Research Article

Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves

Sadia Noureen ${ }^{1, *}$, Akbar Ali 2
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Gujrat, Gujrat, Pakistan
${ }^{2}$ Department of Mathematics, Faculty of Science, University of Hail, Hail, Saudi Arabia

(Received: 31 January 2023. Received in revised form: 15 March 2023. Accepted: 23 March 2023. Published online: 28 March 2023.)
(c) 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a graph. For an edge e of G, denote by d_{e} the number of edges adjacent to e. The atom-bond sum-connectivity (ABS) index of G is defined as $A B S(G)=\sum_{e \in E(G)} \sqrt{1-2\left(d_{e}+2\right)^{-1}}$. A graph of order n is known as an n-order graph. The problem of determining trees possessing the minimum ABS index among all n-order trees with fixed number of leaves has recently been attacked in two preprints independently. This article provides a complete solution to the maximal version of the aforementioned problem.

Keywords: topological index; atom-bond sum-connectivity index; tree; leaf; pendent vertex.
2020 Mathematics Subject Classification: 05C05, 05C07, 05C09, 05C35.

1. Introduction and statement of the result

Those graph-theoretical terms that are used in the present article, without providing their definitions here, can be found in the books [7, 8, 12].

A graph invariant is a property of a graph that is preserved by isomorphism [12]. The degree sequence and the size of a graph are examples of graph invariants. In chemical graph theory, those graph invariants that take a single number are called topological indices [20]. According to Ivan Gutman [13], among all topological indices the connectivity index "is the most studied, most often applied, and most popular". The connectivity index was introduced by Milan Randić in [18], where he referred to it as the branching index; this index is nowadays known as the Randić index. The readers interested in getting details about the connectivity index may consult the books [14, 15], review articles [16, 19], and related papers cited therein.

Because of the success of the connectivity index, many modified versions of this index have been introduced and investigated. The sum-connectivity (SC) index [21] and the atom-bond connectivity (ABC) index [9,10] are among the renowned and well-investigated variants of the connectivity index. Most of the mathematical aspects of the ABC and SC indices can be found in the review articles [1] and [4], respectively.

The present paper is concerned with a recently proposed variant of the ABC index, namely the atom-bond sumconnectivity (ABS) index [2]. The ABS index was defined by utilizing the main concept of the SC and ABC indices. For a graph G, its ABS index is defined by the equation

$$
A B S(G)=\sum_{y z \in E(G)} \sqrt{1-\frac{2}{d_{y}+d_{z}}}
$$

where $E(G)$ denotes the set of edges of G and d_{y} indicates the degree of the vertex y in G (similarly, d_{z} is defined).
Certainly, the ABS index is a vertex-degree-based topological index; however, it can also be considered as an edge-degree-based topological index because the number " $d_{y}+d_{z}-2$ " is called the degree of the edge $y z \in E(G)$.

The mathematical study of the ABS index was initiated in the article [2], where some extremal results about the ABS index for (general) graphs and (molecular) trees were reported. Chemical applicability of the ABS index was investigated in [3], where the maximum and minimum values of the ABS index of unicyclic graphs were also found (a connected graph with the same number of edges and vertices is known as a unicyclic graph). Gowtham and Gutman [11] established several inequalities involving the difference between SC and ABS indices. The maximum value of the ABS index of graphs with several fixed parameters was investigated in [6].

[^0]A graph of order n is known as an n-order graph. A leaf of a graph is a vertex of degree one; a leaf is also known as a pendent vertex or an end vertex. The problem of determining trees possessing the minimum ABS index among all n-order trees with fixed number of leaves has recently been attacked in [5, 17] independently; the present article provides a complete solution to the maximal version of this problem (for the case of general graphs, see [6]). Now, we state the main result of this article.

$$
\ell-1\left\{\begin{array}{l}
a \\
a \\
\vdots \\
0
\end{array}\right\} 0<0-\cdots-0
$$

Figure 1: The graph $S_{n, \ell}$ mentioned in Theorem 1.1.

