Research Article

A common approach to three open problems in number theory

Apoloniusz Tyszka*
Faculty of Production and Power Engineering, University of Agriculture, Balicka 116B, 30-149 Kraków, Poland

(Received: 17 March 2023. Received in revised form: 5 June 2023. Accepted: 12 June 2023. Published online: 23 June 2023.)
(c) 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

The following system of equations $\left\{x_{1} \cdot x_{1}=x_{2}, x_{2} \cdot x_{2}=x_{3}, 2^{2^{x_{1}}}=x_{3}, x_{4} \cdot x_{5}=x_{2}, x_{6} \cdot x_{7}=x_{2}\right\}$ has exactly one solution in $(\mathbb{N} \backslash\{0,1\})^{7}$, namely $(2,4,16,2,2,2,2)$. Conjecture 2.1 states that if a system \mathcal{S} of equations has at most five equations and at most finitely many solutions in $(\mathbb{N} \backslash\{0,1\})^{7}$, then each such solution $\left(x_{1}, \ldots, x_{7}\right)$ satisfies $x_{1}, \ldots, x_{7} \leqslant 16$, where $\mathcal{S} \subseteq\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 7\}\right\} \cup\left\{2^{2^{x_{j}}}=x_{k}: j, k \in\{1, \ldots, 7\}\right\}$. Conjecture 2.1 implies that there are infinitely many composite numbers of the form $2^{2^{n}}+1$. Conjectures 3.1 and 4.1 are of similar kind. Conjecture 3.1 implies that if the equation $x!+1=y^{2}$ has at most finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4,5),(5,11),(7,71)\}$. Conjecture 4.1 implies that if the equation $x(x+1)=y$! has at most finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1,2),(2,3)\}$. Semi-algorithms sem ${ }_{j}(j=2,3,4)$ that never terminate are described. For every $j \in\{2,3,4\}$, if Conjecture j. 1 is true, then sem ${ }_{j}$ endlessly prints consecutive positive integers starting from 1 . For every $j \in\{2,3,4\}$, if Conjecture $j .1$ is false, then sem ${ }_{j}$ prints a finite number (including zero) of consecutive positive integers starting from 1.

Keywords: Brocard's problem; Brocard-Ramanujan equation; Erdős' equation $x(x+1)=y!$; composite Fermat numbers.
2020 Mathematics Subject Classification: 11D61, 11D85.

1. Epistemic notions increase the scope of mathematics

Nicolas Goodman observed that epistemic notions increase the scope of mathematics, see [2]. For many finite sets $\mathcal{X} \subseteq \mathbb{N}^{m}$, we know an algorithm that decides \mathcal{X}, but no known algorithm computes a positive integer n satisfying $\mathcal{X} \subseteq[0, n]^{m}$. This holds because, for many Diophantine equations, the number of rational solutions is finite by Faltings' theorem. Faltings' theorem tells us that certain curves have at most finitely many rational points, but no known proof gives any bound on the sizes of the numerators and denominators of the coordinates of those points.

In Sections 2-4, our knowledge (including conjectures) about the set \mathcal{X} is different. The considerations in Section 2 imply the existence of the set $\mathcal{X}_{2} \subseteq(\mathbb{N} \backslash\{0,1\})^{7}$ whose finiteness/infiniteness is unknown, although we conjecture that $\operatorname{card}\left(\mathcal{X}_{2}\right)<\omega \Rightarrow \mathcal{X}_{2} \subseteq[2,16]^{7}$. The considerations in Section 3 imply the existence of the set $\mathcal{X}_{3} \subseteq(\mathbb{N} \backslash\{0\})^{6}$ whose finiteness/infiniteness is unknown, although we conjecture that $\operatorname{card}\left(\mathcal{X}_{3}\right)<\omega \Rightarrow \mathcal{X}_{3} \subseteq[1,(24!)!]^{6}$. The considerations in Section 4 imply the existence of the set $\mathcal{X}_{4} \subseteq(\mathbb{N} \backslash\{0\})^{6}$ whose finiteness/infiniteness is unknown, although we conjecture that $\operatorname{card}\left(\mathcal{X}_{4}\right)<\omega \Rightarrow \mathcal{X}_{4} \subseteq[1,720!]^{6}$. For every $j \in\{2,3,4\}$, we know an algorithm that decides the set \mathcal{X}_{j}.

