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Abstract

In this article, sufficient conditions based on the largest eigenvalue, minimum degree, and connectivity for Hamiltonian and
traceable graphs are presented.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here
follow those in [2]. For a graph G, we use n to denote its order |V (G)|. The minimum degree and connectivity of a graph
G are denoted by δ(G) and κ(G), respectively. A subset V1 of the vertex set V (G) of G is independent if no two vertices in
V1 are adjacent in G. A maximum independent set in a graph G is an independent set of the largest possible size. The
independence number, denoted α(G), of a graph G is the cardinality of a maximum independent set in G. For disjoint
vertex subsets X and Y of V (G), we define E(X,Y ) as { e : e = xy ∈ E, x ∈ X, y ∈ Y }. A graph G is semiregular if G is
bipartite and all the vertices in the same part of bipartition have the same degree. The eigenvalues of a graph G, denoted
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), are defined as the eigenvalues of its adjacency matrix A(G). A cycle C in a graph G is called
a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle.
A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable
if G has a Hamiltonian path.

In 2010, Fiedler and Nikiforov [4] obtained the following spectral results for the Hamiltonicity and traceability of
graphs.

Theorem 1.1. [4] Let G be a graph of order n.

(i). If λ1(G) ≥ n− 2, then G contains a Hamiltonian path unless G = Kn−1 + v; if strict inequality holds, then G contains
a Hamiltonian cycle unless G = Kn−1 + e.

(ii). If λ1(Gc) ≤
√
n− 1, then G contains a Hamiltonian path unless G = Kn−1 + v.

(iii). If λ1(Gc) ≤
√
n− 2, then G contains a Hamiltonian cycle unless G = Kn−1 + e.

Inspired by Theorem 1.1, several researchers obtained additional spectral results for the Hamiltonicity and traceability
of graphs; some of them can be found in [1, 7–9, 11–13]. In this paper, we present new conditions based on the largest
eigenvalue, minimum degree, and connectivity for the Hamiltonicity and traceability of graphs. The main results of the
present paper are the next two theorems.

Theorem 1.2. Let G be a graph of order n ≥ 3 vertices and e edges with connectivity κ (κ ≥ 2). If

λ1 ≤

√
(κ+ 1)δ2

n
+

e2

n(n− κ− 1)
,

then G is Hamiltonian or G is Kκ, κ+1.
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Theorem 1.3. Let G be a graph of order n ≥ 12 with connectivity κ (κ ≥ 1). If

λ1 ≤

√
(κ+ 2)δ2

n
+

e2

n(n− κ− 2)
,

then G is traceable or G is Kκ, κ+2.

It is well known that a graph G is Hamiltonian if κ(G) ≥ 2 and α(G) ≤ κ(G) (see [3]). If α(G) ≥ κ(G) + 1, then
e ≥

∑
u∈I d(u) ≥ α(G)δ(G) ≥ (κ(G) + 1)δ(G), where I is a maximum independent set in G. Now, we have

δ

√
κ+ 1

n− κ− 1
≤

√
(κ+ 1)δ2

n
+

e2

n(n− κ− 1)
.

Thus, Theorem 1.2 is a generalization of the next result.

Theorem 1.4. [8] Let G be a graph of order n ≥ 3 with connectivity κ (κ ≥ 2). If

λ1 ≤ δ
√

κ+ 1

n− κ− 1
,

then G is Hamiltonian or G is Kκ, κ+1.

It is well known that a graph G is traceable if κ(G) ≥ 1 and α(G) ≤ κ(G) + 1 (see [3]). If α(G) ≥ κ(G) + 2, then
e ≥

∑
u∈I d(u) ≥ α(G)δ(G) ≥ (κ(G) + 2)δ(G), where I is a maximum independent set in a graph G. Now, we have

δ

√
κ+ 2

n− κ− 2
≤

√
(κ+ 2)δ2

n
+

e2

n(n− κ− 2)
.

Thus, Theorem 1.3 is a generalization of the following result.

Theorem 1.5. [8] Let G be a graph of order n ≥ 12 with connectivity κ (κ ≥ 1). If

λ1 ≤ δ
√

κ+ 2

n− κ− 2
,

then G is traceable or G is Kκ, κ+2.

2. Lemmas

We need the following results as lemmas when we prove Theorems 1.2 and 1.3.

Lemma 2.1. [10] Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If d(x) + d(y) ≥ n + 1 for any
x ∈ A and any y ∈ B with xy 6∈ E, then G is Hamiltonian.

