Research Article

Atom-bond sum-connectivity index of line graphs

Yanyan Ge, Zhen Lin*, Jiajia Wang
School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China

(Received: 23 October 2023. Received in revised form: 11 December 2023. Accepted: 14 December 2023. Published online: 21 December 2023.)
© 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The recently introduced atom-bond sum-connectivity (ABS) index is receiving nowadays significant attention in chemical graph theory. In this paper, an inequality between the ABS index of a graph and its line graph is established. As a consequence of the obtained inequality, the unique graph with the minimum ABS index among all line graphs of unicyclic graphs of fixed order is determined.

Keywords: atom-bond sum-connectivity index; line graph; extremal graph.
2020 Mathematics Subject Classification: 05C05, 05C07, 05C09, 05C35.

1. Introduction

Let $G=(V(G), E(G))$ be a simple finite undirected graph of order n and of size m, where $n=|V(G)|$ and $m=|E(G)|$. For $x \in V(G)$, we use $d_{G}(x)$ and $N_{G}(x)$ to denote the degree and the set of neighbors of x in G, respectively. The minimum degree of G is denoted by $\delta(G)$. Let $I_{G}(x)=\left\{x x_{i}: x x_{i} \in E(G)\right.$ and $\left.x_{i} \in N_{G}(x)\right\}$. If there is no confusion, we simply denote the above notation as $d(x), N(x), I(x)$, and δ. A vertex x is said to be pendant vertex if $d(x)=1$. As usual, $P_{n}, C_{n}, S_{n}, T_{n}$, and K_{n} denote the path, cycle, star, tree, and complete graph of order n, respectively.

For a graph G, the line graph of G, denoted by $L(G)$, is a graph with $V(L(G))=E(G)$, in which two vertices are adjacent if and only if they (being edges) are adjacent in G. A connected graph G is said to be a unicyclic graph if $|V(G)|=|E(G)|$. Let U_{n} denote the unicyclic graph of order n.

In mathematical chemistry, the connectivity index [13] (also known as the Randić index) is a famous degree-based topological index, which is commonly used to predict the physicochemical properties and biological activity of chemical compounds. For a graph G, the connectivity index is defined as

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d(u) d(v)}}
$$

The harmonic index [8], the sum-connectivity index [14], and the atom-bond-connectivity index [7] are among the successful variants of the connectivity index, and they are defined, respectively, as

$$
\begin{aligned}
H(G) & =\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)}, \\
S C I(G) & =\sum_{u v \in E(G)} \frac{1}{\sqrt{d(u)+d(v)}}, \quad \text { and } \\
A B C(G) & =\sum_{u v \in E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u) d(v)}} .
\end{aligned}
$$

Inspired by these indices, Ali et al. [3] introduced a new connectivity index, namely the atom-bond sum-connectivity index (ABS index, for short), which is defined as

$$
A B S(G)=\sum_{u v \in E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u)+d(v)}}=\sum_{u v \in E(G)} \sqrt{1-\frac{2}{d(u)+d(v)}}
$$

[^0]This new index has attracted the attention of scholars, which yield various results on this index, see for example [1, 2,4 , $5,9,10]$. In particular, extremal problems related to the ABS index form an interesting research topic, and such problems for trees, unicyclic graphs, chemical graphs, and general graphs were studied in [3, 4, $6,11,12,15]$.

In the present paper, an inequality between $A B S(L(G))$ and $A B S(G)$ is given, and the unique graph with the minimum ABS index among all line graphs of unicyclic graphs of fixed order is determined.

2. Preliminaries

A path $P=x_{0} x_{1} \cdots x_{k}$ of a graph G with length $k \geq 1$ is said to be a 2 -extremal path if $d\left(x_{1}\right)=\cdots=d\left(x_{k-1}\right)=2$ for $k \geq 2$, $d\left(x_{0}\right) \neq 2$, and $d\left(x_{k}\right) \neq 2$. In particular, P is called pendant if $d\left(x_{0}\right)=1$ or $d\left(x_{k}\right)=1$. Let $E n d_{3}(P)$ be the set of end vertices of a 2-extremal path P with degree at least 3 in G. Clearly, $1 \leq\left|E n d_{3}(P)\right| \leq 2$. Moreover, we use \mathcal{P} to denote the set of all 2-extremal paths in G.

Lemma 2.1 (see [4]). Among all unicyclic graphs of order $n \geq 3$, the cycle C_{n} uniquely attains the minimum value of the $A B S$ index.

