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Abstract

An edge numbering f of a graph G of size m is a labeling that assigns distinct elements of the set {1, 2, . . . ,m} to the
edges of G. The edge-strength estr(G) of G is defined by estr (G) = min {estrf (G) | f is an edge numbering of G}, where
estrf (G) = max {f (e1) + f (e2) | e1, e2 are adjacent edges of G}. In this paper, formulas for estr (G) are presented when G
is either the forest whose components are stars of order at least three or the complete bipartite graph whose partite sets
consist of at least two vertices. The edge-strength of a graph G is the strength of the line graph of G, and thus this work
extends the known results about the edge-strength and strength of graphs.
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1. Introduction

Only graphs without loops or multiple edges are considered in this paper. Undefined graph theoretical notation and
terminology can be found in [2] or [19].

If S is a nonempty subset of the vertex set V (G) of a graph G, then the subgraph 〈S〉 of G induced by S is the graph
having vertex set S and whose edge set consists of those edges of G incident with two elements of S. A subgraph H of G is
called induced if H = 〈S〉 for some subset S of V (G).

The degree of a vertex v in a graph G is the number of edges of G incident with v, which is denoted by deg v. The
minimum degree of G is the minimum degree among the vertices of G and is denoted by δ (G). A graph G is regular of
degree r if deg v = r for each v ∈ V (G). Such graphs are called r-regular. An r-regular subgraph H of a graph G is an
r-factor of G if V (H) = V (G).

The graph with n vertices and no edges is referred to as the empty graph. For integers k ≥ 2, a graph G is a k-parite
graph if V (G) can be partitioned into k nonempty subsets V1, V2, . . . , Vk (called partite sets) such that no edge of G joins
vertices in the same set. For k = 2, such graphs are called bipartite graphs. If G is a k-partite graph with partite sets
V1, V2, . . . , Vk such that every vertex of Vi is joined to every vertex of Vj , where 1 ≤ i < j ≤ k, then G is called a complete
k-partite graph. If |Vi| = ni, then this graph is denoted by Kn1,n2,...,nk

and called a complete multipartite graph. If ni = t

for all i, then the complete k-partite graph is also denoted by Kk(t). A complete bipartite graph with partite sets V1 and V2,
where |V1| = m and |V2| = n is denoted by Km,n. The graph K1,n is called a star.

We use the notation [a, b] for the interval of integers x such that a ≤ x ≤ b. A numbering f of a graph G of order n is a
labeling that assigns distinct elements of the set [1, n] to the vertices of G. The strength str (G) of G is defined by

str (G) = min {strf (G) | f is a numbering of G} ,

where strf (G) = max {f (u) + f (v) | uv ∈ E (G)}. This type of numberings was introduced in [8] as a generalization of the
problem of finding whether a graph is super edge-magic or not (see [3] for the definition of a super edge-magic graph, and
also consult either [1] or [4] for alternative and often more useful definitions of the same concept). If G is an empty graph,
then str (G) is undefined (or we could define str (G) = +∞). For further detail about the strength of graphs, the authors
suggest that the reader consult the results in [6,9–13].
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Another problem concerns labeling the edges of a graph in terms of its size rather than its order. An edge numbering
f of a graph G of size m is a labeling that assigns distinct elements of the set [1,m] to the edges of G. The edge-strength
estr(G) of G is defined by

estr (G) = min {estrf (G) | f is an edge numbering of G} ,

where estrf (G) = max {f (e1) + f (e2) | e1, e2 are adjacent edges of G}. The determination of estr (G) can be transformed
into a problem dealing with strengths, namely, from the definitions it is immediate that

estr (G) = str (L (G)) ,

where L (G) is the line graph of G. The line graph L (G) of a graph G is the graph whose vertices can be put in one-to-one
correspondence with the edges of G in such a way that two vertices of L (G) are adjacent if and only if the corresponding
edges of G are adjacent. The line graph L (G) is empty if and only if every component of G is either K1 or K2. In such a
case, estr (G) is undefined (or we could define estr (G) = +∞). This type of numberings was recently studied in [14,15].

In the following definitions, we assume that G1 and G2 are two graphs with disjoint vertex sets. The union G = G1∪G2

has V (G) = V (G1)∪V (G2) and E (G) = E (G1)∪E (G2). The cartesian product G = G1×G2 has V (G) = V (G1)×V (G2),
and two vertices (u1, u2) and (v1, v2) of G are adjacent if and only if either u1 = v1 and u2v2 ∈ E (G2) or u2 = v2 and
u1v1 ∈ E (G1).

