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Abstract

Let S be a decomposition of a simple 4-regular plane graph into edge-disjoint cycles such that every two adjacent edges
on a face belong to different cycles of S. Such graphs, called Grötzsch–Sachs graphs, may be considered as a result of a
superposition of simple closed curves in the plane with tangencies disallowed. Koester studied the coloring of Grötzsch–
Sachs graphs when all curves are circles. In 1984, he presented the first example of a 4-chromatic edge critical plane graph
of order 40 formed by 7 circles. In the present paper, a new 4-chromatic edge critical graph generated by circles in the plane
is presented.
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1. Introduction

A simple graph is called k-chromatic if its chromatic number is equal to k. A graph is edge (vertex) 4-critical if it is 4-
chromatic and the removal of any edge (vertex) decreases its chromatic number. Numerous results and problems related
to critical graphs are collected in [1, 11]. Consider a graph G = G(S) formed by the superposition of a set S of simple
closed curves in the plane, no two of which are tangent and no three of which meet at a point. Crossing points and arcs
of S correspond to vertices and edges of G, respectively. Since every two closed curves in the plane have an even number
of crossing points, G is always a 4-regular plane graph of even order. Such 4-regular graphs are called Grötzsch–Sachs
graphs. If all curves are circles, then graphs of this class will be referred to as Koester graphs (see, for example, Figure 1). To
describe mutual positions of curves of S, it is convenient to use the characteristic graphH = H(S) which is the intersection
graph of the curves: vertices ofH(S) correspond to curves of S and two vertices are adjacent if and only if the corresponding
curves intersect. We also write H = H(G) if G is defined by a set of curves S.

The first studies concerning the coloring of graphs generated by a set of curves in the plane are due to H. Grötzsch.
H. Sachs discussed problems concerning such graphs at a number of conferences. Some results of the coloring of Grötzsch–
Sachs graphs and related problems can be found in [8–10,12–18].

Figure 1: The 4-chromatic edge critical Koester graph K1.

F. Jaeger proved that if χ(H(G)) ≤ 3, then χ(G) ≤ 3 [8, 9]. Various examples and infinite families of 4-chromatic
Grötzsch–Sachs graphs were described in [3–6]. In particular, Grötzsch–Sachs–Koester’s conjecture stating that if
χ(H(G)) = 4 then χ(G) ≤ 3, was disproved in [3]. Except for two counterexamples of order 18 to the conjecture, all
the other Grötzsch–Sachs graphs with up to 18 vertices are 3-chromatic. An infinite family of vertex 4-critical graphs was
described in [2, 3] and two infinite sets of edge 4-critical Grötzsch–Sachs graphs were constructed in [4, 6]. The minimal
4-chromatic Koester graph G has 20 vertices and H(G) ∼= K5 [12–14]. Fourteen 4-chromatic Koester graphs of order
28 and derived infinite families were presented in [7]. In 1984, G. Koester constructed the first example of an edge 4-
critical Grötzsch–Sachs graph K1 generated by a set of 7 circles in the plane (see Figure 1) [12–14]. It has 40 vertices and
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H(K1) ∼= K7 − e. So far, it has been the only known example of this kind. Attempts to find similar graphs lead to the
following problem [7].

Problem 1.1. Construct new 4-chromatic edge critical Koester graphs.

In this paper, a new edge 4-critical Koester graph K2 of order 40 is presented.

2. Construction of graph K2

Let K2 be a graph generated by seven circles in the plane as shown in Figure 2a. It is a 4-regular plane graph with 40
vertices and 80 edges. Vertex numbering of K2 is given in Figure 2b. The curve set of K2 has the unique pair of non-
crossing (red) circles, i. e. χ(K2) = K7− e. Graphs K1 and K2 are not isomorphic. Indeed, K2 has two faces of size 7 while
the maximal size of faces of K1 is equal to 6. Because of the structure of K2, there is an automorphism that fixes six edges
in the central part of K2 (edges (1,4), (2,3), (16,18), (26,36), (24,31), and (9,11)).

