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Abstract

The recently introduced atom-bond sum-connectivity (ABS) index is receiving nowadays significant attention in chemical
graph theory. In this paper, an inequality between the ABS index of a graph and its line graph is established. As a
consequence of the obtained inequality, the unique graph with the minimum ABS index among all line graphs of unicyclic
graphs of fixed order is determined.
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1. Introduction

Let G = (V (G), E(G)) be a simple finite undirected graph of order n and of size m, where n = |V (G)| and m = |E(G)|. For
x ∈ V (G), we use dG(x) and NG(x) to denote the degree and the set of neighbors of x in G, respectively. The minimum
degree of G is denoted by δ(G). Let IG(x) = {xxi : xxi ∈ E(G) and xi ∈ NG(x)}. If there is no confusion, we simply denote
the above notation as d(x), N(x), I(x), and δ. A vertex x is said to be pendant vertex if d(x) = 1. As usual, Pn, Cn, Sn, Tn,
and Kn denote the path, cycle, star, tree, and complete graph of order n, respectively.

For a graphG, the line graph ofG, denoted by L(G), is a graph with V (L(G)) = E(G), in which two vertices are adjacent
if and only if they (being edges) are adjacent in G. A connected graph G is said to be a unicyclic graph if |V (G)| = |E(G)|.
Let Un denote the unicyclic graph of order n.

In mathematical chemistry, the connectivity index [13] (also known as the Randić index) is a famous degree-based
topological index, which is commonly used to predict the physicochemical properties and biological activity of chemical
compounds. For a graph G, the connectivity index is defined as

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.

The harmonic index [8], the sum-connectivity index [14], and the atom-bond-connectivity index [7] are among the successful
variants of the connectivity index, and they are defined, respectively, as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
,

SCI(G) =
∑

uv∈E(G)

1√
d(u) + d(v)

, and

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.

Inspired by these indices, Ali et al. [3] introduced a new connectivity index, namely the atom-bond sum-connectivity index
(ABS index, for short), which is defined as

ABS(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u) + d(v)
=

∑
uv∈E(G)

√
1−

2

d(u) + d(v)
.
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This new index has attracted the attention of scholars, which yield various results on this index, see for example [1, 2, 4,
5,9,10]. In particular, extremal problems related to the ABS index form an interesting research topic, and such problems
for trees, unicyclic graphs, chemical graphs, and general graphs were studied in [3,4,6,11,12,15].

In the present paper, an inequality between ABS(L(G)) and ABS(G) is given, and the unique graph with the minimum
ABS index among all line graphs of unicyclic graphs of fixed order is determined.

2. Preliminaries

A path P = x0x1 · · ·xk of a graph G with length k ≥ 1 is said to be a 2-extremal path if d(x1) = · · · = d(xk−1) = 2 for k ≥ 2,
d(x0) 6= 2, and d(xk) 6= 2. In particular, P is called pendant if d(x0) = 1 or d(xk) = 1. Let End3(P ) be the set of end vertices
of a 2-extremal path P with degree at least 3 in G. Clearly, 1 ≤ |End3(P )| ≤ 2. Moreover, we use P to denote the set of all
2-extremal paths in G.

Lemma 2.1 (see [4]). Among all unicyclic graphs of order n ≥ 3, the cycle Cn uniquely attains the minimum value of the
ABS index.

Lemma 2.2 (see [3]). Among all connected graphs of order n ≥ 4, the path Pn uniquely attains the minimum value of the
ABS index, and the complete graph Kn uniquely attains the maximum value of the ABS index.

It is easy to see that L(Pn) = Pn−1 and L(Sn) = Kn−1 for n ≥ 3. By Lemma 2.2, we obtain the following result.

Proposition 2.1. If Tn is a tree of order n, then

ABS(L(Pn)) ≤ ABS(L(Tn)) ≤ ABS(L(Sn)),

with the left equality if and only if Tn ∼= Pn , whereas the right equality holds if and only if Tn ∼= Sn.

3. Main results

Lemma 3.1. For a vertex x of a connected graph G of order n with d(x) ≥ 3,

∑
y∈N(x)

√
1−

2

d(x) + d(y)
≤

∑
e,f∈I(x)

√
1−

2

dL(e) + dL(f)
,

with equality if and only if G ∼= S4 , and x is the center of S4.

Proof. Let N(x) = {x1, x2, . . . , xt} and t = d(x). For convenience, we take ej = xxj for j satisfying 1 ≤ j ≤ t and we write
dL(e) instead of dL(G)(e) for every e ∈ E(G). Without loss of generality, we assume that d(x1) ≤ d(x2) ≤ . . . ≤ d(xt). Since
t ≥ 3, we have √

1−
2

dL(e1) + dL(ej)
=

√
1−

2

2d(x) + d(x1) + d(xj)− 4
≥

√
1−

2

d(x) + d(xj)

for every j ∈ {2, . . . , t}. Also, we have√
1−

2

dL(et−1) + dL(et)
=

√
1−

2

2d(x) + d(xt−1) + d(xt)− 4
≥

√
1−

2

d(x) + d(x1)
.

Now, the desired result follows from the last two inequalities.

