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Abstract
We construct a new parametrization of double sequences {An,k(s)}n,k between An,k(0) =

(
n−1
k−1

)
and An,k(1) =

1
n!

[
n
k

]
, where[

n
k

]
are the unsigned Stirling numbers of the first kind. For each s, we prove a central limit theorem and a local limit theorem.

This extends the de Moivre–Laplace central limit theorem and Goncharov’s result that unsigned Stirling numbers of the
first kind are asymptotically normal. We also provide several applications.

Keywords: central limit theorem; local limit theorem; probabilistic number theory; singularity analysis.
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1. Introduction

The central limit theorem is one of the most remarkable theorems in science [11–13]. From the de Moivre–Laplace theorem
in combinatorics and probability, involving binomial distributions, the central limit theorem culminated in a universal law
of nature (see [26], Section 3). In this paper, we construct a parametrization of double sequences {An,k(s)}n,k between
An,k(0) =

(
n−1
k−1
)

and An,k(1) = 1
n!

[
n
k

]
, where

[
n
k

]
are the unsigned Stirling numbers of the first kind. Finally, we apply

Harper’s method [19] and prove a central limit theorem and a local limit theorem for each s.
Let Zn ∈ {0, 1, . . . , n} denote a random variable with binomial distribution

P (Zn = k) =

(
n

k

)
pk (1− p)n−k ,

where 0 < p < 1. The central limit theorem states that the normalized random variables Zn, converge in distribution to
the standard normal distribution N (0, 1):

Zn − n p√
n p (1− p)

D−→ N(0, 1).

In asymptotic analysis [4, 8], one is interested in the asymptotic normality of sequences. Goncharov [15, 16] proved in
1944 that the unsigned Stirling numbers of the first kind

[
n
k

]
have this property. More than 20 years later, Harper [19]

discovered a more conceptional method, proving also that the Stirling numbers of the second kind are asymptotically
normal. When describing Goncharov’s proof, Harper writes “Goncharov . . . by brute force torturously manipulates the
characteristic functions of the distributions until they approach exp

(
−x2/c

)
, c a positive constant.”

Recently, Harper’s method has been applied by Gawronski and Neuschel [14] to Euler–Frobenius numbers (see also
Kahle and Stump [25]). Note that in several cases, also other non-gaussian distributions need to be considered (e. g. limiting
Betti distributions of Hilbert schemes of n points, where the Gumbel distribution was the correct limit distribution, Griffin
et al. [17]).

Moreover, related to the topic, since we deal with unimodal sequences, we suggest the analysis of properties of the
modes. We utilize a result by Darroch [5,9] and study the modes of {An,k(s)}. This is connected to Erdős’ proof [10] of the
Hammersley conjecture [18], related to the peaks of {

[
n
k

]
}. For other sequences, we refer to Bringmann et al. [7].

We finally want to mention that the method provided in this paper contributes to the following problem in combinatorics
and number theory. Let {Pn(z)}n denote the sequence of D’Arcais polynomials [21] defined by

∞∏
n=1

(1− qn)−z =
∞∑
n=0

Pn (z) q
n for |q| < 1. (1)
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Lehmer conjectured in 1947 that Pn (−24) 6= 0 for all n ∈ N [2,28,33]. It is expected that Pn (−m) 6= 0 for all even numbers
m different from 2, 4, 6, 8, 10, 14, 26 [24]. More generally, let

P sn (z) :=
z

ns

n∑
k=1

g (k)P sn−k (z) , (2)

with initial value P s0 (z) = 1. Then we obtain the D’Arcais polynomials Pn(z) for s = 1 and g (n) =
∑
d|n d. The family

{P sn (z)} includes Chebyshev and Laguerre polynomials if g (k) = k and s = 0 or s = 1, respectively (see Lemma 3.3 in [20]
and Remark 2.8 in [23]) as P 0

n (z) = zUn−1
(
z
2 + 1

)
for s = 0 and Un (z) the nth Chebyshev polynomial of second kind and

P 1
n (z) = z

nL
(1)
n−1 (−z) for s = 1 and L

(α)
n (z) the nth α-associated Laguerre polynomial. It is well known from the theory

of orthogonal polynomials that Laguerre polynomials are more difficult to study than Chebyshev polynomials. We quote
Rahmann–Schmeisser (see [32], Introduction, Page 24): “The Chebyshev polynomials are the only classical orthogonal
polynomials whose zeros can be determined in explicit form”. One of our goals is to analyse the properties of the solutions
of the hereditary difference equation defined by Equation (2).