Lemma 2.2 (see [3]). Among all connected graphs of order $n \geq 4$, the path P_{n} uniquely attains the minimum value of the $A B S$ index, and the complete graph K_{n} uniquely attains the maximum value of the $A B S$ index.

It is easy to see that $L\left(P_{n}\right)=P_{n-1}$ and $L\left(S_{n}\right)=K_{n-1}$ for $n \geq 3$. By Lemma 2.2, we obtain the following result.
Proposition 2.1. If T_{n} is a tree of order n, then

$$
A B S\left(L\left(P_{n}\right)\right) \leq A B S\left(L\left(T_{n}\right)\right) \leq A B S\left(L\left(S_{n}\right)\right),
$$

with the left equality if and only if $T_{n} \cong P_{n}$, whereas the right equality holds if and only if $T_{n} \cong S_{n}$.

3. Main results

Lemma 3.1. For a vertex x of a connected graph G of order n with $d(x) \geq 3$,

$$
\sum_{y \in N(x)} \sqrt{1-\frac{2}{d(x)+d(y)}} \leq \sum_{e, f \in I(x)} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}},
$$

with equality if and only if $G \cong S_{4}$, and x is the center of S_{4}.
Proof. Let $N(x)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and $t=d(x)$. For convenience, we take $e_{j}=x x_{j}$ for j satisfying $1 \leq j \leq t$ and we write $d_{L}(e)$ instead of $d_{L(G)}(e)$ for every $e \in E(G)$. Without loss of generality, we assume that $d\left(x_{1}\right) \leq d\left(x_{2}\right) \leq \ldots \leq d\left(x_{t}\right)$. Since $t \geq 3$, we have

$$
\sqrt{1-\frac{2}{d_{L}\left(e_{1}\right)+d_{L}\left(e_{j}\right)}}=\sqrt{1-\frac{2}{2 d(x)+d\left(x_{1}\right)+d\left(x_{j}\right)-4}} \geq \sqrt{1-\frac{2}{d(x)+d\left(x_{j}\right)}}
$$

for every $j \in\{2, \ldots, t\}$. Also, we have

$$
\sqrt{1-\frac{2}{d_{L}\left(e_{t-1}\right)+d_{L}\left(e_{t}\right)}}=\sqrt{1-\frac{2}{2 d(x)+d\left(x_{t-1}\right)+d\left(x_{t}\right)-4}} \geq \sqrt{1-\frac{2}{d(x)+d\left(x_{1}\right)}} .
$$

Now, the desired result follows from the last two inequalities.
Lemma 3.2. Let G be a connected graph not isomorphic to the path graph. If $P \in \mathcal{P}$, then

$$
\begin{equation*}
\sum_{x y \in E(P) ; x, y \notin E n d_{3}(P)} \sqrt{1-\frac{2}{d(x)+d(y)}} \leq \sum_{\substack{e f \in E(L(G)) \\ e, f \in E(P)}} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}} \tag{1}
\end{equation*}
$$

Proof. If the length of P is less than 2 then the result trivially holds. Thus, we assume that P has a length of at least 2 . Since G is not a path, P can be labeled as $x_{0} x_{1} \ldots x_{k}$, where $d\left(x_{0}\right) \geq 3$. Let $e_{i}=x_{i-1} x_{i}$ for $i \in\{1, \ldots, k\}$. Hence, to prove (1), it is sufficient to prove

$$
\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d\left(x_{i}\right)+d\left(x_{i+1}\right)}} \leq \sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d_{L}\left(e_{i}\right)+d_{L}\left(e_{i+1}\right)}} \quad \text { if } d\left(x_{k}\right)=1
$$

$$
\sum_{i=1}^{k-2} \sqrt{1-\frac{2}{d\left(x_{i}\right)+d\left(x_{i+1}\right)}} \leq \sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d_{L}\left(e_{i}\right)+d_{L}\left(e_{i+1}\right)}} \quad \text { if } d\left(x_{k}\right) \geq 3 .
$$

First, we consider the case when $d\left(x_{k}\right)=1$. Since $d\left(x_{1}\right)=d\left(x_{2}\right)=\ldots=d\left(x_{k-1}\right)=2$, we have

$$
\begin{equation*}
\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d\left(x_{i}\right)+d\left(x_{i+1}\right)}}=\frac{\sqrt{2}(k-2)}{2}+\frac{\sqrt{3}}{3} \tag{2}
\end{equation*}
$$

and

$$
\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d_{L}\left(e_{i}\right)+d_{L}\left(e_{i+1}\right)}}= \begin{cases}\sqrt{1-\frac{2}{d\left(x_{0}\right)+2}}+\frac{\sqrt{2}(k-3)}{2}+\frac{\sqrt{3}}{3} & \text { if } k \geq 3 \tag{3}\\ \sqrt{1-\frac{2}{d\left(x_{0}\right)+1}} & \text { if } k=2\end{cases}
$$