Lemma 3.2. Let G be a connected graph not isomorphic to the path graph. If P ∈ P, then

∑
xy∈E(P ); x,y/∈End3(P )

√
1−

2

d(x) + d(y)
≤

∑
ef∈E(L(G))
e,f∈E(P )

√
1−

2

dL(e) + dL(f)
. (1)

Proof. If the length of P is less than 2 then the result trivially holds. Thus, we assume that P has a length of at least 2.
Since G is not a path, P can be labeled as x0x1 . . . xk, where d(x0) ≥ 3. Let ei = xi−1xi for i ∈ {1, . . . , k}. Hence, to prove
(1), it is sufficient to prove

k−1∑
i=1

√
1−

2

d(xi) + d(xi+1)
≤

k−1∑
i=1

√
1−

2

dL(ei) + dL(ei+1)
if d(xk) = 1,
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k−2∑
i=1

√
1−

2

d(xi) + d(xi+1)
≤

k−1∑
i=1

√
1−

2

dL(ei) + dL(ei+1)
if d(xk) ≥ 3.

First, we consider the case when d(xk) = 1. Since d(x1) = d(x2) = . . . = d(xk−1) = 2, we have

k−1∑
i=1

√
1−

2

d(xi) + d(xi+1)
=

√
2(k − 2)

2
+

√
3

3
(2)

and

k−1∑
i=1

√
1−

2

dL(ei) + dL(ei+1)
=



√
1−

2

d(x0) + 2
+

√
2(k − 3)

2
+

√
3

3
if k ≥ 3,

√
1−

2

d(x0) + 1
if k = 2.

(3)

Subtracting (2) from (3) yields an equation whose right-hand side is given as follows:

√
1−

2

d(x0) + 2
−
√
2

2
if k ≥ 3,

√
1−

2

d(x0) + 1
−
√
3

3
if k = 2.

(4)

Since d(x0) ≥ 3, by (4), we have

k−1∑
i=1

√
1−

2

dL(ei) + dL(ei+1)
−

k−1∑
i=1

√
1−

2

d(xi) + d(xi+1)
≥ 0.

Next, we consider the case when d(xk) ≥ 3. Since d(x1) = d(x2) = · · · = d(xk−1) = 2, we have

k−2∑
i=1

√
1−

2

d(xi) + d(xi+1)
=

√
2(k − 2)

2
(5)

and

k−1∑
i=1

√
1−

2

dL(ei) + dL(ei+1)
=



√
1−

2

d(x0) + 2
+

√
1−

2

d(xk) + 2
+

√
2(k − 3)

2
if k ≥ 3,

√
1−

2

d(x0) + d(xk)
if k = 2.

(6)

Subtracting (5) from (6) gives an equation whose right-hand side is given as follows:

√
1−

2

d(x0) + 2
+

√
1−

2

d(xk) + 2
−
√
2

2
if k ≥ 3,

√
1−

2

d(x0) + d(xk)
if k = 2.

Since d(x0) ≥ 3, we have
k−1∑
i=1

√
1−

2

dL(ei) + dL(ei+1)
−

k−2∑
i=1

√
1−

2

d(xi) + d(xi+1)
≥ 0.

This completes the proof.

Theorem 3.1. Let G be a connected graph not isomorphic to the path graph. If P ∈ P, then

ABS(L(G)) ≥

ABS(G) if δ ≤ 2,

2ABS(G) if δ ≥ 3.
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Proof. Observe that

ABS(G) =
∑

xy∈E(G)

√
1−

2

d(x) + d(y)
=

1

2

∑
x∈V (G)

∑
y∈N(x)

√
1−

2

d(x) + d(y)
,

and

ABS(L(G)) =
∑

x∈V (G)

∑
e,f∈I(x)

√
1−

2

dL(e) + dL(f)
.

By Lemma 3.1, we have ∑
y∈N(x)

√
1−

2

d(x) + d(y)
≤

∑
e,f∈I(x)

√
1−

2

dL(e) + dL(f)

for each x ∈ V (G) with d(x) ≥ 3. Summing up the above facts, we conclude that ABS(L(G)) ≥ 2ABS(G) if δ ≥ 3. Next, we
consider the case when δ ≤ 2. If G ∼= Cn, then L(G) ∼= Cn and thus ABS(L(G)) = ABS(G). Also, note that

ABS(G) =
∑

x∈V (G)
d(x)≥3

 ∑
y∈N(x)

√
1−

2

d(x) + d(y)

+
∑
P∈P

 ∑
xy∈E(P\End3(P ))

√
1−

2

d(x) + d(y)


and

ABS(L(G)) =
∑

x∈V (G)
d(x)≥3

 ∑
e,f∈I(x)

√
1−

2

dL(e) + dL(f)

+
∑
P∈P

 ∑
ef∈E(L(G))
e,f∈E(P )

√
1−

2

dL(e) + dL(f)

 .

For each x ∈ V (G) with d(x) ≥ 3, by Lemma 3.1, we have

∑
y∈N(x)

√
1−

2

d(x) + d(y)
≤

∑
e,f∈I(x)

√
1−

2

dL(e) + dL(f)
.

For P ∈ P, by Lemma 3.2, we have

∑
xy∈E(P\End3(P ))

√
1−

2

d(x) + d(y)
≤

∑
ef∈E(L(G))
e,f∈E(p)

√
1−

2

dL(e) + dL(f)
.

Combining the above-mentioned facts, we conclude that ABS(L(G)) ≥ ABS(G) if δ ≤ 2.

Corollary 3.1. Let Un be a unicyclic graph of order n. Then

ABS(L(Un)) ≥ ABS(L(Cn))

with equality if and only if Un
∼= Cn.

Proof. Since δ(Un) ≤ 2, by Lemma 2.1 and Theorem 3.1, we have

ABS(L(Un)) ≥ ABS(Un) ≥ ABS(Cn) = ABS(L(Cn)),

where the equation ABS(L(Un)) = ABS(L(Cn)) holds if and only if Un
∼= Cn.
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