2. Composite numbers of the form $2^{\mathbf{2}^{\boldsymbol{n}}}+1$

Let \mathcal{A} denote the following system of equations:

$$
\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 7\}\right\} \cup\left\{2^{2^{x_{j}}}=x_{k}: j, k \in\{1, \ldots, 7\}\right\}
$$

The following subsystem of \mathcal{A}

[^0]has exactly one solution in $(\mathbb{N} \backslash\{0,1\})^{7}$, namely $(2,4,16,2,2,2,2)$.
Conjecture 2.1. If a system of equations $\mathcal{S} \subseteq \mathcal{A}$ has at most five equations and at most finitely many solutions in $(\mathbb{N} \backslash\{0,1\})^{7}$, then each such solution $\left(x_{1}, \ldots, x_{7}\right)$ satisfies $x_{1}, \ldots, x_{7} \leqslant 16$.

Lemma 2.1 (see p. 109 in [8]). For every pair of non-negative integers x and y, the equation $x+1=y$ holds if and only if

$$
2^{2^{x}} \cdot 2^{2^{x}}=2^{2^{y}}
$$

Theorem 2.1. Conjecture 2.1 implies that $2^{2^{x_{1}}}+1$ is composite for infinitely many integers x_{1} greater than 1.
Proof. Assume, on the contrary, that Conjecture 2.1 holds and $2^{2^{x_{1}}}+1$ is composite for at most finitely many integers x_{1} greater than 1. Then, the equation

$$
x_{2} \cdot x_{3}=2^{2^{x_{1}}}+1
$$

has at most finitely many solutions in $(\mathbb{N} \backslash\{0,1\})^{3}$. By Lemma 2.1, in positive integers greater than 1 , the following subsystem of \mathcal{A}

has at most finitely many solutions in $(\mathbb{N} \backslash\{0,1\})^{7}$ and expresses that

$$
\left\{\begin{aligned}
x_{2} \cdot x_{3} & =2^{2^{x_{1}}}+1 \\
x_{4} & =2^{2^{x_{1}}}+1 \\
x_{5} & =2^{2^{x_{1}}} \\
x_{6} & =2^{2^{2^{x_{1}}}} \\
x_{7} & =2^{2^{2^{x_{1}}}+1}
\end{aligned}\right.
$$

Since $641 \cdot 6700417=2^{2^{5}}+1>16$, we get a contradiction.
Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see $[3, \mathrm{p} .23]$.
Problem 2.1 (see p. 159 in [4]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$?
Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [4, p. 1]. Fermat remarked that $2^{2^{0}}+1=3,2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [4, p. 1].

Problem 2.2 (see p. 158 in [4]). Are there infinitely many prime numbers of the form $2^{2^{n}}+1$?

3. The Brocard-Ramanujan equation $x!+1=y^{2}$

Let \mathcal{B} denote the following system of equations:

$$
\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 6\}\right\} \cup\left\{x_{j}!=x_{k}:(j, k \in\{1, \ldots, 6\}) \wedge(j \neq k)\right\} .
$$

The following subsystem of \mathcal{B}

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{1} \cdot x_{1} & =x_{3} \\
x_{2} \cdot x_{2} & =x_{3} \\
x_{3}! & =x_{4} \\
x_{4}! & =x_{5} \\
x_{5}! & =x_{6}
\end{aligned}\right.
$$

has exactly two solutions in positive integers, namely ($1, \ldots, 1$) and ($2,2,4,24,24!,(24!)!)$.
Conjecture 3.1. If a system of equations $\mathcal{S} \subseteq \mathcal{B}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{6}, then each such solution $\left(x_{1}, \ldots, x_{6}\right)$ satisfies $x_{1}, \ldots, x_{6} \leqslant(24!)!$.

Lemma 3.1. For every pair of positive integers x and y, the equation $x!\cdot y=y!$ holds if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Theorem 3.1. Conjecture 3.1 implies that if the equation $x_{1}!+1=x_{2}^{2}$ has at most finitely many solutions in positive integers x_{1} and x_{2}, then each such solution $\left(x_{1}, x_{2}\right)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$.

Proof. The following system of equations \mathcal{B}_{1}

is a subsystem of \mathcal{B}. By Lemma 3.1, in positive integers, the system \mathcal{B}_{1} expresses that $x_{1}=\ldots=x_{6}=1$ or

$$
\left\{\begin{aligned}
x_{1}!+1 & =x_{2}^{2} \\
x_{3} & =x_{1}! \\
x_{4} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}\right.
$$

If the equation $x_{1}!+1=x_{2}^{2}$ has at most finitely many solutions in positive integers x_{1} and x_{2}, then \mathcal{B}_{1} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{6} and Conjecture 3.1 implies that every tuple (x_{1}, \ldots, x_{6}) of positive integers that solves \mathcal{B}_{1} satisfies $\left(x_{1}!+1\right)!=x_{6} \leqslant(24!)!$. Hence, $x_{1} \in\{1, \ldots, 23\}$. If $x_{1} \in\{1, \ldots, 23\}$, then $x_{1}!+1$ is a square only for $x_{1} \in\{4,5,7\}$.

