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Abstract

For trees with given number of vertices n and maximum degree ∆, we present lower bounds on the general sum-connectivity
indexχa if a > 0 and 3 ≤ ∆ ≤ n−1, and an upper bound on the general Randić indexRa if−0.283 ≤ a < 0 and 3 ≤ ∆ ≤ bn−1

2
c.

All the extremal trees for our bounds are given.
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1. Introduction

For a graph G, let V (G) and E(G) be the set of vertices and edges, respectively. The order of G is the number of vertices
of G. The degree dG(v) of a vertex v ∈ V (G) is the number of edges incident with v. The maximum degree ∆ of G is the
degree of a vertex which has the largest degree in G. A pendant path of G is a path whose one end vertex has degree 1 in
G, the other end vertex has degree at least 3 in G and all the internal vertices have degree 2 in G. A tree is a connected
graph which does not contain cycles. A leaf is a vertex having degree one.

Indices of graphs are studied because of their wide applications, especially in chemistry. The general sum-connectivity
index of a graph G was introduced by Zhou and Trinajstić [12]. For a ∈ R, it is defined as

χa(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]a.

For a ∈ R, the general Randić index
Ra(G) =

∑
uv∈E(G)

[dG(u) dG(v)]a

of a graphGwas first investigated by Bollobás and Erdős [4] in 1998. Extremal results on χa andRa can be found in survey
papers [3] and [9], respectively. General indices were investigated also in [2], [5] and [10]. We study trees with given order
n and maximum degree ∆. We introduce families of trees which have extremal χa and Ra among trees with prescribed n
and ∆.

For 3 ≤ ∆ ≤ n − 1, let Xn,∆ be a set of trees such that every tree in Xn,∆ has order n and contains exactly one vertex
of degree greater than 2 which is an end vertex of ∆ pendant paths. Note that the sum of the lengths of those ∆ pendant
paths is n − 1, since every tree of order n has n − 1 edges. Trees in X ′n,∆ satisfy one additional condition that if all the ∆

pendant paths of a tree T from Xn,∆ have length at least 2, then T belongs to the set X ′n,∆. So X ′n,∆ ⊆ Xn,∆.
We denote a tree in Xn,∆ whose ∆− 1 pendant paths have length 1 (and the last pendant path has length n−∆ + 1) by

Bn,∆; see Figure 1.
Let dn−1

2 e ≤ ∆ ≤ n− 1 where ∆ ≥ 3. We denote a tree in Xn,∆ which contains 2∆−n+ 1 pendant paths of length 1 and
n−∆− 1 pendant paths of length 2 by S?n,∆; see Figure 2.

For dn2 e ≤ ∆ ≤ n − 2, the double star S∆,n−∆ is a tree with n − 2 leaves and two other vertices u and v, where
uv ∈ E(S∆,n−∆), u is adjacent to ∆− 1 leaves and v is adjacent to n−∆− 1 leaves; see Figure 3.

Let us present extremal results on χa for trees with given order n and maximum degree ∆. Raza et al. [8] showed that
for dn2 e ≤ ∆ ≤ n− 2, the tree S∆,n−∆ has the smallest χa if a < 0, the tree S∆,n−∆ also has the largest χa if a > 1, the tree
Bn,∆ has the smallest χa if a > 1, and S?n,∆ has the largest χa if a < 0. The extremal tree S?n,∆ was found also by Jamil and
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n− ∆ + 1

∆ − 1

Figure 1: Tree Bn,∆.

2∆ − n + 1 n− ∆ − 1

Figure 2: Tree S?n,∆.

∆ − 1 n− ∆ − 1

Figure 3: Tree S∆,n−∆.

Tomescu [6] who showed that for −1.703 ≤ a < 0, the tree S?n,∆ has the largest χa if n2 ≤ ∆ ≤ n− 1 and trees in X ′n,∆ have
the largest χa if 2 ≤ ∆ ≤ n−1

2 . The same results for −1 ≤ a < 0 were given in [1].
We show that for 3 ≤ ∆ ≤ n− 1, the tree Bn,∆ has the smallest χa if a > 1, and every tree in Xn,∆ has the smallest χa

if a = 1. We also prove that for 0 < a < 1, the tree S?n,∆ has the smallest χa if dn−1
2 e ≤ ∆ ≤ n− 1, and every tree in the set

X ′n,∆ has the smallest χa if 3 ≤ ∆ ≤ bn−1
2 c.