Lemma 2.2. [5] Let G be a graph of order n with degree sequence d1, d2, . . . , dn. Then

λ1 ≥
√
d21 + d22 + · · ·+ d2n

n
.

Lemma 2.3. [6] Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| ≥ |B|. If each vertex in A has
degree at least k and each vertex inB has degree at least l, thenG contains a cycle of length at least 2min(|B|, k+ l−1, 2k−2).

3. Proofs

Proof of Theorem 1.2

Let G be a graph satisfying the conditions in Theorem 1.2. Suppose, to the contrary, that G is not Hamiltonian. Then
n ≥ 2κ + 1 (otherwise δ ≥ κ ≥ n

2 and G is Hamiltonian). Since κ ≥ 2, G has a cycle. Choose a longest cycle C in G and
give an orientation on C. Since G is not Hamiltonian, there exists a vertex u0 ∈ V (G) − V (C). By Menger’s theorem, we
can find s (s ≥ κ) pairwise disjoint (except for u0) paths P1, P2, . . . , Ps between u0 and V (C). Let vi be the end vertex of
Pi on C, where 1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, . . . , vs agrees with the
orientation of C. We use v+i to denote the successor of vi along the orientation of C, where 1 ≤ i ≤ s. Since C is a longest
cycle in G, we have that v+i 6= vi+1, where 1 ≤ i ≤ s and the index s+1 is regarded as 1. Moreover, S := {u0, v+1 , v

+
2 , . . . , v

+
κ }
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is independent (otherwise G would have cycles which are longer than C). Let ui = v+i for each i with 1 ≤ i ≤ κ. Set
T := V − S = {w1, w2, . . . , wn−κ−1 }. Notice that∑

u∈S
d(u) = |E(S, V − S)| ≤

∑
w∈V−S

d(w)

and ∑
u∈S

d(u) +
∑

w∈V−S
d(w) = 2e.

We have that ∑
u∈S

d(u) ≤ e ≤
∑

w∈V−S
d(w).

By the conditions of Theorem 1.2, Lemma 2.2, and Cauchy-Schwarz inequality, we have√
(κ+ 1)δ2

n
+

e2

n(n− κ− 1)
≥ λ1

≥
√∑

u∈V d
2(u)

n
=

√∑
u∈S d

2(u)

n
+

∑
w∈V−S d

2(w)

n

≥

√
(κ+ 1)δ2

n
+

(∑
w∈V−S d(w)

)2
n(n− κ− 1)

≥

√
(κ+ 1)δ2

n
+

e2

n(n− κ− 1)
.

Thus, all the inequalities above become equalities. Therefore,

d(u0) = d(u1) = · · · = d(uκ) = δ, d(w1) = d(w2) = · · · = d(wn−κ−1) := δ1,

and
e =

∑
u∈S

d(u) =
∑

w∈V−S
d(w).

Since e =
∑
u∈S d(u), there is no edge between any pair of vertices in V −S. Thus V −S is independent. Again, notice that

e =
∑
u∈S

d(u) = (κ+ 1)δ =
∑

w∈V−S
d(w) = (n− κ− 1)δ1 ≥ (n− κ− 1)δ,

we have that n ≤ 2κ+ 2. Since n ≥ 2κ+ 1, then n = 2κ+ 1 or n = 2κ+ 2.
When n = 2κ+ 1, then n− κ− 1 = κ. Since d(ui) = δ ≥ κ for i with 0 ≤ i ≤ κ, uiwj ∈ E for each i with 0 ≤ i ≤ κ and for

each j with 1 ≤ j ≤ n− κ− 1. Hence G is Kκ, κ+1.
When n = 2κ + 2, then n − κ − 1 = κ + 1 and G is a balanced bipartite graph. By Lemma 2.1, G is Hamiltonian, a

contradiction. �

Proof of Theorem 1.3

LetG be a graph satisfying the conditions in Theorem 1.3. Suppose, to the contrary, thatG is not traceable. Then n ≥ 2κ+2