It is conjectured that $x!+1$ is a square only for $x \in\{4,5,7\}$, see [10, p. 297]. A weak form of Szpiro's conjecture implies that the equation $x!+1=y^{2}$ has only finitely many solutions in positive integers, see [7].

4. The Erdős' equation $x(x+1)=y$!

Let \mathcal{C} denote the following system of equations:

$$
\left\{x_{i} \cdot x_{j}=x_{k}:(i, j, k \in\{1, \ldots, 6\}) \wedge(i \neq j)\right\} \cup\left\{x_{j}!=x_{k}:(j, k \in\{1, \ldots, 6\}) \wedge(j \neq k)\right\}
$$

The following subsystem of \mathcal{C}
has exactly three solutions in positive integers, namely ($1, \ldots, 1$), ($1,1,2,2,2,2$), and ($2,2,3,6,720,720$! $)$.
Conjecture 4.1. If a system of equations $\mathcal{S} \subseteq \mathcal{C}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{6}, then each such solution $\left(x_{1}, \ldots, x_{6}\right)$ satisfies $x_{1}, \ldots, x_{6} \leqslant 720$!.

Theorem 4.1. Conjecture 4.1 implies that if the equation $x_{1}\left(x_{1}+1\right)=x_{2}$! has at most finitely many solutions in positive integers x_{1} and x_{2}, then each such solution $\left(x_{1}, x_{2}\right)$ belongs to the set $\{(1,2),(2,3)\}$.

Proof. The following system of equations \mathcal{C}_{1}

$$
\left\{\begin{aligned}
x_{1}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{5} & =x_{6} \\
x_{2}! & =x_{3} \\
x_{1} \cdot x_{5} & =x_{3}
\end{aligned}\right.
$$

is a subsystem of \mathcal{C}. By Lemma 3.1, in positive integers, the system \mathcal{C}_{1} expresses that $x_{1}=\ldots=x_{6}=1$ or

$$
\left\{\begin{aligned}
x_{1} \cdot\left(x_{1}+1\right) & =x_{2}! \\
x_{3} & =x_{1} \cdot\left(x_{1}+1\right) \\
x_{4} & =x_{1}! \\
x_{5} & =x_{1}+1 \\
x_{6} & =\left(x_{1}+1\right)!.
\end{aligned}\right.
$$

If the equation $x_{1}\left(x_{1}+1\right)=x_{2}$! has at most finitely many solutions in positive integers x_{1} and x_{2}, then \mathcal{C}_{1} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{6} and Conjecture 4.1 implies that every tuple (x_{1}, \ldots, x_{6}) of positive integers that solves \mathcal{C}_{1} satisfies $x_{2}!=x_{3} \leqslant 720$!. Hence, $x_{2} \in\{1, \ldots, 720\}$. If $x_{2} \in\{1, \ldots, 720\}$, then x_{2} ! is a product of two consecutive positive integers only for $x_{2} \in\{2,3\}$ because the following MuPAD program

```
for x2 from 1 to 720 do
x1:=round(sqrt(x2!+(1/4))-(1/2)):
if x1*(x1+1)=x2! then print(x2) end_if:
end_for:
```

returns 2 and 3 .
The question of solving the equation $x(x+1)=y$! was posed by Erdős, see [1]. Luca proved that the $a b c$ conjecture implies that the equation $x(x+1)=y$! has only finitely many solutions in positive integers, see [5].

5. Conjectures 3.1 and 4.1 cannot be generalized to an arbitrary number of variables

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{W}_{1} denote the system of equations $\left\{x_{1}!=x_{1}\right\}$. For an integer $n \geqslant 2$, let \mathcal{W}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
\mathrm{x}_{1}! & =\mathrm{x}_{1} \\
\mathrm{x}_{1} \cdot \mathrm{x}_{1} & =\mathrm{x}_{2} \\
\forall i \in\{2, \ldots, n-1\} \mathrm{x}_{i}! & =\mathrm{x}_{i+1}
\end{aligned} \xrightarrow{\mathrm{x}_{1} \text { squaring }} \xrightarrow{!} \mathrm{x}_{2} \xrightarrow{!} \mathrm{x}_{3} \rightarrow \cdots \rightarrow \mathrm{x} \xrightarrow[n-1]{!} \mathrm{x}_{n}\right.
$$

For every positive integer n, the system \mathcal{W}_{n} has exactly two solutions in positive integers x_{1}, \ldots, x_{n}, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$. For a positive integer n, let Ψ_{n} denote the following statement: if a system of equations

$$
\mathcal{S} \subseteq\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{j}!=x_{k}: j, k \in\{1, \ldots, n\}\right\}
$$

has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant$ $f(n)$. The statements Ψ_{n} are discussed in [9].

