6.3. The following semi-algorithm sem4 never terminates.

Start

i := 1

i := i+ 1

∀ n ∈ {1, . . . , 6} an := 1+ the exponent of

pn in the prime decomposition of 2720! · i

S := {xi · xj = xk : (i, j, k ∈ {1, . . . , 6}) ∧ (i 6= j) ∧ (ai · aj = ak)}∪
{xj! = xk : (j, k ∈ {1, . . . , 6}) ∧ (j 6= k) ∧ (aj! = ak)}

j := 1

∀ n ∈ {1, . . . , 6} bn := 1+ the exponent

of pn in the prime decomposition of j

Is (max (b1, . . . , b6) > max (a1, . . . , a6))∧
((b1, . . . , b6) solves S) ?

j := j + 1

Print i

No

Yes

If Conjecture 4.1 is true, then sem4 endlessly prints consecutive positive integers starting from 1. If Conjecture 4.1 is false,
then sem4 prints a finite number (including zero) of consecutive positive integers starting from 1.
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