Liu, Yan and Yan [7] showed that for dn2 e ≤ ∆ ≤ n − 2, the tree S?n,∆ has the largest Ra if a < 0, the tree S∆,n−∆ has
the largest Ra if a ≥ 1, and S∆,n−∆ also has the smallest Ra if a < 0. Moreover, Bn,∆ has the smallest Ra for a > 0 and
3 ≤ ∆ ≤ n− 1.

We prove that every tree in the set X ′n,∆ has the largest Ra for −0.283 ≤ a < 0 and 3 ≤ ∆ ≤ bn−1
2 c. Our results and all

the known trees with given n and ∆ having the smallest and largest χa and Ra are presented in tables in Section 3.

2. Results

First, we present a few lemmas.

Lemma 2.1. Let c, p, r, x ∈ R where c, p, r > 0 and {p, r} 6= {1}. Then the function gc,p,r(x) = c px + rx is strictly convex.

Proof. The second derivative g′′c,p,r(x) = (ln p)2c px + (ln r)2rx > 0, thus gc,p,r(x) is strictly convex.

Lemma 2.2. We have

(i) 2(5x) + 3x − 3(4x) > 0 for x > 0,

(ii) 6x + 3x − 2(4x) > 0 for x > 0,

(iii) 2(6x) + 2x − 3(4x) < 0 for −0.283 ≤ x < 0,

(iv) 3(8x) + 2(2x)− 5(4x) < 0 for −0.584 ≤ x < 0,

(v) 10x + 2x − 2(4x) < 0 for −0.349 ≤ x < 0,

(vi) 4(10x) + 3(2x)− 7(4x) < 0 for −0.349 ≤ x < 0.

Proof. By Lemma 2.1, the functions

g2, 54 ,
3
4
(x) = 2

(
5

4

)x
+

(
3

4

)x
, g1, 32 ,

3
4
(x) =

(
3

2

)x
+

(
3

4

)x
, g2, 32 ,

1
2
(x) = 2

(
3

2

)x
+

(
1

2

)x
,

g 3
2 ,2,

1
2
(x) =

3

2
(2x) +

(
1

2

)x
and g1, 52 ,

1
2
(x) =

(
5

2

)x
+

(
1

2

)x
are strictly convex for x ∈ R.
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(i) We have g2, 54 ,
3
4
(−1) = 44

15 < 3 and g2, 54 ,
3
4
(0) = 3. Since g2, 54 ,

3
4
(x) is strictly convex, we get g2, 54 ,

3
4
(x) > 3 for x > 0. So

2
(

5
4

)x
+
(

3
4

)x
> 3, which means that 2(5x) + 3x > 3(4x) for x > 0.

(ii) We have g1, 32 ,
3
4
(−1) = g1, 32 ,

3
4
(0) = 2. Since g1, 32 ,

3
4
(x) is strictly convex, we get g1, 32 ,

3
4
(x) > 2 for x > 0. So

(
3
2

)x
+
(

3
4

)x
> 2,

which means that 6x + 3x > 2(4x) for x > 0.
(iii) We have g2, 32 ,

1
2
(−0.283)<3 and g2, 32 ,

1
2
(0)=3. Since g2, 32 ,

1
2
(x) is strictly convex, we get g2, 32 ,

1
2
(x)<3 for −0.283≤x<0.

So 2
(

3
2

)x
+
(

1
2

)x
< 3, which means that 2(3x) + 1x < 3(2x), and consequently 2(6x) + 2x − 3(4x) < 0 for −0.283 ≤ x < 0.

(iv) We have g 3
2 ,2,

1
2
(−0.584) < 5

2 and g 3
2 ,2,

1
2
(0) = 5

2 . Thus g 3
2 ,2,

1
2
(x) < 5

2 for −0.584 ≤ x < 0. So 3
2 (2x) +

(
1
2

)x
< 5

2 , which
means that 3(2x) + 2

(
1
2

)x − 5 < 0, and consequently 3(8x) + 2(2x)− 5(4x) < 0 for −0.584 ≤ x < 0.
(v) We get g1, 52 ,

1
2
(−0.349) < 2 and g1, 52 ,

1
2
(0) = 2, thus g1, 52 ,

1
2
(x) < 2 for −0.349 ≤ x < 0. So

(
5
2

)x
+
(

1
2

)x
< 2, which means

that 10x + 2x < 2(4x) for −0.349 ≤ x < 0.
(vi) For −0.349 ≤ x < 0, we obtain 4(10x) + 3(2x)− 7(4x) = 10x − 4x + 3[10x + 2x − 2(4x)] < 0 since 10x − 4x < 0 and by

(v), we have 10x + 2x − 2(4x) < 0.