Proposition 2.1. Koester graph K2 is edge 4-critical.

Proof. First, we show that K2 is a 4-chromatic graph. Since K2 contains triangles, χ(K2) ≥ 3. By Brooks’ theorem,
χ(K2) ≤ 4. Suppose that K2 is a 3-chromatic graph and try to color vertices of K2. The initial step of the coloring process
is to assign colors to vertices of some pentagonal face (5-face) in all possible ways. Then we demonstrate that any extension
of the initial coloring leads to the improper coloring of K2 by three colors.

Choose face f5 = (33, 23, 24, 31, 30) for the initial coloring (see Figure 2b). We depict graph vertices by red, white, and
green circles. To color vertices of any 5-face in a 3-chromatic graph, one needs exactly 3 colors. One vertex of a 5-face always
has a color that is distinct from the colors of the other four vertices. This unique color will be red. The total number of
3-colorings of the initial 5-face is five. Because of the symmetry of graph K2, it is sufficient to examine only three different
colorings of 5-face.

During the 3-coloring procedure, the following useful property will be used. Let a graph G be obtained from the simple
triangle by joining a new pendant vertex to two vertices of the triangle. If two pendant vertices of G have the same color
in some proper 3-coloring, then the unique vertex of degree two of G must have this color.

All possible extensions of the initial colorings are presented in Figures 2cdef. The number near every vertex indicates
the number of the step at which this vertex gets a forced color during the coloring procedure. The question mark is located
near an edge whose vertices should receive the same color, i. e. this edge cannot be properly colored. If the color of a vertex
is determined, say, in step 8 by two vertex colors obtained in steps 3 and 4, we will write s(3, 4)→ s(8).
Case 1. Let vertex 33 of face f5 be red (see Figure 2c). The following sequence of coloring steps uniquely defines vertex
colors: s(2, 3) → s(6); s(4, 5) → s(7); s(3, 4) → s(8); s(6, 8) → s(9); s(7, 8) → s(10); s(6, 9) → s(11); s(9, 10) → s(12);
s(7, 10)→ s(13); s(11, 12)→ s(14); s(12, 13)→ s(15). Then end-vertices of the edge (1,4) have the same color.
Case 2. Let vertex 23 of face f5 be red (see Figure 2d). Then s(2, 3) → s(6), s(3, 4) → s(7), s(4, 5) → s(8), s(6, 7) → s(9),
s(7, 9) → s(10), s(8, 10) → s(11), s(10, 11) → s(12), s(9, 12) → s(13), s(6, 13) → s(14), s(13, 14) → s(15), s(12, 15) → s(16),
s(15, 16)→ s(17), s(8, 11)→ s(18). As a result, edge (11,32) has end-vertices with the same color.
Case 3. Let vertex 24 of face f5 be red (see Figure 2ef). We have s(1, 2)→ s(6), s(2, 3)→ s(7), s(3, 4)→ s(8), s(4, 5)→ s(9),
s(8, 9) → s(10), s(8, 10) → s(11), s(9, 10) → s(12), s(7, 11) → s(13), s(7, 13) → s(14), s(6, 14) → s(15). Then vertex 38 can be
colored in two ways in step 16.
Case 3a. Assume that vertex 38 is red (see Figure 2e). We have s(13, 16)→ s(17), s(12, 17)→ s(18), s(11, 17)→ s(19), and
end-vertices of the edge (1,4) have the same color.
Case 3b. Assume that vertex 38 is green (see Figure 2f). Then s(15, 16) → s(17), s(12, 17) → s(18), s(13, 18) → s(19)

s(12, 19)→ s(20), s(11, 19)→ s(21), and end-vertices of the edge (1,4) cannot be colored properly.
The considered cases lead to the impossibility of 3-coloring of graph K2 and, therefore, χ(K2) = 4.

