
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 12 (2023) 45–49
DOI: 10.47443/dml.2022.209

Research Article

On Boolean functions defined on bracket sequences

Norbert Hegyvári∗
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(Received: 2 December 2022. Received in revised form: 29 March 2023. Accepted: 31 March 2023. Published online: 10 April 2023.)

c© 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

In the paper [B. Bakos, N. Hegyvári, M. Pálfy, X. H. Yan, Discrete Math. Lett. 4 (2020) 31–36], the authors introduced
the so-called pseudo-recursive sequences which generalize bracket sequences. In the present article, Boolean functions are
defined on hypergraphs with edges having big intersections induced by bracket sequences and hypergraphs that are thinly
intersecting. These Boolean functions related to combinatorial number theory are new in this area.
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1. Introduction

Many problems in combinatorial number theory are concerned with the representation of positive integers as the sum of
elements from a given set. Many such problems require that the number of members of the representation is bounded; for
example, Lagrange’s four-square theorem; however, there are many that do not. The motivation for this article is the case
when there is no such a requirement.

Let X ⊆ N. The set of subset sums of X is defined in the following way:

P (X) :=
{∑
x∈Y

x : Y ⊆ X; |Y | <∞
}
. (1)

For the empty set, let
∑
x∈∅ x = 0. The set X is said to be complete if all sufficiently large integers belong to P (X). Birch,

Erdős, Roth, and Szekeres are some of the prominent names in connection with this subject (see for example [3,4,6]).
A challenging problem is when X is a bracket sequence. Answering a question of Erdős, Graham proved that: S(t, α) =

{tbαnc}∞n=1 is complete if 0 < t < 1 and 1 < α ≤ 3
√

5. Furthermore, Erdős and Graham conjectured that S(t, α) is complete
for 1 < α < %, the golden number.

Another challenging problem is when X = Aαβ := {b2nαc}∞n=1 ∪ {b2mβc}∞m=1. Erdős and Graham conjectured in [3]
that Aαβ is complete provided α/β is irrational. I made some progress towards this conjecture (see e.g. in [5]) and I think
it is sufficient to assume that α/β 6= 2k; k ∈ Z. The bracket sequences have a pseudo-recursive definition as well. These
sequences were used for certain cryptographic and combinatorial problems (see the details in [1,2]).

When X is a finite set one can write (1) in the form P (X) = {
∑n
i=1 εixi : εi ∈ {0, 1}}, where X = {xi}ni=1. In this case,

P (X) can be considered as an image set of a function fX : (ε1, ε2, . . . εn) which maps from the cube {0, 1}n to R.
A Boolean function B can have several definitions; sometime B : {0, 1}n → {0, 1} and sometime B : {0, 1}n → R.

Throughout the paper, both of these definitions are used. In either case, it will be clarified which definition is being used.
The function fX : (ε1, ε2, . . . εn) 7→ ε1x1 + ε2x2 + . . . εnxn (mod 2) is a Boolean function in the first meaning.

The goal of this article is to combine bracket sequences (Aα := {b2nαc} and Cα := {b3nαc}) with special Boolean
functions. The sequence Aα (and Cα too) looks like a “pseudo-random‘’ sequence (indeed α is a random number, 2n and 3n

are regular). These Boolean functions related to combinatorial number theory are new in this area.
We now explain our functions using hypergraphs which will define on the vertex set [n] := {1, 2, . . . , n} and the elements

of any edge correspond to a subset of variables. Formally H = (V,E) is a hypergraph, where V is a set of vertices and
E is a set of non-empty subsets of V called hyperedges (or shortly edges). A hypergraph H is said to be k-uniform if all
edges contain exactly k vertices. We concentrate on some hypergraphs in which there are many pairs of edges with “large”
intersections (Section 2), and also an opposite situation when the “total intersection” is small (Section 3).
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2. Highly intersecting hypergarphs

In this section, we consider a hypergraph in which there are many pairs of edges with “large” intersections. More precisely
our graph is a k-uniform cycle hypergraph, with k − 1 many common elements in the connected edges, i.e. H = (V,E),
V = {x1, x2, . . . , xn} and E = {{x1, x2, . . . , xk}, {x2, x3, . . . , xk+1}, . . . , {xn, x1, . . . , xk+1}}. So, let

