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Abstract

A periodic digraph is the digraph associated with a periodic point of a continuous map from the unit interval to itself. This
digraph encodes “covering” relation between minimal intervals in the corresponding orbit, which allows the application
of purely combinatorial arguments in establishing results on the existence and co-existence of periods of periodic points
(for example, in proving the famous Sharkovsky’s theorem). In this article, an optimal lower bound for the size of periodic
digraphs is provided and thus some previous results of Pavlenko are tightened.
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1. Introduction

Combinatorial dynamics is a branch of dynamical systems that studies the existence of periodic points and the structure
of their orbits for self-maps on various structures. A celebrated result that helped to shape this field is the Sharkovsky’s
theorem [8] which completely describes the coexistence of periods of periodic points of a continuous map from the unit
interval to itself. It turned out that one can prove Sharkovsky’s theorem using purely combinatorial arguments [2, 9].
These ideas are based on the following construction. Let f : [0, 1]→ [0, 1] be a continuous map and x ∈ [0, 1] be its n-periodic
point. Clearly, the restriction of f to the corresponding orbit orbf (x) = {x, f(x), . . . , fn−1(x)} is a cyclic permutation of the
latter. Consider the natural ordering orbf (x) = {x1 < · · · < xn}. The corresponding periodic digraph Γ has the vertex set
V (Γ) = {1, . . . , n − 1} and the arc set A(Γ) = {(i, j) : min{f(xi), f(xi+1)} ≤ j < max{f(xi), f(xi+1)}}. The idea behind this
construction is the following, each vertex i ∈ V (Γ) corresponds to a minimal interval [xi, xi+1], and there is an arc i → j

in Γ provided the interval [xi, xi+1] “covers” interval [xj , xj+1] under f . This construction can be extended to a continuous
vertex maps on topological trees, which enables obtain Sharkovsky-type results (not linear, but partial orders) in this more
general setting [1].

The purely graph-theoretic properties of periodic digraphs were studied by Pavlenko in his three papers [5–7]. For
example, the number of non-isomorphic periodic graphs with a given number of vertices was obtained in [5]. Characteri-
zations of periodic digraphs and their induced subgraphs were proved in [6] and [7], respectively.

2. Preliminaries

A graph is a pair G = (V,E), where V = V (G) is the set of its vertices and E = E(G) is the set of its edges which are
unordered pairs of vertices. For convenience, instead of {u, v} we will write uv for an edge in a graph. For a set of vertices
V ′ ⊂ V (G) in a graph G, by E(V ′) = {uv ∈ E(G) : u, v ∈ V ′} we denote the set of edges of G whose vertices are in V ′.

A graph is connected provided there is a path between every pair of its vertices. The vertex set V (G) of a connected
graphG is naturally equipped with the standard metric dG, where dG(u, v) equals the length of a shortest path u−v path in
G. For a pair of vertices u, v ∈ V (G) in a connected graph G, the metric interval between u, v is the set [u, v]G = {x ∈ V (G) :

dG(u, x) + dG(x, v) = dG(u, v)}the metric interval between u, v. Also, we put AG(u, v) = {x ∈ V (G) : dG(u, x) ≤ dG(v, x)}.
The Wiener index of a connected graph is the value W (G) =

∑
{u,v}⊂V (G) dG(u, v).

A tree is a connected graph without cycles. Prominent example of trees are path graphs Pn, where V (Pn) = {1, . . . , n}
and E(Pn) = {ij : 1 ≤ i = j − 1 ≤ n− 1}. For example, W (Pn) = n(n2−1)

6 .
A digraph is a pair D = (V,A), where V = V (D) is the set of its vertices and A = A(D) ⊂ V ×V is the set of its arcs. An

arc of the form u→ u in a digraph D is called a loop at vertex u.
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For a vertex u ∈ V (D) in a digraph D put N+
D (u) = {v ∈ V (D) : (u, v) ∈ A(D)} and N−D (u) = {v ∈ V (D) : (v, u) ∈ A(D)}.