Theorem 5.1. Every factorial Diophantine equation can be algorithmically transformed into an equivalent system of equations of the forms $x_{i} \cdot x_{j}=x_{k}$ and $x_{j}!=x_{k}$. (It means that this system of equations satisfies a modified version of Lemma 4 in [8].)

Proof. It follows from Lemmas 2-4 of [8] and Lemma 3.1.
For every $n \in \mathbb{N} \backslash\{0\}$, the statement Ψ_{n} is dubious. By Theorem 5.1, this statement implies that there is an algorithm which takes as input a factorial Diophantine equation and returns an integer which is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is strange because properties of factorial Diophantine equations are similar to properties of exponential Diophantine equations and a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [6].

6. Equivalent forms of Conjectures 2.1-4.1

If $k \in\left[10^{19}, 10^{20}-1\right] \cap \mathbb{N}$, then there are uniquely determined non-negative integers $a(0), \ldots, a(19) \in\{0, \ldots, 9\}$ such that

$$
(a(19) \geqslant 1) \wedge\left(k=a(19) \cdot 10^{19}+a(18) \cdot 10^{18}+\ldots+a(1) \cdot 10^{1}+a(0) \cdot 10^{0}\right)
$$

Definition 6.1. For an integer $k \in\left[10^{19}, 10^{20}-1\right], \mathcal{S}_{k}$ stands for the smallest system of equations \mathcal{S} satisfying conditions (1) and (2).
(1) If $i \in\{0,4,8,16\}$ and $a(i)$ is even, then the equation $x_{a(i+1)} \cdot x_{a(i+2)}=x_{a(i+3)}$ belongs to \mathcal{S} when it belongs to \mathcal{A}.

Lemma 6.1. $\left\{\mathcal{S}_{k}: k \in\left[10^{19}, 10^{20}-1\right] \cap \mathbb{N}\right\}=\{\mathcal{S}:(\mathcal{S} \subseteq \mathcal{A}) \wedge(\operatorname{card}(\mathcal{S}) \leqslant 5)\}$.
Proof. It follows from the equality $5 \cdot 4=20$.
For a positive integer n, let p_{n} denote the n-th prime number.
Theorem 6.1. The following semi-algorithm sem_{2} never terminates.

If Conjecture 2.1 is true, then sem_{2} endlessly prints consecutive positive integers starting from 1. If Conjecture 2.1 is false, then sem_{2} prints a finite number (including zero) of consecutive positive integers starting from 1.

Proof. It follows from Lemma 6.1.
Theorem 6.2. The following semi-algorithm sem $_{3}$ never terminates.

If Conjecture 3.1 is true, then sem $_{3}$ endlessly prints consecutive positive integers starting from 1. If Conjecture 3.1 is false, then sem_{3} prints a finite number (including zero) of consecutive positive integers starting from 1.

Theorem 6.3. The following semi-algorithm sem $_{4}$ never terminates.

If Conjecture 4.1 is true, then sem $_{4}$ endlessly prints consecutive positive integers starting from 1. If Conjecture 4.1 is false, then sem_{4} prints a finite number (including zero) of consecutive positive integers starting from 1.

References

[1] D. Berend, J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006) 1741-1779.
[2] N. D. Goodman, The knowing mathematician, In: H. Leblanc, E. Mendelson, A. Orenstein (Eds.), Foundations: Logic, Language, and Mathematics, Springer, Dordrecht, 1984, 21-38,
[3] J.-M. De Koninck, F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, American Mathematical Society, Providence, 2012.
[4] M. Křížek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer, New York, 2001.
[5] F. Luca, The Diophantine equation $P(x)=n$! and a result of M. Overholt, Glas. Mat. Ser. III 37 (2002) 269-273
[6] Y. V. Matiyasevich, Existence of noneffectivizable estimates in the theory of exponential Diophantine equations, J. Sov. Math. 8 (1977) 299-311.
[7] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993) 104.
[8] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018) 109-114.
[9] A. Tyszka, Statements and open problems on decidable sets $\mathcal{X} \subseteq \mathbb{N}$, Pi Mu Epsilon J. 15 (2023) 493-504.
[10] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd Edition, CRC, Boca Raton, 2002.

[^0]: *E-mail address: rttyszka@cyf-kr.edu.pl