Fα(x1, x2, . . . , xn) = a1(x1 + x2 · · ·+ xk) + a2(x2 + x3 · · ·+ xk+1) + . . . (2)

· · ·+ an−k+1(xn−k+1 + xn−k+2 · · ·+ xn) + · · ·+ an(xn + x1 · · ·+ xk−1) (mod 2).

where x = (x1, x2, . . . , xn) ∈ {0, 1}n, ai ∈ Aα. Here k is fixed, n does not depend on k, but is also fixed, and α varies. For a
chosen α denote by F(α) the set of these functions.

It is important to remark that Fα is a polynomial form of the function. Fα has a Fourier representation as well,
where Bα(x1, x2, . . . , xn) =

∑
S⊆[n] F̂α(S)χS(x), and we mean that for every (x1, x2, . . . , xn) ∈ {0, 1}n, Bα(x1, x2, . . . , xn) =

Fα(x1, x2, . . . , xn) (see the details in Section 5).
Take now the Fourier expansion of Fα. An interesting question is to bound the number of terms in the representation.

More precisely we define the following

Definition 2.1. LetM = {S ⊆ [n] : F̂α(S) 6= 0}, i.e. |M| is the number of terms of the Fourier representation of Fα.

We will prove

Theorem 2.1. Drawn α uniformly at random from [0, 1]. Then |M| > r holds with probability at least

1− e− 1

2n−(k−1)r−r logn
.

For example when k ∼ log n and we ask the chance that |M| > ε n
logn then the probability of it is at least 1− c

2(1−2ε)n .

A related multiplicative function would be Tα(x) := sign{Gα}, where Gα : {−1, 1}n → R defined by

Gα(x1, x2, . . . , xn) = a1x1x2 · · ·xk + a2x2x3 · · ·xk+1 + · · ·+ an−k+1xn−k+1xn−k+2 · · ·xn+

+an−k+2xn−k+2xn−k+2 · · ·xn+1 + · · ·+ anxnx1 . . . xk−1,

and sign{x} = 1 if x > 0 and sign{x} = −1 otherwise. The function Tα called threshold function, namely we examine when
Tα takes a positive value. We will show that Tα depends only on k variable (which in computer science is sometimes said
to be junta).

Proposition 2.1. The sign function Tα depends only on the variables x1, . . . , xk−1, xn.

3. Thinly intersecting hypergarphs

Our next function will be the opposite of the previous functions; we will assume that the total amount of intersections is
“small”.

Definition 3.1 (ε–thin system of sets). The system of sets S = (S1, S2, . . . , Sr);Si ⊆ [n], is said to be ε–thin system if∑
1≤i<j≤r |Si ∩ Sj | < εr.

In Section 4, we are going to investigate the cardinality of the output domain of the function H : {0, 1}n → R:
H(x1, x2, . . . , xn) :=

∑r
i=1 ci

∏
j∈Si

(−1)xj , where {ci}ri=1; (r ≤ n) is a bracket sequence, ck := b3kαc : α ∈ R+ and
S = (S1, S2, . . . , Sr) forms an ε–thin system. Let us denote by Im(H) the image set of H, i.e.

Im(H) :=
{
y ∈ R : ∃ (x1, x2, . . . , xn) ∈ {0, 1}n; y = H(x1, x2, . . . , xn)

}
.

Clearly |Im(H)| ≤ 2r. Note that the equality does not necessarily hold. Let e.g. n = 2 and let

H(x1, x2) := c1(−1)x1 + c2(−1)x1(−1)x2 + c3(−1)x2 .

It is easy to check that c1 + c2 − c3 is not in Im(H). Nevertheless, we prove the next result.