The numbers d+
D(u) = |N+

D (u)| and d−D(u) = |N−D (u)| are called the out-degree and the in-degree of u, respectively.
Now let X be a tree and σ : V (X)→ V (X) be a map from V (X) to itself. The corresponding Markov graph is a digraph

Γ = Γ(X,σ) with the vertex set V (Γ) = E(X) and the arc set A(Γ) = {(uv, xy) : xy ∈ E([σ(u), σ(v)]X)}.

Example 2.1. Let X be a tree with V (X) = {1, . . . , 7} and E(X) = {12, 23, 26, 34, 37, 45}. Consider the map

σ =

(
1 2 3 4 5 6 7
3 4 1 3 6 5 4

)
.

The Markov graph Γ(X,σ) is depicted in Figure 1.

37 23 45

12 34 26

Figure 1: The Markov graph Γ(X,σ) for the pair (X,σ) from Example 2.1.

Lemma 2.1. [3] Let X be a tree and σ : V (X) → V (X) be some map. Then for every pair of vertices u, v ∈ V (X) and an
edge e ∈ E([σ(u), σ(v)]X) there exists an edge e′ ∈ E([u, v]X) with e′ → e in Γ(X,σ).

Denote by T (X), P(X) and C(X) the classes of all maps, permutations and cyclic permutations of V (X), respectively.
The average number size of Markov graphs for maps in these classes can be explicitly calculated in terms of the Wiener
index of X as follows.

Theorem 2.1. [4] For any tree X with n ≥ 3 vertices the next equalities hold:

1

nn

∑
σ∈T (X)

|A(Γ(X,σ))| = 2(n− 1)

n2
·W (X),

1

n!

∑
σ∈P(X)

|A(Γ(X,σ))| = 2

n
·W (X),

1

(n− 1)!

∑
σ∈C(X)

|A(Γ(X,σ))| = 2(n− 3)

(n− 1)(n− 2)
·W (X) +

n

n− 2
.

An n-periodic digraph is a Markov graph Γ(X,σ) for a path X = Pn and its cyclic permutation σ. The number of
non-isomorphic n-periodic digraphs was obtained in [5].

Theorem 2.2. [5] Let d(n) denote the number of pairwise non-isomorphic n-periodic digraphs. Then

d(n+ 1) =


1

2

(
n!− ϕ(n+ 1) +

(n− 1)!

(k − 1)!

)
+ 1 if n = 2k − 1,

1

2
(n!− ϕ(n+ 1)) + 1 if n = 2k,

where ϕ(n) is Euler’s totient function.

Also, periodic digraphs admit a nice graph-theoretic characterization. To present this result, for any digraph D, we
define a self-map on the power set A : 2V (Γ) → 2V (Γ) in such a way:

A(V ′) :=
⋃
v∈V ′

(N−Γ (v)\
⋃

w∈V ′\{v}

N−Γ (w))

for all subsets V ′ ⊂ V (Γ). For example, for a two-element subset V ′ = {v1, v2}, we have A(V ′) = N−Γ (v1)4N−Γ (v2). For a
collection of setsF , the corresponding intersection graph is an undirected graph with the vertex setF and two setsA,B ∈ F
are being adjacent provided A ∩B 6= ∅.

30



S. Kozerenko / Discrete Math. Lett. 12 (2023) 29–33 31

Theorem 2.3. [6] A digraph Γ with n ≥ 1 vertices is a periodic digraph if and only if there exists a vertex u ∈ V (Γ) with
d−Γ (u) = 2 such that the singleton {u} is an (n + 1)-periodic point for A, and the intersection graph for the collection of sets
orbA({u}) is a path.

The following bounds on the size of n-periodic digraphs can be easily obtained by examining in-degrees of their vertices.

Proposition 2.1. [6] Let Γ be an n-periodic digraph with n ≥ 3. Then n ≤ |A(Γ)| ≤
⌊
n2

2

⌋
.