In this paper, we provide formulas for estr (G) and str (H)whenG = K1,n1
∪K1,n2

∪· · ·∪K1,nk
andH = Kn1

∪Kn2
∪· · ·∪Knk

(2 ≤ n1 ≤ n2 ≤ · · · ≤ nk). We also present formulas for estr (G) and str (H) when G = Km,n and H = Km ×Kn (2 ≤ n < m).
These extend what was known about the edge-strength and strength of graphs.

There are other related parameters that have been studied in the area of graph labelings. Excellent sources for more
information on this topic are found in the extensive survey by Gallian [5], which also includes information on other kinds
of graph labeling problems as well as their applications.

2. Results on forests and complete bipartite graphs

In this section, we study the edge-strength of certain forests and complete bipartite graphs as well as the strength of the
corresponding graphs.

In the process of settling the problem (proposed in [8]) of finding sufficient conditions for a graph G of order n with δ (G)
to ensure that str (G) = n+ δ (G), the following class of graphs was defined in [11]. For integers n ≥ 2, let Fn be the graph
with V (Fn) = {vi | i ∈ [1, n]} and E (Fn) = {vivj | i ∈ [1, bn/2c] and j ∈ [1 + i, n+ 1− i]}. Let S = {vi | i ∈ [1, bn/2c+ 1]}.
Then the subgraph H of Fn induced by S has the vertex set V (H) = {vi | i ∈ [1, bn/2c+ 1]} and the edge set

E (H) = {vivj | i ∈ [1, bn/2c] and i < j ≤ bn/2c+ 1} .

Thus, |V (H)| = bn/2c+ 1 and

|E (H)| = bn/2c+ (bn/2c − 1) + · · ·+ 1 =

(
bn/2c+ 1

2

)
.

Consequently, H = Kbn/2c+1 and Kbn/2c+1 ⊆ Fn. This gives us the following lemma.

Lemma 2.1. For every integer n ≥ 2, Fn contains Kbn/2c+1 as a subgraph.

The complement G of a graph G is the graph with vertex set V (G) such that two vertices are adjacent in G if and only if
these vertices are not adjacent in G. The following result established in [11] provides a necessary and sufficient condition
for a graph G of order n to hold the inequality str (G) ≤ 2n− k, where k ∈ [2, n− 1].

Theorem 2.1. Let G be a graph of order n. Then str (G) ≤ 2n − k if and only if G contains Fk as a subgraph, where
k ∈ [2, n− 1].

The following theorem that is a dual of Theorem 2.1 provides a necessary and sufficient condition for a graph G of order
n to hold the inequality str (G) ≥ 2n− k + 1, where k ∈ [2, n− 1].

Theorem 2.2. Let G be a graph of order n. Then str (G) ≥ 2n − k + 1 if and only if G does not contain Fk as a subgraph,
where k ∈ [2, n− 1].

The preceding result proves to be useful in our study of edge-strength of graphs.
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The next two results were established in [14].

Theorem 2.3. For every integer n ≥ 2,
estr (K1,n) = 2n− 1.

Theorem 2.4. For every two integers m ≥ 2 and n ≥ 2,

estr (K1,m ∪K1,n) = 2 (m+ n)− 3.

The above results are now generalized to forests whose components are stars of order at least three. Our proof uses
the concepts of the clique number and the independence number. The clique number ω (G) of a graph G is maximum
order among complete subgraphs of G. A set of vertices in a graph G is independent if no two of them are adjacent. The
independence number β (G) of a graphG is the maximum cardinality among the independence sets of vertices ofG. Clearly,
ω (G) = β

(
G
)

for every graph G.

Theorem 2.5. For every integers n1, n2, . . . , nk with 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk,

estr (K1,n1 ∪K1,n2 ∪ · · · ∪K1,nk
) = 2 (n1 + n2 + · · ·nk)− 2k + 1.

Proof. Let G = K1,n1 ∪K1,n2 ∪ · · · ∪K1,nk
and H = L (G). Then H = Kn1 ∪Kn2 ∪ · · · ∪Knk

so that H = Kn1,n2,...,nk
. From

the definitions, it is clear that a clique in a graph is an independent set in its complement. It follows that

ω
(
H
)
= β

(
H
)
= β (H) = k.

Thus, H does not contain Kk+1. However, by Lemma 2.1, F2k contains Kk+1 as a subgraph. Consequently, H does not
contain F2k as a subgraph. It is now immediate from Theorem 2.2 that

estr (G) = str (H) ≥ 2 (n1 + n2 + · · ·nk)− 2k + 1.