Theorem 1.1. In the class of all n-order trees with ℓ leaves, $S_{n, \ell}$ is the unique graph having the maximum $A B S$ index, where $2 \leq \ell \leq n-2$ and $S_{n, \ell}$ is the tree obtained from the path graph $P_{n-\ell+1}$ of order $n-\ell+1$ by attaching $\ell-1$ leaves to exactly one leaf of $P_{n-\ell+1}$ (see Figure 1). The mentioned maximum value is

$$
\frac{1}{\sqrt{2}}(n-\ell-2)+(\ell-1) \sqrt{\frac{\ell-1}{\ell+1}}+\sqrt{\frac{\ell}{\ell+2}}+\frac{1}{\sqrt{3}}
$$

2. Proof of Theorem 1.1

We prove the theorem by induction on n. For $n=4$ one has $\ell=2$ and for $n=5$ one has $\ell \in\{2,3\}$; in any case, the result trivially holds because there is only one tree in each case (and that tree is $S_{n, \ell}$). Assume that $n \geq 6$ and that the result is true for every tree of order $n-1$ with ℓ leaves, where $2 \leq \ell \leq n-3$. Suppose that T is an n-order tree with ℓ leaves with the constraint $2 \leq \ell \leq n-2$. It is enough to show that

$$
\begin{equation*}
A B S(T) \leq \frac{1}{\sqrt{2}}(n-\ell-2)+(\ell-1) \sqrt{\frac{\ell-1}{\ell+1}}+\sqrt{\frac{\ell}{\ell+2}}+\frac{1}{\sqrt{3}} \tag{1}
\end{equation*}
$$

with equality if and only if T isomorphic to the graph $S_{n, \ell}$.
Take $u v \in E(T)$ such that $d_{v}=1$ and $d_{u} \geq 2$. Let $T-v$ be the tree obtained from T by removing the vertex v. Note that the degree of every vertex, except u, of $T-v$ is the same in both T and $T-v$. In what follows, d_{u} represents the degree of u in T.

Case 1. $d_{u}>2$.
Let $u_{1}, \cdots, u_{d_{u}-1}$ be all the neighbors of u different from v. Then

$$
\begin{equation*}
A B S(T)-A B S(T-v)=\sqrt{1-\frac{2}{d_{u}+1}}+\sum_{i=1}^{d_{u}-1}\left(\sqrt{1-\frac{2}{d_{u}+d_{u_{i}}}}-\sqrt{1-\frac{2}{d_{u}+d_{u_{i}}-1}}\right) \tag{2}
\end{equation*}
$$

Since $\ell \leq n-2$, at least one of the vertices $u_{1}, \cdots, u_{d_{u}-1}$ is non-leaf. Also, the function ϕ defined by

$$
\phi(x, y)=\sqrt{1-\frac{2}{x+y}}-\sqrt{1-\frac{2}{x+y-1}}, \quad x>2, y \geq 1
$$

is strictly decreasing in y. Thus, Equation (2) yields

$$
\begin{equation*}
A B S(T)-A B S(T-v) \leq \sqrt{\frac{d_{u}}{d_{u}+2}}+\left(d_{u}-2\right)\left(\sqrt{\frac{d_{u}-1}{d_{u}+1}}-\sqrt{\frac{d_{u}-2}{d_{u}}}\right) \tag{3}
\end{equation*}
$$

with equality if and only if exactly one of the vertices $u_{1}, \cdots, u_{d_{u}-1}$ is non-leaf provided that this unique non-leaf has the degree 2 . Since $d_{u} \leq \ell$ and the function ψ defined by

$$
\psi(z)=\sqrt{\frac{z}{z+2}}+(z-2)\left(\sqrt{\frac{z-1}{z+1}}-\sqrt{\frac{z-2}{z}}\right)
$$

is strictly increasing for $z>2$, from Equation (3) it follows that

$$
\begin{equation*}
A B S(T)-A B S(T-v) \leq \sqrt{\frac{\ell}{\ell+2}}+(\ell-2)\left(\sqrt{\frac{\ell-1}{\ell+1}}-\sqrt{\frac{\ell-2}{\ell}}\right) \tag{4}
\end{equation*}
$$

Observe that the equality in (4) holds if and only if $d_{u}=\ell$ and exactly one of the vertices $u_{1}, \cdots, u_{d_{u}-1}$ is non-leaf, which has the degree 2 . Note that, in the present case, the inequality $\ell \geq 3$ holds and the tree $T-v$ has exactly $\ell-1$ leaves. Since $2 \leq \ell-1 \leq n-3$, by the inductive hypothesis, we have

$$
\begin{equation*}
A B S(T-v) \leq \frac{1}{\sqrt{2}}(n-\ell-2)+(\ell-2) \sqrt{\frac{\ell-2}{\ell}}+\sqrt{\frac{\ell-1}{\ell+1}}+\frac{1}{\sqrt{3}}, \tag{5}
\end{equation*}
$$

with equality if and only if $T-v$ isomorphic to the graph $S_{n-1, \ell-1}$. Thus, from (4) and (5) the desired inequality (that is, (1)) follows.