We have the following property in mind. If the coefficients of the polynomials do not satisfy a central limit theorem
and if the associated variance goes to infinity, then the polynomials have roots in the right complex half-plane (see for
example [27]).

Therefore, it would be interesting to transfer properties from polynomials related to s = 0 to s = 1. Unfortunately, the
task is apparently complicated. Nevertheless, as a first attempt, already involving Stirling numbers of the first kind the
case

P sn (z) =
z

ns

n−1∑
k=0

P sk (z) = (n!)
−s
z

n−1∏
k=1

(z + ks) (3)

for s ∈ R and g(k) = 1 yields some interesting results. The equivalence of recursion and factorization follows from Example
2.4 of [23].

2. Main results

Let P sn (z) be given by (3). We are interested in the coefficients:

P sn (z) =

n∑
k=0

An,k(s) z
k.

Let n ≥ 1. Then An,n (s) = (n!)−s and An,0(s) = 0. We deduce from [22], example 1 and example 3 for the values s = 0 and
s = 1:

An,k(0) =

(
n− 1

k − 1

)
and An,k(1) =

1

n!

[
n

k

]
. (4)

The unsigned Stirling numbers of the first kind
[
n
k

]
denote the number of all permutations of a set of n elements with

exactly k distinct cycles. We refer to Bóna [6].
We mainly focus on s ∈ [0, 1] due to (4). Then, we obtain central and local limit theorems for the double sequence

{An,k(s)}n,k. The case s ∈ [−1, 0] can be reduced to the case [0, 1]:

P sn (z) = ns
n∏
k=1

ks zn+1 P−sn
(
z−1
)
.

Central limit theorem
The classical central limit theorem by de Moivre (1738) and Laplace (1812), was developed from the results in probability
theory [13,26] to a general theorem, without direct reference to concepts as random variable, expected value, and variance.
We refer to Feller [11] and Canfield [8] for excellent surveys. The modern version of the central limit theorem can also be
considered as a theorem on the asymptotic normality of a sequence of non-negative numbers in singularity analysis [4].
In this spirit, we state our first result in the most general form.

Theorem 2.1. Suppose s ∈ [0, 1]. Then there exist real sequences {an(s)}n and {bn(s)}n with bn(s) positive for almost all n,
such that

lim
n→∞

sup
x∈R

∣∣∣∣∣∣ 1

P sn(1)

∑
k≤ an(s)+x bn(s)

An,k(s)−
1√
2π

∫ x

−∞
e−

t2

2 dt

∣∣∣∣∣∣ = 0. (5)
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Theorem 2.1 is proven with Harper’s method [19]. The sequences {an(s)}n and {bn(s)}n are provided by the expected
values and variances of a suitable sequence of random variables. It is essential that P sn (z) has real roots −ks ≤ 0:

P sn (z) = (n!)−s z

n−1∏
k=1

(
z + ks

)
. (6)

Further, we utilize the Berry–Esseen theorem [8] to control the convergence rate. The corresponding expected values and
variances are

µn(s) := 1 +

n−1∑
k=1

1

1 + ks
, (7)

σ2
n(s) :=

n−1∑
k=1

ks

(1 + ks)
2 . (8)

Then µn(0) =
n+1
2 and µn(1) = Hn, where Hn is the nth harmonic number. Moreover, let generally H(s)

n :=
∑n
k=1 k

−s. We
have σ2

n(0) =
n−1
4 and σ2

n(1) = Hn −H(2)
n . Most importantly, let s ∈ [0, 1]. Then

lim
n→∞

σn(s) =∞.