Theorem 3.1. Let H(x1, x2, . . . , xn) :=
∑r
i=1 ci

∏
j∈Si

(−1)xj where {Si}ri=1 is an ε-thin system. Then |Im(H)| ≥ 2(1−ε)r.
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4. Preliminaries and notations

The set {1, 2, . . . n} will be denoted by [n]. For S ⊆ [n] the corresponding input is x = (x1, x2, . . . , xn) ∈ {0, 1}n; where xi = 1

if i ∈ S and xi = 0 otherwise. A basis function or character is defined by χx(y) := (−1)〈x,y〉2 , where 〈x, y〉2 :=
∑n
i=1 xiyi.

Sometimes we write 〈S, y〉2 if x is the corresponding input of S. Let f, g be two Boolean functions. The expected value of f
is E(f) := 1

2n

∑
x∈{0,1}n f(x). and the inner product of f and g is 〈f, g〉 := E(fg). For a set S ⊆ [n] the Fourier transform of

f is f̂(S) = 〈f, χS〉. Every Boolean function has a unique Fourier expansion in the form f =
∑
S⊆[n] f̂(S)χS .

Let us denote byPrx∈{0,1}n(·) the uniform probability distribution on the discrete n−cube. The influence Infi(f) of the
ith variable on a Boolean function f is the probability that when we flip the value of the ith variable the value of f is
flipped as well. More formally Infi(g) = Prx∈{0,1}n [g(x) 6= g(x+ ei)], where ei = (0, . . . , 1, . . . , 0); the ith coordinate is 1 the
other coordinates are 0. In the next lemma we show that the bracket sequence fulfills the pseudo-recursive condition (see
also [1]).

Lemma 4.1. Let α ∈ R, α > 1 and write an = b2nαc. Then the recursion an+1 = 2an + αn holds, where the binary
representation of α is α = 1.α1α2 . . . αn . . . . We assume that are infinitely many digits equal to 1.

Proof. Since infinitely many digits equal to 1, the representation is unique. Then an = 1α1α2 . . . αn = b2nαc and an+1 =

1α1α2 . . . αn+1 = b2n+1αc in base 2. Hence clearly an+1 = 2an + αn, (αn ∈ {0, 1}) holds.

It is easy to see that one can rearrange Fα in the linear form and hence

Fα =

n∑
i=1

(ai−k+1 + . . . ai)xi ≡
n∑
i=1

(αi−k+1 + . . . αi)xi (mod 2).

This form of the function can be considered as a dual form of the previous. In this version, α digits are considered as a
k-uniform cyclic hypergraph.

5. Proofs

First, we prove Proposition 2.1.

Proof of Proposition 2.1. Our task is to characterize those variables {x1, x2, . . . , xn} ∈ {−1, 1}n, for which

Gα(x) =

n∑
i=1

ai(xixi+1 · · ·xi+k−1) > 0.

This inequality is equivalent to
n∑
i=1

ai

(1 + xixi+1 · · ·xi+k−1

2

)
>

1

2

n∑
i=1

ai.

For every i (1 ≤ i ≤ n), let us introduce the variable

εi =
1 + xixi+1 · · ·xi+k−1

2
.

Observe that εi ∈ {0, 1} for every 1 ≤ i ≤ n. Hence we are looking for the n-tuples {ε1, ε2, . . . , εn} ∈ {0, 1}n for which∑n
i=1 εiai >

1
2

∑n
i=1 ai and we have to check that there is a realization of an n-tuples in variables {x1, x2, . . . , xn} ∈ {−1, 1}n.

From Lemma 4.1 one can easily prove the following lemma.

Lemma 5.1. For every n ≥ 2 P ({a1, a2, . . . , an}) = P ({a1, a2, . . . , an−1}) + {0, an} and an >
∑n−1
j=1 aj .

It implies that an > 1
2

∑n
j=1 aj . If εn = 1 then we have

∑n
i=1 εiai ≥ an >

1
2

∑n
i=1 ai. Furthermore if εn = 0, then

n∑
i=1

εiai ≤
n−1∑
i=1

ai <
1

2

n∑
i=1

ai.

So, we get Gα is positive if and only if εn = 1 on other words Tα depends only on x1, . . . , xk−1, xn.

To prove Theorem 2.1 we turn the polynomial form into the Fourier expansion form of Fα. Then we have the next result.