To prove that every edge of K2 is critical, we present 3-coloring of graph K2 − e for all edges e of K2. Because of the
symmetry of K2, it is sufficient to check 43 edges. Table 1 collects 3-colorings of K2 − e for 37 edges of the right part of
K2 and 6 edges of the central part of K2. The vertex numbering of the graph is given in the header of Table 1. Columns
of this table contain the colors of the corresponding vertices. As an illustration, 3-coloring of K2 − (1, 4) is depicted in
Figure 3.

It would be interesting to find a 4-chromatic edge critical Koester graph of order n < 40.
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a). Intersections of seven circles.
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b). Vertex numbering.
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c). Steps of 3-coloring (case 1).
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d). Steps of 3-coloring (case 2).
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e). Steps of 3-coloring (case 3a).
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f). Steps of 3-coloring (case 3b).

Figure 2: The edge 4-critical Koester graph K2 of order 40.

8



A. A. Dobrynin / Discrete Math. Lett. 12 (2023) 6–10 9

Figure 3: A 3-coloring of the graph K2 − (1, 4).

Table 1: The 3-colorings of the graph K2 − e.
N e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 ( 1, 2) 1 1 3 2 1 2 1 3 1 2 3 3 2 3 1 1 2 3 2 3 1 2 1 2 1 2 1 3 2 1 3 1 3 2 3 3 2 2 1 3
2 ( 1, 4) 1 2 3 1 2 1 3 2 3 1 2 2 1 3 2 2 1 3 1 3 2 1 3 1 3 1 2 3 1 3 2 3 2 1 2 2 1 1 3 3
3 ( 1,12) 1 2 3 2 1 2 1 3 1 3 2 1 2 3 1 2 1 3 1 3 2 2 2 3 1 3 2 1 3 1 2 3 3 1 1 2 2 1 3 3
4 ( 1,14) 1 2 1 2 3 1 3 2 3 1 2 3 2 1 3 2 3 1 3 2 1 1 1 2 3 1 2 3 2 3 1 1 2 3 3 2 2 3 1 1
5 ( 2, 3) 1 2 2 3 1 3 2 1 3 1 2 2 1 3 2 2 3 1 3 2 1 2 2 1 2 1 2 3 2 1 3 3 3 1 3 3 1 1 2 3
6 ( 2,14) 1 2 1 2 3 1 3 2 3 2 1 3 1 2 3 2 3 1 3 2 1 1 1 2 3 1 2 3 2 3 1 2 2 3 3 2 2 3 1 1
7 ( 2,17) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 1 2 3 2 3 1 2 1 3 1 3 1 2 3 1 2 1 3 2 2 2 3 3 1 2
8 ( 9,11) 1 2 3 2 1 2 1 3 1 3 1 2 1 3 2 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 3 1 2 2 2 1 1 3 3
9 (10,11) 1 2 3 2 1 2 3 1 2 1 1 3 1 3 2 2 1 3 1 3 2 3 1 3 1 3 2 1 3 1 2 2 2 3 2 2 1 1 3 3
10 (10,12) 1 2 3 2 1 2 3 1 3 2 1 2 1 3 2 2 1 3 2 3 1 2 1 2 1 2 1 3 2 1 3 3 3 2 3 3 1 1 2 3
11 (11,32) 1 2 1 3 2 3 1 2 3 2 1 3 2 3 1 1 3 2 3 1 2 1 1 2 1 2 1 3 1 2 3 1 3 2 3 3 2 2 1 3
12 (11,34) 1 2 3 2 1 2 1 3 1 3 2 2 1 3 2 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 3 1 2 2 2 1 1 3 3
13 (12,13) 1 2 3 2 1 2 1 3 1 3 2 2 2 3 1 2 1 3 1 3 2 2 2 3 1 3 2 1 3 1 2 3 3 1 1 2 2 1 3 3
14 (12,32) 1 2 3 2 1 2 3 1 3 1 2 3 2 3 1 3 1 2 1 3 2 2 2 3 1 2 3 1 3 1 2 3 3 1 1 3 3 1 2 2
15 (13,14) 1 2 1 3 2 3 1 2 1 3 2 2 3 3 2 2 3 1 2 1 3 3 1 2 1 2 3 1 2 1 3 1 2 3 3 3 1 1 2 3