Lemma 2.3 was presented in [11] and it is used in the proofs of Lemma 2.4, and Theorems 2.1 and 2.2.

Lemma 2.3. Let 1 ≤ x < y and c > 0. Then for a > 1 and a < 0,

(x+ c)a − xa < (y + c)a − ya.

For 0 < a < 1, we have
(x+ c)a − xa > (y + c)a − ya.

We prove that some extremal trees have only one vertex of degree greater than 2.

Lemma 2.4. Among trees of order n and maximum degree ∆, where 3 ≤ ∆ ≤ n− 1, let T ′ be a tree having the smallest χa
for a > 0 (the largest Ra for −0.283 ≤ a < 0). Then T ′ contains only one vertex of degree greater than 2.

Proof. Let T ′ be a tree having the smallest χa for a > 0 (the largest Ra for −0.283 ≤ a < 0). We prove Lemma 2.4 by
contradiction. Assume that T ′ contains at least two vertices of degree greater than 2. Let w be a vertex of degree ∆ in
T ′. Among vertices of T ′ having degree at least 3, let v be a vertex furthest from w. So dT ′(v) = x ≥ 3 where v 6= w. We
can denote the vertices adjacent to v in T ′ by v1, v2, . . . , vx where vx is the vertex on the path connecting w and v (possibly
vx = w). Note that v is an end vertex of x − 1 pendant paths. It follows that 1 ≤ dT ′(vi) ≤ 2 for i = 1, 2, . . . , x − 1. We
consider three cases.

Case 1: v is adjacent to x− 1 leaves.

So dT ′(v1) = dT ′(v2) = · · · = dT ′(vx−1) = 1. We define T1 with V (T1) = V (T ′) and

E(T1) = {v1v2, v2v3, . . . , vx−2vx−1} ∪ E(T ′) \ {vv2, vv3, . . . , vvx−1}.

Clearly, T1 is a tree of order n and maximum degree ∆. For χa, we have

χa(T1)− χa(T ′) = [dT1(v) + dT1(vx)]a − [dT ′(v) + dT ′(vx)]a + [dT1(v) + dT1(v1)]a

+

x−2∑
i=1

[dT1
(vi) + dT1

(vi+1)]a −
x−1∑
i=1

(dT ′(v) + dT ′(vi))
a

= [2 + dT1(vx)]a − [x+ dT ′(vx)]a + (2 + 2)a + [(x− 3)(2 + 2)a + (2 + 1)a]− (x− 1)(x+ 1)a

= [2 + dT ′(vx)]a − [x+ dT ′(vx)]a + 3a − (x+ 1)a + (x− 2)[4a − (x+ 1)a].

For x ≥ 3 and a > 0, we get

[2 + dT ′(vx)]a < [x+ dT ′(vx)]a, 3a < (x+ 1)a and 4a ≤ (x+ 1)a,

thus χa(T1)− χa(T ′) < 0 which means that χa(T1) < χa(T ′), so T ′ does not have the smallest χa, a contradiction.
For Ra, we have

Ra(T1)−Ra(T ′) = [dT1
(v)dT1

(vx)]a − [dT ′(v)dT ′(vx)]a + [dT1
(v)dT1

(v1)]a +

x−2∑
i=1

[dT1
(vi)dT1

(vi+1)]a −
x−1∑
i=1

(dT ′(v)dT ′(vi))
a

= [2 · dT ′(vx)]a − [x · dT ′(vx)]a + (2 · 2)a + [(x− 3)(2 · 2)a + (2 · 1)a]− (x− 1)(x · 1)a

> 2a − xa + (x− 2)(4a − xa).
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For x ≥ 4 and a < 0, we get 2a > xa and 4a ≥ xa, thus Ra(T1)−Ra(T ′) > 0. For x = 3 and a < 0, we have

Ra(T1)−Ra(T ′) > 2a − 3a + 4a − 3a > 0,

since by Lemma 2.3, we obtain 4a − 3a > 3a − 2a. Hence Ra(T1) > Ra(T ′), a contradiction

Case 2: v is adjacent to at least one leaf and at most x− 2 leaves.