However, checking all the 5-periodic digraphs (a complete list of these digraphs can be found in [9]), we can conclude
that the bounds from Proposition 2.1 are not optimal (every 5-periodic digraph have at least 6 arcs and at most 11 arcs).
The aim of this paper is to present an optimal lower bound for the size of n-periodic digraphs.

3. Main result

The main result of this note is the following theorem.

Theorem 3.1. For any n-periodic digraph Γ the next lower optimal bound holds

|A(Γ)| ≥
⌊

3n− 3

2

⌋
.

Proof. For n = 1 the bound is clear. Now let n ≥ 2 andX = Pn with V (X) = {1, . . . , n} andE(X) = {ij : 1 ≤ i = j−1 ≤ n−1}.
Consider a cyclic permutation σ of V (X) and put Γ = Γ(X,σ), ei = ij for all 1 ≤ i = j − 1 ≤ n− 1.

By Lemma 2.1, d−Γ (ei) ≥ 1 for all 1 ≤ i ≤ n−1. Put V1 = {1 ≤ i ≤ n−1 : d−Γ (ei) = 1}. Let us show that |V1| ≤
⌊
n
2

⌋
. Indeed,

assume i ∈ V1. Then we haveN−Γ (ei) = {ek} for some 1 ≤ k ≤ n−1. Clearly, σ(k) ≤ i and σ(k+1) ≥ i+1, or σ(k) ≥ i+1 and
σ(k+1) ≤ i. Moreover, σ(AX(k, k+1)) ⊂ AX(i, i+1)) and σ(AX(k+1, k)) ⊂ AX(i+1, i), or σ(AX(k, k+1)) ⊂ AX(i+1, i) and
σ(AX(k + 1, k)) ⊂ AX(i, i+ 1) (again, see Lemma 2.1). Since σ is a permutation, then k = |AX(k, k + 1)| = |AX(i, i+ 1)| = i

or k = |AX(k, k + 1)| = |AX(i, i+ 1)| = n− i. In the first case, σ(AX(k, k + 1)) ⊂ AX(k, k + 1), implying that AX(k, k + 1) is
a σ-invariant set, which contradicts the cyclicity of σ. Thus, we have the equality k+ i = n. Now assume additionally that
i 6= n

2 . We show that in this case, d−Γ (ek) ≥ 2 and hence k /∈ V1. To the contrary, let d−Γ (ek) = 1. By the same argument,
N−Γ (ek) = {ei}. This means that σ(i) ≤ k and σ(i+ 1) ≥ k + 1, or σ(i) ≥ k + 1 and σ(i+ 1) ≤ k. For convenience, let k ≤ i.
We consider the next four cases.

Case 1. σ(k) ≤ i, σ(k + 1) ≥ i+ 1, σ(i) ≤ k, σ(i+ 1) ≥ k + 1.
In this case, ei ∈ E([σ(k + 1), σ(i)]X). Then, by Lemma 2.1, there is an edge em ∈ E([k + 1, i]X) with em → ei in Γ. Since
k ≤ i, then m 6= k. This means that d−Γ (k) ≥ 2 which is a contradiction.

Case 2. σ(k) ≤ i, σ(k + 1) ≥ i+ 1, σ(i) ≥ k + 1, σ(i+ 1) ≤ k.
Since i 6= n

2 , k 6= i, and hence σ(i) ≤ i− 1 (otherwise, σ(i+ 1) ≤ k ≤ i and σ(i) ≥ i+ 1, which would imply the existence of a
loop at ei in Γ). Thus, ei ∈ E([σ(k + 1), σ(i)]X). Therefore, again d−Γ (k) ≥ 2.

Case 3. σ(k) ≥ i+ 1, σ(k + 1) ≤ i, σ(i) ≤ k, σ(i+ 1) ≥ k + 1.
Here σ(k+1) ≥ k+2 (otherwise, Γ would contain a loop at ek). Similarly to previous cases, we have ek ∈ E([σ(k+1), σ(i)]X),
which again implies d−Γ (k) ≥ 2.