To show that estr (G) = 2 (n1 + n2 + · · ·nk) − 2k + 1, it suffices to verify the existence of a numbering f of H for which
strf (H) = 2 (n1 + n2 + · · ·nk)−2k+1. For each i ∈ [1, k], let V (Kni) =

{
xsi
∣∣ s ∈ [1, ni]

}
andE (Kni) =

{
xsix

t
i

∣∣ 1 ≤ s < t ≤ ni
}
.

ThenH can be defined as the graph with V (H) =
⋃k

i=1 V (Kni
) and E (H) =

⋃k
i=1E (Kni

). Further, let σi = n1+n2+ · · ·ni,
where i ∈ [1, k]. Then the labeling f : V (H)→ [1, σk] such that

f (w) =

{
σk + 1− i if w = x1i and i ∈ [1, k]

σi + 2− s− i if w = xsi , i ∈ [1, k] and s ∈ [2, ni]

has the property that

strf (H) = max {f (u) + f (v) | uv ∈ E (H)}

= f
(
x1k
)
+ f

(
x2k
)
= (σk + 1− k) + (σk − k)

= 2σk − 2k + 1 = 2 (n1 + n2 + · · ·nk)− 2k + 1.

The proof of the preceding theorem also provides the following corollary. This significantly extends the result found
in [8] that str (Kn) = 2n− 1 for every integer n ≥ 2.

Corollary 2.1. For every integers n1, n2, . . . , nk with 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk,

str (Kn1
∪Kn2

∪ · · · ∪Knk
) = 2 (n1 + n2 + · · ·nk)− 2k + 1.

Unlessm = n = 4, the line graph ofKm,n was independently characterized by Moon [16] and Hoffman [7]. Furthermore,
the following result was discovered by Palmer [17].

Theorem 2.6. For every two positive integers m and n,

L (Km,n) = Km ×Kn.

The graph considered in Theorem 2.6 is sometimes referred to as a rook’s graph (see [18] for the definition of a rook’s
graph and its properties).
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Theorem 2.3 is now extended to complete bipartite graphs whose partite sets consist of at least two vertices and three
vertices.

Theorem 2.7. For every two integers m and n with 2 ≤ n < m,

estr (Km,n) = 2mn− 2n+ 1.

Proof. Let G = Km,n and H = L (G). Then Theorem 2.6 yields H = Km × Kn so that H = Kn(m) − F , where F is an
(n− 1)-factor of Kn(m). It follows that ω

(
H
)
= n, that is, H does not contain Kn+1 as a subgraph. However, Lemma 2.1

guarantees that F2n contains Kn+1 as a subgraph. Thus, H does not contain F2n as a subgraph and so the inequality

estr (G) = str (H) ≥ 2mn− 2n+ 1

follows from Theorem 2.2.
To establish the reverse inequality, define the graph H with

V
(
H
)
=
{
xji
∣∣ i ∈ [1,m] and j ∈ [1, n]

}
and E(H) = E(Kn(m))− E(F ),

where

E
(
Kn(m)

)
=
{
xjix

j′

i′

∣∣ i, i′ ∈ [1,m] and 1 ≤ j ≤ j′ ≤ n
}

and E (F ) =
{
xjix

j′

i

∣∣ i ∈ [1,m] and 1 ≤ j ≤ j′ ≤ n
}

.

Further, let S = {yi | i ∈ [1, 2n− 1]}, where

yi = xii (i ∈ [1, n]) and yi = x2n+1−i
2n+2−i (i ∈ [n+ 1, 2n− 1]) .

Then the subgraph H ′ of H induced by S has the vertex set V (H ′) = {yi | i ∈ [1, 2n− 1]} and the edge set

E (H ′) = {yiyj | i ∈ [1, b(2n− 1)/2c] and j ∈ [1 + i, 2n− i]} .

Thus, H ′ = F2n−1 and F2n−1 ⊆ H. It is now immediate from Theorem 2.1 that

estr (G) = str (H) ≤ 2mn− (2n− 1) = 2mn− 2n+ 1,

which completes the proof.

This result also has a rather immediate corollary. This generalizes the result found in [14] that str (Km ×K2) = 4m−3

for every integer m ≥ 3.

Corollary 2.2. For every two integers m and n with 2 ≤ n < m,

str (Km ×Kn) = 2mn− 2n+ 1.
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