Subtracting (2) from (3) yields an equation whose right-hand side is given as follows:

$$
\left\{\begin{array}{l}
\sqrt{1-\frac{2}{d\left(x_{0}\right)+2}}-\frac{\sqrt{2}}{2} \text { if } k \geq 3 \tag{4}\\
\sqrt{1-\frac{2}{d\left(x_{0}\right)+1}}-\frac{\sqrt{3}}{3} \quad \text { if } k=2
\end{array}\right.
$$

Since $d\left(x_{0}\right) \geq 3$, by (4), we have

$$
\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d_{L}\left(e_{i}\right)+d_{L}\left(e_{i+1}\right)}}-\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d\left(x_{i}\right)+d\left(x_{i+1}\right)}} \geq 0
$$

Next, we consider the case when $d\left(x_{k}\right) \geq 3$. Since $d\left(x_{1}\right)=d\left(x_{2}\right)=\cdots=d\left(x_{k-1}\right)=2$, we have

$$
\begin{equation*}
\sum_{i=1}^{k-2} \sqrt{1-\frac{2}{d\left(x_{i}\right)+d\left(x_{i+1}\right)}}=\frac{\sqrt{2}(k-2)}{2} \tag{5}
\end{equation*}
$$

and

$$
\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d_{L}\left(e_{i}\right)+d_{L}\left(e_{i+1}\right)}}= \begin{cases}\sqrt{1-\frac{2}{d\left(x_{0}\right)+2}}+\sqrt{1-\frac{2}{d\left(x_{k}\right)+2}}+\frac{\sqrt{2}(k-3)}{2} & \text { if } k \geq 3 \tag{6}\\ \sqrt{1-\frac{2}{d\left(x_{0}\right)+d\left(x_{k}\right)}} & \text { if } k=2\end{cases}
$$

Subtracting (5) from (6) gives an equation whose right-hand side is given as follows:

$$
\begin{cases}\sqrt{1-\frac{2}{d\left(x_{0}\right)+2}}+\sqrt{1-\frac{2}{d\left(x_{k}\right)+2}}-\frac{\sqrt{2}}{2} & \text { if } k \geq 3 \\ \sqrt{1-\frac{2}{d\left(x_{0}\right)+d\left(x_{k}\right)}} & \text { if } k=2\end{cases}
$$

Since $d\left(x_{0}\right) \geq 3$, we have

$$
\sum_{i=1}^{k-1} \sqrt{1-\frac{2}{d_{L}\left(e_{i}\right)+d_{L}\left(e_{i+1}\right)}}-\sum_{i=1}^{k-2} \sqrt{1-\frac{2}{d\left(x_{i}\right)+d\left(x_{i+1}\right)}} \geq 0
$$

This completes the proof.
Theorem 3.1. Let G be a connected graph not isomorphic to the path graph. If $P \in \mathcal{P}$, then

$$
A B S(L(G)) \geq \begin{cases}A B S(G) & \text { if } \delta \leq 2, \\ 2 A B S(G) & \text { if } \delta \geq 3\end{cases}
$$

Proof. Observe that

$$
A B S(G)=\sum_{x y \in E(G)} \sqrt{1-\frac{2}{d(x)+d(y)}}=\frac{1}{2} \sum_{x \in V(G)} \sum_{y \in N(x)} \sqrt{1-\frac{2}{d(x)+d(y)}},
$$

and

$$
A B S(L(G))=\sum_{x \in V(G)} \sum_{e, f \in I(x)} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}}
$$

By Lemma 3.1, we have

$$
\sum_{y \in N(x)} \sqrt{1-\frac{2}{d(x)+d(y)}} \leq \sum_{e, f \in I(x)} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}}
$$

for each $x \in V(G)$ with $d(x) \geq 3$. Summing up the above facts, we conclude that $A B S(L(G)) \geq 2 A B S(G)$ if $\delta \geq 3$. Next, we consider the case when $\delta \leq 2$. If $G \cong C_{n}$, then $L(G) \cong C_{n}$ and thus $A B S(L(G))=A B S(G)$. Also, note that

$$
A B S(G)=\sum_{\substack{x \in V(G) \\ d(x) \geq 3}}\left(\sum_{y \in N(x)} \sqrt{1-\frac{2}{d(x)+d(y)}}\right)+\sum_{P \in \mathcal{P}}\left(\sum_{x y \in E\left(P \backslash E n d_{3}(P)\right)} \sqrt{1-\frac{2}{d(x)+d(y)}}\right)
$$

and

$$
A B S(L(G))=\sum_{\substack{x \in V(G) \\ d(x) \geq 3}}\left(\sum_{e, f \in I(x)} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}}\right)+\sum_{P \in \mathcal{P}}\left(\sum_{\substack{e f \in E(L(G)) \\ e, f \in E(P)}} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}}\right)
$$