Therefore, we obtain:

Theorem 2.2. Suppose s ∈ [0, 1]. There exists a positive constant C such that

lim
n→∞

sup
x∈R

∣∣∣∣∣∣ 1

P sn(1)

∑
k≤µn(s)+xσn(s)

An,k(s)−
1√
2π

∫ x

−∞
e−

t2

2 dt

∣∣∣∣∣∣ ≤ C 1

σn(s)
.

The standard deviation σn(s) approaches infinity.

Remark 2.1.
a) The constant can be chosen as C = 0.7975 (we refer to [3], and the survey article [30]).
b) Let s > 1. Then limn→∞ σ2

n (s) ≤ limn→∞
∑n−1
k=1 k

−s = ζ (s) <∞. Here we denote by ζ(s) the Riemann zeta function.

Local limit theorem
We refer to Section 4 for an introduction. We prove:

Theorem 2.3. Let s ∈ R. Then there exists a universal constant K > 0, such that

max
k

∣∣∣∣∣ σn(s)P sn(1)
An,k(s)−

e−
(xn(s))2

2

√
2π

∣∣∣∣∣ < K

σn (s)
,

for xn(s) = (k − µn(s))/σn(s). Uniformly for k − µn(s) = O(σn(s)) we have

An,k(s)

P sn(1)
∼ e−(xn(s))

2/2

σn(s)
√
2π

.

Peaks and plateaux
The polynomials P sn (z) are real-rooted. Therefore, a theorem by Newton implies that the sequence {An,k(s)}k is unimodal
and has two modes at most. Either we have one peak, or a plateau.

In the case s = 0, we have a peak for n odd at k = n+1
2 and a plateau for n even at k = n

2 and n+2
2 . This is obvious,

since the An,k(0) are binomial coefficients. The case s = 1 is more delicate. Let n ≥ 3. Hammersley [18] conjectured in
the context of Stirling numbers of the first kind that there is always a peak. This was proved by Erdős [10]. The proof
depends on the fact that

{[
n
k

]}
k

are natural numbers. This allows Erdős to apply special results related to the prime
number theorem and certain divisibility properties of the Stirling numbers of the first kind. Our goal is to contribute to
the case s ∈ (0, 1) and obtain information for s = 1. But this seems to be very difficult, since in general, the numbers
An,k(s) are not integers. Nevertheless, by utilizing a theorem by Darroch [9] we obtain:

Theorem 2.4. Let n ≥ 6. Assume that

k0 = 1 +

n−1∑
k=1

1

1 + ks

is an integer. Then the sequence {An,k (s)} has a peak at k0. The number of possible k0 is given by the number of integers
between Hn and n+1

2 .
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3. The probabilistic viewpoint on asymptotic normality

We begin with a useful tool from probability.

The Berry–Esseen theorem (see [8], Theorem 3.2.4)
Let X be a random variable. We denote by E(X) and V(X) the expected value and variance of X.

Theorem 3.1. Let Xn,k for 1 ≤ k ≤ n be independent random variables with values in {0, 1, . . . , n}. Let µn,k be the expected
values, σ2

n,k the variances, and
ρn,k = E(|Xn,k − µn,k|3) <∞

the absolute third central moments. Let µn :=
∑n
k=1 µn,k, σ2

n :=
∑n
k=1 σ

2
n,k, and Zn :=

∑n
k=1Xn,k. Let Z∗n = (Zn − µn)/σn.

Then ∣∣∣∣∣∣∣∣P (Z∗n < x)− 1√
2π

∫ x

−∞
e−

t2

2 dt

∣∣∣∣∣∣∣∣
R
≤ C

∑n
k=1 ρn,k
σ3
n

,

where ||f(x)||R denotes the supremum norm of f on R and C > 0 is a universal constant. This constant can be chosen as
C = 0.7975 [3].