Case 4. σ(k) ≥ i+ 1, σ(k + 1) ≤ i, σ(i) ≥ k + 1, σ(i+ 1) ≤ k.
In this case, σ(AX(k, k + 1)) ⊂ AX(i+ 1, i) and σ(AX(i, i+ 1)) ⊂ AX(k, k + 1). Therefore, the set AX(k, k + 1) ∪AX(i, i+ 1)

is a proper σ-invariant set (which contradicts the cyclicity of σ).

Hence, in all cases we have d−Γ (ek) ≥ 2. In other words, i ∈ V1 and i 6= n
2 implies n − i /∈ V1. This clearly means that

|V1| ≤
⌊
n
2

⌋
. Therefore,

|A(Γ)| =
n−1∑
i=1

d−Γ (ei) ≥ |V1|+ 2(n− 1− |V1|) = 2n− 2− |V1| ≥
⌊

3n− 3

2

⌋
.

To prove the optimality of a given bound, let us construct a cyclic permutation which realizes this bound. At first,
let n be an even number. If n = 2, then the unique cyclic permutation of V (X) produces a periodic digraph with exactly
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⌊
3n−3

2

⌋
= 1 arc. Now assume n ≥ 4. Consider the map

σ(i) =



n+ 1− i, if 1 ≤ i ≤ n

2
,

n− i, if n
2

+ 1 ≤ i ≤ n− 1,

n

2
, if i = n

for 1 ≤ i ≤ n. It is easily seen that σ is a permutation of V (X). To prove that σ is a cyclic permutation, we show that for any
1 ≤ k ≤ n there is a numberm ∈ N with σm(1) = k. Indeed, if 1 ≤ k ≤ n

2 , thenm = n−2k+2. Similarly, if n2 +1 ≤ k ≤ n−1,
then m = 2k − n+ 1. Finally, σ(1) = n. Putting Γ = Γ(X,σ), we obtain

d+
Γ (ei) =



1, if 1 ≤ i ≤ n

2
− 1, or n

2
+ 1 ≤ i ≤ n− 2,

2, if i =
n

2
,

n

2
− 1, if i = n− 1

for all 1 ≤ i ≤ n− 1. This asserts the equality

|A(Γ)| =
n−1∑
i=1

d+
Γ (ei) =

n

2
− 1 + n− 2− (

n

2
+ 1) + 1 + 2 +

n

2
− 1 =

3n− 4

2
.

Now let n be an odd number. In this case, consider the map

σ(i) =



n+ 1− i, if 1 ≤ i ≤ n− 1

2
,

n− i, if n+ 1

2
≤ i ≤ n− 1,

n+ 1

2
, if i = n

for 1 ≤ i ≤ n. One can similarly show that σ is a cyclic permutation of V (X). We have

d+
Γ (ei) =



1, if 1 ≤ i ≤ n− 3

2
, or n+ 1

2
≤ i ≤ n− 2,

2, if i =
n

2
,

n− 1

2
, if i = n− 1

for all 1 ≤ i ≤ n− 1. This implies the equality

|A(Γ)| =
n−1∑
i=1

d+
Γ (ei) =

n− 3

2
+ n− 2− n+ 1

2
+ 1 + 2 +

n− 1

2
=

3n− 3

2
.

1

2

3

4

5

6

7

Figure 2: A cyclic permutation σ of P7 which attains the lower bound from Theorem 3.1.

Example 3.1. For a cyclic permutation σ = (1743526) of a path P7 (see Figure 2), the corresponding periodic digraph Γ(P7, σ)

has
⌊

3·7−3
2

⌋
= 9 arcs (see Figure 3).

We also note that Theorem 2.1 implies that on average an n-periodic digraph has 2(n−3)
(n−1)(n−2) ·W (Pn) + n

n−2 = n2

3 arcs.
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45 23 56

34 67 12

Figure 3: The Markov graph Γ(X,σ) for the pair (X,σ) from Example 3.1.
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