Proposition 5.1. Let 1 ≤ i ≤ n. Then for every S, i ∈ S, F̂α(S) = 0 holds, if and only if
∑i
j=i−k+1 αj ≡ 0 (mod 2). We mean

that αs = αt when s ≡ t (mod n).

47
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We derive Proposition 5.1 from the next lemma.

Lemma 5.2. Let ηi ∈ {0, 1}. Then Infi(Fα) = ηi if and only if
∑i
j=i−k+1 αj ≡ ηi (mod 2), where

Infi(g) = Prx∈{0,1}n [g(x) 6= g(x+ ei)] (ei is the ith basis vector).

Now, the implication follows from the following result.

Lemma 5.3. For every Boolean function f : {0, 1}n → {0, 1} we have Infi(f) = 4
∑
S⊆[n]:i∈S f̂

2(S).

Lemma 5.3 implies that if the ith influence is 0 then every Fourier coefficient f̂(S) is zero containing the element i. The
proof of Lemma 5.3 can be found e.g. in [7]. For the sake of completeness, we include a short proof.

Proof. The value of |f(x)− f((x+ ei)| is zero or one, hence Infi(f) = Ex[(f(x)− f((x+ ei))
2]. Furthermore by the Fourier

representation of f(x) and f(x+ ei) we have |f(x)− f(x+ ei)| = 2
∑
i∈S f̂(S)(−1)〈S,x〉. (If i 6∈ S, a term in f(x) cancels the

term in f(x+ ei), otherwise it will be doubled). Thus we have

Infi(f) = Ex[f(x)− f((x+ ei))
2] =

〈
f(x)− f(x+ ei), f(x)− f(x+ ei)

〉
= 4

〈∑
i∈S

f̂(S)χS ,
∑
i∈T

f̂(T )χT

〉
= 4

∑
i∈S
|f̂(S)|2.

Proof of Lemma 5.2. Recall that our task is to show that Infi(Fα) = ηi if and only if
∑i
j=i−k+1 αj ≡ ηi (mod 2), where

ηi ∈ {0, 1}. Now let x ∈ {0, 1}n and flip its variable xi to the opposite. Take Fα in the form Fα =
∑n
i=1(ai−k+1 + . . . ai)xi.

So, Fα changes its value if and only if
∑i
j=i−k+1 αj ≡ 1 (mod 2). Hence the statement holds.

Proof of Theorem 2.1. Since Fα depends only on finite many digits of α, we estimate a discrete probability (i.e. the desired
event is a union of finite many subintervals of [0, 1]). In our model write the nmany digits in a circle. We call the consecutive
digits in the circle to block, i.e. the sequence of digits {αi−k+1, . . . αi} is a block. Let us denote by X the event, that the
number of the blocks where

∑i
j=i−k+1 αj ≡ 1 (mod 2) is at most r. Furthermore write X = ∪rt=1Xt, where Xt denotes the

event that the number of such blocks is exactly t. We estimate Pr(Xt). So we have t many blocks which can be identified
at their first digits αi−k+1. Hence we can select at most

(
n
t

)
many blocks. There are 2k−1 cases when

∑i
j=i−k+1 αj ≡ 1

(mod 2).
Call a block 1-block if

∑i
j=i−k+1 αj ≡ 1 (mod 2), and 0-block if

∑i
j=i−k+1 αj ≡ 0 (mod 2). Now if {αi−k+1, . . . αi} is a

1-block, and the consecutive block {αi−k+2, . . . αi+1} is 0-block (or a 1-block), then αi+1 is the opposite of αi−k+1 (or the
same) and carry on like so. If {αi−k+3, . . . αi+2} is an ε-block (ε ∈ {0, 1}) then αi+2 is the same or the opposite as αi−k+2

depending on ε; i.e. the digits outside of the blocks are determined uniquely. Hence

Pr(X) ≤
r∑
t=1

Pr(Xt) ≤
r∑
t=1

(
n
t

)
(2k−1)t

2n
≤

r∑
t=1

(n2k−1)t

t!2n
≤ (n2k−1)r

2n

r∑
t=1

1

t!
<

e− 1

2n−(k−1)r−r logn
.