Let Pn (z) =
∑n
k=0 a (n, k) z

k be a monic polynomial of degree nwith a (n, k) ≥ 0. Suppose the roots of Pn (z) are real and
Pn (z) =

∏n
k=1 (z + rk). Harper [19] introduced a triangular array of Bernoulli random variables Xn,j with distribution

P (Xn,j = 0) :=
rj

1 + rj
and P (Xn,j = 1) :=

1

1 + rj
.

Let Zn :=
∑n
j=1Xn,j . Then P (Zn = k) = a(n,k)

Pn(1)
. Let Xn,j be given. Then

E(Xn,j) =
1

1 + rj
, V(Xn,j) =

rj
(1 + rj)2

, E(|Xn,j − E(Xn,j)|3) =
rj(1 + r2j )

(1 + rj)4
.

This implies that
E(|Xn,j − E(Xn,j)|3) < V(Xn,j). (9)

We apply Harper’s method setting Pn (z) = (n!)s P sn (z). The expected value of Zn(s) is given by µn(s) and the variance by
σ2
n (s), as recorded in (7) and (8).

Lemma 3.1. 1. Let s ∈ (0, 1). Then

µn(s) ∼
n1−s

1− s
and σ2

n (s) ∼
n1−s

1− s
.

2. We obtain

µn (0) =
n+ 1

2
and σ2

n (0) =
n− 1

4
,

µn(1) ∼ ln n and σ2
n(1) ∼ ln n.

Proof. 1. Let n ≥ 2. We have
0 ≥ 1

1 + ks
− k−s = − k−2s

1 + k−s
≥ −k−2s.

Therefore,

1 +

n−1∑
k=1

1

1 + ks
= 1 +

n−1∑
k=1

k−s − k−2s

1 + k−s
.

Now, for 0 < s < 1, by Theorem 3.2 (b) of [1], we obtain

n−1∑
k=1

k−s = −n−s +
n∑
k=1

k−s =
n1−s

1− s
+ ζ (s) +O

(
n−s

)
using Landau’s O notation. For the remainder term, we obtain similarly the bound

0 ≤
n−1∑
k=1

k−2s

1 + k−s
≤
n−1∑
k=1

k−2s =
n1−2s

1− 2s
+ ζ (2s) +O

(
n−2s

)
.
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Therefore, for 0 < s < 1

µn (s)
n1−s

1−s
= 1 +

1 + ζ (s) +O (n−s)−O
(
n1−2s

1−2s + ζ (2s) +O
(
n−2s

))
n1−s

1−s
→ 1.

We have

σ2
n (s) =

n−1∑
k=1

k−s

(1 + k−s)
2 =

n−1∑
k=1

k−s − 2k−2s + k−3s

(1 + k−s)
2 , (0 < s < 1) with 0 ≤ 2k−2s + k−3s

(1 + k−s)
2 ≤ 3k−2s.

Similarly as above we obtain

σ2
n (s) =

n−1∑
k=1

k−s

(1 + k−s)
2 =

n1−s

1− s
+ ζ (s) +O

(
n−s

)
−O

(
n1−2s

1− 2s
+ ζ (2s) +O

(
n−2s

))
.

Therefore, σ
2
n(s)
n1−s
1−s
→ 1.

2. The case s = 0 follows from the definition. For s = 1, by Theorem 3.2 (a) of [1] we obtain

µn (1) =

n∑
k=1

1

k
= ln (n) + γ +O

(
n−1

)
where γ is the Euler–Mascheroni constant. Therefore, µn(1)ln(n) → 1. Similarly, we obtain

σ2
n (1) =

n−1∑
k=1

k−1

(1 + k−1)
2 =

n−1∑
k=1

k−1 − 2k−2 + k−3

(1 + k−1)
= ln (n) + γ +O

(
n−1

)
−O

(
n−1 + ζ (2) +O

(
n−2

))
.

Therefore, σ
2
n(1)

ln(n) → 1.

Corollary 3.1. Let s ∈ [0, 1]. Then limn→∞ σn(s) =∞.

Remark 3.1. Let 0 ≤ s1 ≤ s2. Then σn(s1) ≥ σn(s2), since d
dsσn(s) < 0.