16 (13,15) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 2 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 1 1 3 3
17 (13,32) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 1 1 3 3
18 (14,15) 1 2 3 2 1 2 3 1 2 1 3 3 2 3 3 3 1 2 1 3 2 3 3 2 3 2 3 1 3 2 1 1 1 2 1 1 2 2 3 1
19 (15,37) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 1 1 3 3
20 (15,40) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 3 3 1 1
21 (16,17) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 1 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 3 3 1 2
22 (16,18) 1 2 1 2 3 1 3 2 3 1 2 2 1 3 2 2 3 2 3 2 1 1 2 3 2 3 1 2 3 2 1 3 3 1 1 1 3 3 2 1
23 (16,38) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 2 3 1 2 3 2 3 2 1 3 2 3 1 1 1 2 1 1 2 2 3 3
24 (16,40) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 3 3 1 2
25 (23,24) 1 2 3 2 1 2 1 3 1 3 2 2 1 3 2 2 1 3 2 3 1 2 2 2 1 2 1 3 2 1 3 3 3 1 3 3 1 1 2 3
26 (23,33) 1 2 3 2 1 3 1 2 3 2 1 3 1 3 2 2 1 3 1 2 3 1 2 3 2 3 2 1 2 3 1 2 2 3 1 1 3 3 2 1
27 (23,34) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 2 3 1 2 1 2 1 2 1 3 2 1 3 2 3 1 3 3 1 1 2 3
28 (23,35) 1 2 3 2 1 2 1 3 1 3 2 2 1 3 2 2 1 3 1 3 2 2 2 3 1 3 2 1 3 1 2 3 3 1 2 2 1 1 3 3
29 (24,25) 1 2 3 2 1 2 1 3 1 3 2 2 1 3 2 2 1 3 2 3 1 2 2 1 1 2 1 3 2 1 3 3 3 1 3 3 1 1 2 3
30 (24,31) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 1 3 2 2 3 2 3 1 2 3 1 3 2 1 1 2 1 2 2 1 3 3
31 (24,35) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 1 2 2 1 3 3
32 (25,36) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 1 3 2 2 2 3 1 3 2 1 3 1 2 2 3 1 1 1 3 3 2 1
33 (26,36) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 2 3 1 2 3 2 3 2 1 3 2 3 1 1 1 2 1 2 2 1 3 3
34 (32,34) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 2 1 2 2 2 1 1 3 3
35 (33,34) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 2 1 1 2 2 1 1 3 3
36 (35,37) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 1 3 2 2 3 1 3 1 2 3 1 3 2 1 1 2 2 2 2 1 3 3
37 (35,39) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 1 3 2 2 2 3 1 3 2 1 3 1 2 2 3 1 1 2 3 3 1 1
38 (36,38) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 2 3 1 2 3 2 3 2 1 3 2 3 1 1 1 2 1 1 2 1 3 3
39 (36,39) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 2 1 3 1 3 2 2 2 3 1 3 2 1 3 1 2 2 3 1 1 2 3 3 2 1
40 (37,39) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 2 3 1 2 1 2 1 2 1 3 2 1 3 1 3 2 3 3 2 1 2 3
41 (37,40) 1 2 3 2 1 2 3 1 2 1 3 3 1 3 2 2 1 3 2 3 1 3 3 2 1 2 1 3 2 1 3 2 2 1 1 3 3 1 2 3
42 (38,39) 1 2 3 2 1 2 1 3 1 2 3 3 2 3 1 2 1 3 2 3 1 2 1 2 1 2 1 3 2 1 3 1 3 2 3 3 2 1 1 3
43 (38,40) 1 2 3 2 1 2 1 3 1 2 3 3 1 3 2 3 1 2 1 3 2 2 2 3 1 2 3 1 3 1 2 2 3 1 1 3 3 1 2 1
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