Case 2. $d_{u}=2$.
If $\ell=n-2$, then T is isomorphic to the graph $S_{n, n-2}$ and hence we are done. Thus, in the following, we assume that $\ell \leq n-3$. Let $u^{\prime} \in V(T)$ be the unique neighbor of u different from v. Certainly, $d_{u^{\prime}} \geq 2$ because $n \geq 6$. It holds that

$$
A B S(T)-A B S(T-v)=\frac{1}{\sqrt{3}}+\sqrt{1-\frac{2}{d_{u^{\prime}}+2}}-\sqrt{1-\frac{2}{d_{u^{\prime}}+1}} \leq \frac{1}{\sqrt{2}}
$$

where the right equality holds if and only if $d_{u^{\prime}}=2$. Observe that, in the present case, the tree $T-v$ has exactly ℓ leaves. Since $2 \leq \ell \leq n-3$, by the inductive hypothesis, it holds that

$$
\begin{aligned}
A B S(T) & \leq A B S(T-v)+\frac{1}{\sqrt{2}} \\
& \leq \frac{1}{\sqrt{2}}(n-\ell-3)+(\ell-1) \sqrt{\frac{\ell-1}{\ell+1}}+\sqrt{\frac{\ell}{\ell+2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}(n-\ell-2)+(\ell-1) \sqrt{\frac{\ell-1}{\ell+1}}+\sqrt{\frac{\ell}{\ell+2}}+\frac{1}{\sqrt{3}} .
\end{aligned}
$$

Note that the equation

$$
A B S(T)=\frac{1}{\sqrt{2}}(n-\ell-2)+(\ell-1) \sqrt{\frac{\ell-1}{\ell+1}}+\sqrt{\frac{\ell}{\ell+2}}+\frac{1}{\sqrt{3}}
$$

holds if and only if $T-v$ is isomorphic to the graph $S_{n-1, \ell}$ and $d_{u^{\prime}}=2$, which is equivalent to say that T is isomorphic to the graph $S_{n, \ell}$.

Acknowledgement

This work is partially supported by Scientific Research Deanship, University of Håil, Saudi Arabia, through project numbers RG-22 002 and RG-22 005.

References

[1] A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: a review over extremal results and bounds, Discrete Math. Lett. 5 (2021) 68-93.
[2] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem. 60 (2022) 2081-2093.
[3] A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math. 5 (2023) 1-7.
[4] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalization: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) $249-311$.
[5] T. A. Alraqad, I. Ž. Milovanović, H. Saber, A. Ali, J. P. Mazorodze, Minimum atom-bond sum-connectivity index of trees with a fixed order and/or number of pendent vertices, arXiv:2211.05218 [math.CO], (2022).
[6] T. Alraqad, H. Saber, A. Ali, On the maximum atom-bond sum-connectivity index of graphs, arXiv:2302.01905 [math.GM], (2023).
[7] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008.
[8] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, CRC Press, 2016.
[9] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422-425.
[10] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Ind. J. Chem. Sec. A 37 (1998) $849-855$.
[11] K. J. Gowtham, I. Gutman, On the difference between atom-bond sum-connectivity and sum-connectivity indices, Bull. Cl. Sci. Math. Nat. Sci. Math. 47 (2022) $55-65$.
[12] J. L. Gross, J. Yellen, Graph Theory and Its Applications, CRC Press, 2005.
[13] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[14] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[15] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[16] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127-156.
[17] V. Maitreyi, S. Elumalai, S. Balachandran, The minimum ABS index of trees with given number of pendent vertices, arXiv:2211.05177 [math.CO], (2022).
[18] M. Randić, M. On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609-6615.
[19] M. Randić, The connectivity index 25 years after, J. Mol. Graph. Model. 20 (2001) 19-35.
[20] S. Wagner, H. Wang, Introduction to Chemical Graph Theory, CRC Press, Boca Raton, 2018.
[21] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.

[^0]: *Corresponding author (sadia.tauseef@uog.edu.pk).