Without the loss of generality, we can assume that dT ′(v1) = 1 and dT ′(v2) = 2. Let u be the leaf of T ′ which is on the
pendant path that contains v2. Let z be the vertex adjacent to u in T ′ (possibly z = v2). We define T2 with V (T2) = V (T ′)

and E(T2) = {uv1} ∪ E(T ′) \ {vv1}. Clearly, T2 is a tree of order n and maximum degree ∆. For χa, we obtain

χa(T2)− χa(T ′) = [dT2
(v1) + dT2

(u)]a − [dT ′(v1) + dT ′(v)]a + [dT2
(u) + dT2

(z)]a − [dT ′(u) + dT ′(z)]
a

+

x∑
i=2

([dT2
(v) + dT2

(vi)]
a − [dT ′(v) + dT ′(vi)]

a)

= (1 + 2)a − (1 + x)a + (2 + 2)a − (1 + 2)a +

x∑
i=2

([(x− 1) + dT ′(vi)]
a − [x+ dT ′(vi)]

a)

= 4a − (1 + x)a +

x∑
i=2

([x− 1 + dT ′(vi)]
a − [x+ dT ′(vi)]

a).

For x ≥ 3 and a > 0, we get 4a ≤ (1 + x)a and [x− 1 + dT ′(vi)]
a < [x+ dT ′(vi)]

a for each i = 2, 3, . . . , x, thus χa(T2) < χa(T ′),
a contradiction.

For Ra, we obtain

Ra(T2)−Ra(T ′) = [dT2(v1)dT2(u)]a − [dT ′(v1)dT ′(v)]a + [dT2(u)dT2(z)]a − [dT ′(u)dT ′(z)]
a

+

x∑
i=2

([dT2
(v)dT2

(vi)]
a − [dT ′(v)dT ′(vi)]

a)

= (1 · 2)a − (1 · x)a + (2 · 2)a − (1 · 2)a +

x∑
i=2

([(x− 1)dT ′(vi)]
a − [x · dT ′(vi)]a)

= 4a − xa +

x∑
i=2

([(x− 1)dT ′(vi)]
a − [x dT ′(vi)]

a).

For x ≥ 4 and a < 0, we get 4a ≥ xa and [(x− 1)dT ′(vi)]
a > [x dT ′(vi)]

a for each i = 2, 3, . . . , x, thus Ra(T2)−Ra(T ′) > 0.
For x = 3 and −0.283 ≤ a < 0, we obtain

Ra(T2)−Ra(T ′) = 4a − 3a + [2 dT ′(v2)]a − [3 dT ′(v2)]a + [2 dT ′(v3)]a − [3 dT ′(v3)]a

= 4a − 3a + (2 · 2)a − (3 · 2)a + [2dT ′(v3)]a − [3dT ′(v3)]a

> 2(4a)− 3a − 6a.

We have
2(4a)− 3a − 6a = [3(4a)− 2a − 2(6a)] + (2a − 3a)(1− 2a) > 0,

since 2a − 3a > 0, 1− 2a > 0 and by Lemma 2.2 (iii), 3(4a)− 2a − 2(6a) > 0. Hence Ra(T2) > Ra(T ′), a contradiction.

Case 3: v is not adjacent to a leaf.

So dT ′(v1) = dT ′(v2) = · · · = dT ′(vx−1) = 2. Let S be the sum of lengths of the x − 1 pendant paths with an end vertex v.
We replace those x− 1 pendant paths by one path of length S to obtain a new tree T3 from T ′. So dT3(v) = 2. Clearly, T3 is
a tree of order n and maximum degree ∆. For χa, we obtain

χa(T ′)− χa(T3) = [x+ dT ′(vx)]a − [2 + dT3(vx)]a + (x− 1)(x+ 2)a + (x− 2)(2 + 1)a − (2x− 3)(2 + 2)a

> (x− 1)(x+ 2)a + (x− 2)3a − (2x− 3)4a,

since x ≥ 3 and dT ′(vx) = dT3(vx).
For x = 3 and a > 0, by Lemma 2.2 (i), we obtain