Proof of Theorem 2.2
Let s ∈ [0, 1]. Let Xn,k(s) ∈ {0, 1} for 1 ≤ k ≤ n be a random variable with values 0 and 1. Here

P (Xn,k(s) = 1) =
1

1 + (k − 1)
s .

We put Zn(s) :=
∑n
k=1Xn,k(s). Then

P (Zn (s) = k) =
An,k(s)

P sn(1)
.

Thus, we obtain

E(Zn(s)) = µn(s) = 1 +

n−1∑
k=1

1

1 + ks
and V(Zn(s)) = σ2

n (s) =
n−1∑
k=1

ks

(1 + ks)2
.

Corollary 3.1 states that the variance approaches infinity. This proves Theorem 2.2.

Proof of Theorem 2.1
This follows from Theorem 2.2. The crucial part of applying Harper’s method and the Berry–Esseen theorem is that the
variance approaches infinity.

4. Local limit theorem

A double indexed sequence {a (n, k)}n,k satisfies a local limit theorem on a set S ⊂ R provided that

sup
x∈S

∣∣∣∣∣σn a(n, bµn + xσnc)∑
k a(n, k)

− e−x
2/2

√
2π

∣∣∣∣∣ −→ 0

(cf. Canfield [8], section 3.7). We recall the following result due to Bender [4].

Theorem 4.1 (Bender). Suppose that the {a (n, k)}k for n ∈ N are asymptotically normal, and σ2
n → ∞. If for each n the

sequence {a (n, k)}k is log-concave in k, then {a (n, k)}k satisfies a local limit theorem on S = R.
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Pólya frequency sequences and limit theorems
We follow the excellent survey by Pitman [30] and apply several results to the sequences {An,k(s)}k.

Let (a0, a1, . . . , an) be a sequence of non-negative real numbers. Let Pn (z) :=
∑n
k=0 ak z

k be real rooted and Pn(1) >

0. Then the sequence is called a (finite) Pólya frequency sequence. Let Zn ∈ {0, 1, . . . , n} be a random variable with
P (Zn = k) := ak

Pn(1)
, mean µ, and variance σ2. Then

max
k

∣∣∣∣∣P (0 ≤ Zn ≤ k)−
1√
2π

∫ k−µ
σ

−∞
e−

t2

2 dt

∣∣∣∣∣ < 0.7975

σ

(see [30], Formula (24) or [3]). Further, there exists a universal constant K:

max
k

∣∣∣∣σP (Zn = k)− 1√
2π

e−(
k−µ
σ )

2
/2

∣∣∣∣ < K

σ
.

The bound is due to Platonov [31] (see also [30], formula (25)).

Proof of Theorem 2.3. It follows from our previous considerations that {An,k(s)}k is a Pólya frequency sequence for all
s ∈ R. This implies the theorem.

5. Peaks of {An,k(s)}k

Recall Darroch’s theorem [9]. Let (a0, a1, . . . , an) be a Pólya frequency sequence. Let Pn (z) :=
∑n
k=0 akz

k with Pn (1) > 0.
Let µn :=

P ′n(1)
Pn(1)

. Newton’s theorem implies that the sequence {ak}k is unimodal and has two modes at most. Darroch
proved that the modes have distance less than 1 from µn. Armed with the results of the previous sections we have the next
proof.

Proof of Theorem 2.4. We consider the polynomials P sn (z). Then µn(s) = 1 +
∑n−1
k=1

1
1+ks . Suppose that µn(s) is an integer.

Then {An,k(s)}k has a peak. Let us restrict µn to [0, 1]. In this case

µn : [0, 1] −→ [µn(1), µn(0)], s 7→ µn(s).

Since s 7→ 1
1+ks is strictly decreasing for k ≥ 2, µn is bijective for n ≥ 3. Let n ≥ 6. Then µn(0) − µn(1) > 1. This implies

that integers k0 ∈
(
µn(1), µn(0)

)
exist and are realizable by suitable s ∈ (0, 1):

k0 = 1 +

n−1∑
k=1

1

1 + ks
.