Functions associated to ε–thin sets
The aim of this subsection is to give an estimation to the cardinality of the image set of H. Recall that we defined H in the
form

H(x1, x2, . . . , xn) :=

r∑
i=1

ci
∏
j∈Si

(−1)xj ,

where {ci}ri=1 = {b3iαc}ri=1, α ≥ 1. First, note that all sums in the form
∑r
i=1 εici; εi ∈ {−1, 1} are pairwise distinct. Indeed

if
∑r
i=1 εici =

∑n
i=1 ε

′
ici then rearranging it we obtain that

∑r
i=1 ηici =

∑n
i=1 η

′
ici; ηi, η′i ∈ {0, 1, 2}. It remains to show the

following lemma.

Lemma 5.4. Let k ∈ N. For every y =
∑k
i=1 ηici; ηi ∈ {0, 1, 2} has a unique representation.

Proof. First observe that for every k, 2
∑k
i=1 ci < ck+1. Indeed, since α > 1

2

k∑
i=1

ci < 2

k∑
i=1

α3i = α(3k+1 − 1) < α3k+1 − 1 < b3k+1αc = ck+1.
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N. Hegyvári / Discrete Math. Lett. 12 (2023) 45–49 49

We prove the lemma by induction on k. For k = 1 it is obvious. Assume now that for k ≥ 1 the statement is true. So let
y =

∑k+1
i=1 ηici =

∑k+1
i=1 η

′
ici; , ηi, , η′i ∈ {0, 1, 2}. If ηk+1 = η′k+1 then by our hypothesis for every i = 1, 2, . . . k ηi = η′i. Let

ηk+1 > η′k+1.

(ηk+1 − η′k+1)ck+1 +

k∑
i=1

ηici > ck+1 > 2

k∑
i=1

ci ≥
k∑
i=1

η′ici

which implies
∑k+1
i=1 η

′
ici <

∑k+1
i=1 ηici.

Since the sums
∑r
i=1 εici; εi ∈ {−1, 1} are pairwise distinct, there is a one-to one map between Im(H) and a subset

V of {−1, 1}r and we note that |V | = |Im(H)| ≤ 2r. We say that x = (x1, x2, . . . , xn) corresponds to vx = (ε1, ε2, . . . , εr), if
H(x1, x2, . . . , xn) =

∑r
i=1 εici. Let

R(ε1, ε2, . . . , εr) =
∣∣∣{(x1, x2, . . . , xn) ∈ {0, 1}n : H(x1, x2, . . . , xn) =

r∑
i=1

εici}
∣∣∣,

i.e. this representation function counts the number of points x in the Boolean cube which correspond to the vector v =

(ε1, ε2, . . . , εr). So we have

2n =
∑

(ε1,ε2,...,εr)∈V

R(ε1, ε2, . . . , εr) ≤ |V | max
(ε1,ε2,...,εr)∈V

R(ε1, ε2, . . . , εr). (3)

Lemma 5.5. For all (ε1, ε2, . . . , εr) ∈ V , R(ε1, ε2, . . . , εr) ≤ 2n−r+εr.

Now Lemma 5.5 and (3) implies Theorem 3.1.

Proof of Lemma 5.5. Write ∆ := ∪i 6=jSi ∩ Sj = {i1, i2, . . . , i|∆|}, and S′i = Si \ ∆, i = 1, 2, . . . , r. Let us fix the element
(xi1 , xi2 , . . . , xi|∆|) ∈ {0, 1}|∆|. The number of x = (x1, x2, . . . , xn) in which xij , 1 ≤ j ≤ |∆|, are fixed and

∏
j∈Si

(−1)xj = εi,
is 2|S”i|−1. There are 2|∆| 0–1 sequences (xi1 , xi2 , . . . , xi|∆|). Thus

R(ε1, ε2, . . . , εr) ≤ 2|∆|
r∏
i=1

2|S
′
i|−1 ≤ 2|∆|2n−r < 2n−r+εr.
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