χa(T ′)− χa(T3) > 2(5a) + 3a − 3(4a) > 0.
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For x ≥ 4 and a > 0, we have

χa(T ′)− χa(T3) > (x− 1)(x+ 2)a + (x− 2)3a − (2x− 3)4a

= (x− 1)[(x+ 2)a + 3a − 2(4a)] + 4a − 3a

> (x− 1)[6a + 3a − 2(4a)],

since 4a > 3a and (x+ 2)a ≥ 6a. By Lemma 2.2 (ii), we have

χa(T ′)− χa(T3) > (x− 1)[2(4a)− 6a − 3a] > 0,

hence χa(T ′) > χa(T3), a contradiction
For Ra, we obtain

Ra(T ′)−Ra(T3) = [x · dT ′(vx)]a − [2 · dT3
(vx)]a + (x− 1)(2 · x)a + (x− 2)(2 · 1)a − (2x− 3)(2 · 2)a

< (x− 1)(2x)a + (x− 2)2a − (2x− 3)4a,

since x ≥ 3 and dT ′(vx) = dT3
(vx).

For x = 3 and −0.283 ≤ a < 0, by Lemma 2.2 (iii), we obtain

Ra(T ′)−Ra(T3) < 2(6a) + 2a − 3(4a) < 0.

For x = 4, by Lemma 2.2 (iv), we obtain

Ra(T ′)−Ra(T3) < 3(8a) + 2(2a)− 5(4a) < 0.

For x = 5, by Lemma 2.2 (vi), we obtain

Ra(T ′)−Ra(T3) < 4(10a) + 3(2a)− 7(4a) < 0.

Let us consider the function
f(x) = (x− 1)(2x)a + (x− 2)2a − (2x− 3)4a

for x ≥ 5. Note that f(5) < 0. We have

f ′(x) = (2x)a + (x− 1)(2)aaxa−1 + 2a − 2(4a)

< (2x)a + 2a − 2(4a)

≤ 10a + 2a − 2(4a)

which is less than 0 by Lemma 2.2 (v). Since f ′(x) < 0 for x ≥ 5, the function f(x) is strictly decreasing which means that
f(x) < f(5) for x ≥ 6. So Ra(T ′)−Ra(T3) < f(x) < f(5) < 0 for x ≥ 6. Hence Ra(T ′) < Ra(T3) for every x ≥ 3, which means
that T ′ does not have the largest Ra, a contradiction.

We use Lemma 2.5 in the proof of Theorem 2.1 (iii).

Lemma 2.5. Let x ≥ 1 and a < 0. Then the function f(x) = (2x)a − xa is strictly increasing.

Proof. We get f ′(x) = (2a − 1)axa−1. For a < 0, we have 2a − 1 < 0 and xa−1 > 0. So f ′(x) > 0. Thus f(x) is strictly
increasing.

In Theorem 2.1, we present the main results of this paper.

Theorem 2.1. Let T be any tree of order n and maximum degree ∆ ≥ 3. Then

(i) χa(T ) ≥ (n−∆− 1)[(∆ + 2)a + 3a] + (2∆− n+ 1)(∆ + 1)a if dn−1
2 e ≤ ∆ ≤ n− 1 and 0 < a < 1,

(ii) χa(T ) ≥ ∆[(∆ + 2)a + 3a] + (n− 2∆− 1)4a if 3 ≤ ∆ ≤ bn−1
2 c and 0 < a < 1,

(iii) Ra(T ) ≤ ∆[(2∆)a + 2a] + (n− 2∆− 1)4a if 3 ≤ ∆ ≤ bn−1
2 c and −0.283 ≤ a < 0.

The equality in (i) holds if and only if T is S?n,∆. The equalities in (ii) and (iii) hold if and only if T is in the set X ′n,∆.
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Proof. Among trees of order n and maximum degree ∆, let T ′ be a tree having the smallest χa for 0 < a < 1 and 3 ≤ ∆ ≤ n−1

(the largest Ra for −0.283 ≤ a < 0 and 3 ≤ ∆ ≤ n−1
2 ). Let w be a vertex of degree ∆ in T ′. By Lemma 2.4, every vertex

different from w has degree at most 2 in T ′. So, T ′ is in Xn,∆.

Claim 1. All pendant paths of T ′ either have length at least 2 or they have length at most 2.