Let such an s be given. Then {An,k(s)}k has a peak at k0.

Finally, we provide an illustration of Theorem 2.4 by Table 1. Let Mn(1) be the unique mode of {An,k(1)}, as proven by
Erdős.

n 1 2 3 4 5 6 7 8 9 10 100 1000
Hn 1 1.5 1.83 2.08 2.28 2.45 2.59 2.72 2.83 2.93 5.19 7.49

Mn(1) − − 2 2 2 2 2 3 3 3 5 7
n+1
2 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 50.5 500.5

Table 1: Modes for s = 1 and related values.

6. Applications

Approximation of Stirling numbers of the first kind
Wilf [35] contributed to the asymptotic behavior of Stirling numbers of the first kind. Several asymptotic formulas are
provided. Wilf also compares his results with Jordan’s formula in the case

[
100
5

]
and presents numerical data. Although

the focus of this paper is not to obtain best approximations, the numerical value we obtain is already solid. We refer to
Theorem 2.3 and the approximation

1

100!

[
100

5

]
≈ e

−
(

5−µ100(1)

σ100(1)

)2
/2

σ100(1)
√
2π

. (10)
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[
100
5

]
/99! Error

Exact value 21.1204415 . . . -

Jordan formula 18.740 . . . ≈ 11%

3 terms of Equation (9) (Wilf) 21.24986 . . . ≈ 0.613%

Theorem 1 (Wilf) 20.960 . . . ≈ 0.76%

Approximation (10) (this paper) 21.062180 . . . ≈ 0.28%

Equation (7) to order 1/n (Wilf) 21.12070 . . . ≈ 0.0012%

Equation (7) to order 1/n2 (Wilf) 21.1204409 . . . ≈ 0.000003%

Table 2: Several approximations of the maximal value for n = 100 (see Wilf [35], page 349 for details).

We have µ100(1) ≈ 5.19 and σ100(1) ≈ 1.88477. Wilf considers the value of
[
100
5

]
/99! (Table 2).

For uniform approximation in k we refer to [34], Table 2. An asymptotic expansion in the central region is offered
in [29].

One mode property of the Stirling numbers of the first kind
Let n ≥ 3. Erdős [10] proved that

{[
n
k

]}
k

has one mode. We give a new proof for infinitely many n. A variant of Darroch’s
theorem [9,30] states: Let {ak}k be a Pólya frequency sequence. Let µn =

P ′n(1)
Pn(1)

. Then the sequence has exactly one mode
k0, if

k0 ≤ µn < k0 +
1

k0 + 2
or k0 −

1

n− k0 + 2
< µn ≤ k0.

Let the sequence An,k(1) be given. Then µn(1) = Hn. Since Hn is unbounded and Hn+1 = Hn + 1
n+1 , we can find infinitely

many pairs (n, k0), such that Hn ∈ [k0, k0 + 1
k0+2 ]. This implies that {An,k (1)}k has one mode and thus,

{[
n
k

]}
k

has one
mode.

Example 6.1. From Table 1 we see that for n = 10, we have k0 = 3 and 3 − 1
9 < 2.9 < H10 = µ10 (1) ≤ k0. For n = 30, we

have µ30 = H30 ≈ 3.995 and therefore, k0 = 4 is the unique mode, as 4 − 1
28 < 3.97 < µ30 ≤ 4. For 83 ≤ n ≤ 95, we have

5.002 ≈ µ83 = H83 ≤ µn ≤ µ95 ≈ 5.136 and therefore, k0 = 5 is the unique mode as 5 ≤ µn < 5.14 < 5 + 1
7 .

One can vary the argument and prove the next result.

Theorem 6.1. Let n ≥ 6. We consider the sequence {An,k(s)}k for s ∈ (0, 1). Let k0 = µn(s0) ∈ N with s0 ∈ (0, 1). Then there
exists an ε > 0, such that for all s ∈ (s0 − ε, s0 + ε), the sequences {An,k(s)}k have exactly one mode.
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