For each $x \in V(G)$ with $d(x) \geq 3$, by Lemma 3.1, we have

$$
\sum_{y \in N(x)} \sqrt{1-\frac{2}{d(x)+d(y)}} \leq \sum_{e, f \in I(x)} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}}
$$

For $P \in \mathcal{P}$, by Lemma 3.2, we have

$$
\sum_{x y \in E\left(P \backslash E n d_{3}(P)\right)} \sqrt{1-\frac{2}{d(x)+d(y)}} \leq \sum_{\substack{e f \in E(L(G)) \\ e, f \in E(p)}} \sqrt{1-\frac{2}{d_{L}(e)+d_{L}(f)}}
$$

Combining the above-mentioned facts, we conclude that $A B S(L(G)) \geq A B S(G)$ if $\delta \leq 2$.
Corollary 3.1. Let U_{n} be a unicyclic graph of order n. Then

$$
A B S\left(L\left(U_{n}\right)\right) \geq A B S\left(L\left(C_{n}\right)\right)
$$

with equality if and only if $U_{n} \cong C_{n}$.
Proof. Since $\delta\left(U_{n}\right) \leq 2$, by Lemma 2.1 and Theorem 3.1, we have

$$
A B S\left(L\left(U_{n}\right)\right) \geq A B S\left(U_{n}\right) \geq A B S\left(C_{n}\right)=A B S\left(L\left(C_{n}\right)\right)
$$

where the equation $A B S\left(L\left(U_{n}\right)\right)=A B S\left(L\left(C_{n}\right)\right)$ holds if and only if $U_{n} \cong C_{n}$.

Acknowledgements

The authors are grateful to the referees for their valuable comments and suggestions which lead to a great improvement of this paper. This work was supported by the National Natural Science Foundation of China (Grant Number 12261074).

References

[1] A. M. Albalahi, Z. Du, A. Ali, On the general atom-bond sum-connectivity index, AIMS Math. 8 (2023) 23771-23785.
[2] A. M. Albalahi, E. Milovanović, A. Ali, General atom-bond sum-connectivity index of graphs, Mathematics 11 (2023) \#2494.
[3] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem. 60 (2022) 2081-2093.
[4] A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math. 5 (2023) 1-7.
[5] A. Ali, I. Gutman, I. Redžepović, J. P. Mazorodze, A. M. Albalahi, A. E. Hamza, On the difference of atom-bond sum-connectivity and atom-bond-connectivity indices, arXiv:2309.13689 [math.CO], (2023); MATCH Commun. Math. Comput. Chem., In press.
[6] T. A. Alraqad, I. Ž. Milovanović, H. Saber, A. Ali, J. P. Mazorodze, A. A. Attiya, Minimum atom-bond sum-connectivity index of trees with a fixed order and/or number of pendent vertices, arXiv:2211.05218v3 [math.CO], (2023); AIMS Math., In press.
[7] E. Estrada, L. Torres, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. Sect. A 37 (1998) $849-855$.
[8] S. Fajtlovicz, On conjectures on Graffiti-II, Congr. Numer. 60 (1987) 187-197.
[9] Z. Hussain, H. Liu, S. Zhang, H. Hua, Bounds for the atom-bond sum-connectivity index of graphs, Research Square, (2023), DOI: 10.21203/rs.3.rs-3353933/v1.
[10] A. Jahanbani, I. Redzepović, On the generalized ABS index of graphs, Filomat 37 (2023) 10161-10169.
[11] V. Maitreyi, S. Elumalai, S. Balachandran, The minimum ABS index of trees with given number of pendent vertices, arXiv:2211.05177 [math.CO], (2022).
[12] S. Noureen, A. Ali, Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves, Discrete Math. Lett. 12 (2023) $26-28$.
[13] M. Randić, Characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609-6615.
[14] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.
[15] X. Zuo, A. Jahanbani, H. Shooshtari, On the atom-bond sum-connectivity index of chemical graphs, J. Mol. Struct. 1296 (2024) \#136849.

[^0]: *Corresponding author (lnlinzhen@163.com).