Assume to the contrary that T ′ contains a pendant path of length 1 and a pendant path of length p ≥ 3. We replace those
two pendant paths by pendant paths of lengths 2 and p− 1 to obtain a new tree T1 from T ′. For χa, we obtain

χa(T1)− χa(T ′) = (∆ + 2)a − (∆ + 1)a + 3a − 4a < 0,

since for 0 < a < 1, by Lemma 2.3, (∆ + 2)a − (∆ + 1)a < 4a − 3a. So χa(T1) < χa(T ′), a contradiction.
For Ra, we obtain

Ra(T1)−Ra(T ′) = (2∆)a −∆a + 2a − 4a > 0,

since for −0.283 ≤ a < 0, by Lemma 2.5, we have (2∆)a − ∆a > 4a − 2a. Thus Ra(T1) > Ra(T ′), so T ′ does not have the
largest Ra, which is a contradiction. The proof of Claim 1 is complete.

(i) Let dn−1
2 e ≤ ∆ ≤ n − 1. Then, clearly also n−1

2 ≤ ∆ holds, which means that n ≤ 2∆ + 1. Then no pendant path of
T ′ has length greater than 2 (otherwise if T ′ contains a pendant path of length at least 3, then by Claim 1, all the other
∆− 1 pendant paths have length at least 2, and then T ′ would have at least 2∆ + 2 vertices which contradicts the fact that
n ≤ 2∆ + 1). So, each of the ∆ pendant paths has length 1 or 2.

Let k be the number of vertices of degree 2 adjacent to w. Then w is adjacent to ∆ − k leaves which implies that
n = 1 + 2k + (∆− k) = 1 + k + ∆ and consequently k = n−∆− 1. So T ′ is S?n,∆ and

χa(S?n,∆) = k(∆ + 2)a + k(2 + 1)a + (∆− k)(∆ + 1)a

= (n−∆− 1)[(∆ + 2)a + 3a] + (2∆− n+ 1)(∆ + 1)a.

(ii) and (iii) Let 3 ≤ ∆ ≤ bn−1
2 c. Then also ∆ ≤ n−1

2 holds, which means that n ≥ 2∆ + 1. Then no pendant path of T ′
has length 1 (otherwise if T ′ contains a pendant path of length 1, then by Claim 1, all the other ∆− 1 pendant paths have
length 1 or 2, and then T ′ would have at most 2∆ vertices which contradicts the fact that n ≥ 2∆ + 1). So, each of the ∆

pendant paths has length at least 2 which means that T ′ is in the set X ′n,∆. Note that w is adjacent to ∆ vertices of degree
2, T ′ has ∆ leaves and n− 1− 2∆ edges with both end vertices of degree 2. Thus

χa(T ′) = ∆[(∆ + 2)a + 3a] + (n− 2∆− 1)4a

and
Ra(T ′) = ∆[(2∆)a + 2a] + (n− 2∆− 1)4a.

In Section 1, we mentioned that it was shown in [8] that Bn,∆ has the smallest χa for a > 1 and dn2 e ≤ ∆ ≤ n − 2. We
extend that result also for ∆ < dn2 e.

Theorem 2.2. Let T be any tree of order n and maximum degree ∆, where 3 ≤ ∆ ≤ n− 1. Then for a > 1,

χa(T ) ≥ (∆− 1)(∆ + 1)a + (∆ + 2)a + (n−∆− 2)4a + 3a

with equality if and only if T is Bn,∆.

Proof. Among trees of order n and maximum degree ∆, where 3 ≤ ∆ ≤ n − 1, let T ′ be a tree having the smallest χa for
a > 1. Let w be a vertex of degree ∆ in T ′. By Lemma 2.4, every vertex different from w has degree at most 2 in T ′. So, T ′
is in Xn,∆. We prove that T ′ is Bn,∆.