(otherwise δ ≥ κ ≥ n−1
2 and G is traceable). Choose a longest path P in G and give an orientation on P . Let x and y be the

two end vertices of P . Since G is not traceable, there exists a vertex u0 ∈ V (G)− V (P ). By Menger’s theorem, we can find
s (s ≥ κ) pairwise disjoint (except for u0) paths P1, P2, . . . , Ps between u0 and V (P ). Let vi be the end vertex of Pi on P ,
where 1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, . . . , vs agrees with the orientation of
P . Since P is a longest path in G, x 6= vi and y 6= vi, for each i with 1 ≤ i ≤ s; otherwise, G would have paths that are longer
than P . We use v+i to denote the successor of vi along the orientation of P , where 1 ≤ i ≤ s. Since P is a longest path in G,
we have that v+i 6= vi+1, where 1 ≤ i ≤ s− 1. Moreover, S := {u0, v+1 , v

+
2 , . . . , v

+
κ , x} is independent (otherwise G would have

paths which are longer than P ). Let ui = v+i for each i with 1 ≤ i ≤ κ and uκ+1 = x. Set T := V −S = {w1, w2, . . . , wn−κ−2 }.
Notice again that ∑

u∈S
d(u) = |E(S, V − S)| ≤

∑
w∈V−S

d(w)

and ∑
u∈S

d(u) +
∑

w∈V−S
d(w) = 2e.
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We have that ∑
u∈S

d(u) ≤ e ≤
∑

w∈V−S
d(w).

By the conditions of Theorem 1.3, Lemma 2.2, and Cauchy-Schwarz inequality, we have√
(κ+ 2)δ2

n
+

e2

n(n− κ− 2)
≥ λ1

≥
√∑

u∈V d
2(u)

n
=

√∑
u∈S d

2(u)

n
+

∑
w∈V−S d

2(w)

n

≥

√
(κ+ 2)δ2

n
+

(∑
w∈V−S d(w)

)2
n(n− κ− 2)

≥

√
(κ+ 2)δ2

n
+

e2

n(n− κ− 2)
.

Thus, all the inequalities above become equalities. Therefore,

d(u0) = d(u1) = · · · = d(uκ+1) = δ, d(w1) = d(w2) = · · · = d(wn−κ−2) := δ1,

and
e =

∑
u∈S

d(u) =
∑

w∈V−S
d(w).

Since e =
∑
u∈S d(u), there is no edge between any pair of vertices in V −S. Thus, V −S is independent. Again, notice that

e =
∑
u∈S

d(u) = (κ+ 2)δ =
∑

w∈V−S
d(w) = (n− κ− 2)δ1 ≥ (n− κ− 2)δ,

we have that n ≤ 2κ+ 4. Since n ≥ 2κ+ 2, then n = 2κ+ 2, n = 2κ+ 3, or n = 2κ+ 4.
When n = 2κ+ 2, then n− κ− 2 = κ. Since d(ui) = δ ≥ κ for i with 0 ≤ i ≤ κ+ 1, uiwj ∈ E for each i with 0 ≤ i ≤ κ+ 1

and for each j with 1 ≤ j ≤ n− κ− 2. Hence G is Kκ, κ+2.
When n = 2κ+ 3, then n− κ− 2 = κ+ 1. Notice that κ ≥ 5 since n = 2κ+ 3 ≥ 12. Notice further that each vertex in S

or T has degree at least δ ≥ κ. By Lemma 2.3, G has a cycle of length 2κ + 2. Since n = 2κ + 3 and κ ≥ 5, G has a path
containing all the vertices of G. Namely, G is traceable, a contradiction.

When n = 2κ + 4, then n − κ − 2 = κ + 2. Notice that κ ≥ 4 since n = 2κ + 4 ≥ 12. Notice further that each vertex
in S or T has degree at least δ ≥ κ. By Lemma 2.3, G has a cycle of length 2κ + 4, which implies that G is traceable, a
contradiction. �
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[3] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
[4] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170–2173.
[5] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139 (1988) 37–44.
[6] B. Jackson, Long cycles in bipartite graphs, J. Combin. Theory Ser. B 38 (1985) 118–131.
[7] R. Li, Eigenvalues, Laplacian eigenvalues and some Hamiltonian properties of graphs, Util. Math. 88 (2012) 247–257.
[8] R. Li, The largest eigenvalue and some Hamiltonian properties of graphs, Electron. J. Linear Algebra 34 (2018) 389–392.
[9] R. Liu, W. C. Shiu, J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl. 467 (2015) 254–266.

[10] J. Moon, L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163–165.
[11] V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J. 66 (2016) 925–940.
[12] B. Ning, J. Ge, Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 63 (2015) 1520–1530.
[13] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010) 566–570.

53


	Introduction
	Lemmas
	Proofs