Assume to the contrary that T ′ is not Bn,∆. It follows that T ′ contains (at least) two pendant paths of lengths n1 ≥ 2

and n2 ≥ 2, respectively. We replace those two pendant paths by pendant paths of lengths 1 and n1 + n2 − 1 to obtain a
new tree T1 from T ′. We obtain

χa(T1)− χa(T ′) = (∆ + 1)a − (∆ + 2)a + 4a − 3a < 0,

since for a > 1, by Lemma 2.3, we have 4a − 3a < (∆ + 2)a − (∆ + 1)a. So χa(T1) < χa(T ′). Thus T ′ does not have the
smallest χa, a contradiction. Hence T ′ is Bn,∆ and

χa(Bn,∆) = (∆− 1)(∆ + 1)a + (∆ + 2)a + (n−∆− 2)4a + 3a.
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3. Conclusion

In Theorems 2.1 and 2.2, we presented lower bounds on χa for 0 < a < 1 and a > 1, respectively. It is easy to find extremal
trees for a = 1. By Lemma 2.4, a tree T ′ of order n and maximum degree ∆ (where 3 ≤ ∆ ≤ n − 1) with the smallest χa
contains only one vertex of degree greater than 2. So T ′ is in the set Xn,∆. Every tree in Xn,∆ has the degree sequence
(∆, 2, . . . , 2︸ ︷︷ ︸

n−∆−1

, 1, . . . , 1︸ ︷︷ ︸
∆

). Thus

χ1(T ′) =
∑

uv∈E(T ′)

[dT ′(u) + dT ′(v)]1 =
∑

v∈V (T ′)

[dT ′(v)]2 = ∆2 + (n−∆− 1)22 + ∆ · 12 = 4n+ ∆2 − 3∆− 4.

So, all the trees in Xn,∆ have the same χ1, therefore each of them is the extremal tree with the smallest χ1.
Let us present trees with the largest χ1. Since χ1(T ) =

∑
v∈V (T )[dT (v)]2, having two vertices with degrees x and y for

x ≤ y yields a smaller χ1 than having two vertices with degrees x − 1 and y + 1 in a tree T . Therefore, among trees with
given n and ∆ for dn2 e ≤ ∆ ≤ n− 2, a tree with the degree sequence

(∆, n−∆, 1, . . . , 1︸ ︷︷ ︸
n−2

)

has the largest χ1. The only tree with such a degree sequence is S∆,n−∆.
For every tree of order n ≥ 3 and maximum degree ∆, we have 2 ≤ ∆ ≤ n − 1. The only tree having maximum degree

2 is the path Pn and the only tree having maximum degree n − 1 is the star Sn, therefore we are interested in the case
3 ≤ ∆ ≤ n− 2. Known trees with the smallest and largest χa and Ra are presented in Tables 1 and 2. A bold text is used
for our new results. When a result holds for say 3 ≤ ∆ ≤ bn−1

2 c, we do not mention the lower bound on ∆ in our tables,
because that bound is obvious. Similarly, if an upper bound on ∆ is n− 2 or n− 1, we again do not mention it in the tables.

a trees with the smallest χa trees with the largest χa
(−∞, 0) tree S∆,n−∆ if dn2 e ≤ ∆ set X ′n,∆ if −1.703 ≤ a < 0 and ∆ ≤ bn−1

2 c

tree S?n,∆ if dn2 e ≤ ∆

(0, 1) set X′n,∆ if ∆ ≤ bn−1
2
c

tree S?
n,∆ if dn−1

2
e ≤ ∆

{1} set Xn,∆ tree S∆,n−∆ if dn
2
e ≤ ∆

(1,∞) tree Bn,∆ tree S∆,n−∆ if dn2 e ≤ ∆

Table 1: Trees having the smallest and largest χa among trees of order n and maximum degree ∆ for different intervals.

a trees with the smallest Ra trees with the largest Ra
(−∞, 0) tree S∆,n−∆ if dn2 e ≤ ∆ set X′n,∆ if −0.283 ≤ a < 0 and ∆ ≤ bn−1

2
c

tree S?n,∆ if dn−1
2 e ≤ ∆

(0, 1) tree Bn,∆
[1,∞) tree Bn,∆ tree S∆,n−∆ if dn2 e ≤ ∆

Table 2: Trees having the smallest and largest Ra among trees of order n and maximum degree ∆ for different intervals.

It is interesting that in some cases there is only one tree having the extremal index, and in some cases there is a set
of trees having the extremal index. To make this clearer, we included the words “tree” and “set” in the tables. Another
interesting observation is that Bn,∆ has the smallest Ra for every a > 0. On the other hand, our results on χa show that
there are several different trees having the smallest Ra in that interval (0,∞).

In Table 1, we can see that any tree inX ′n,∆ has the smallest χa if ∆ ≤ bn−1
2 c, and S?n,∆ has the smallest χa if dn−1

2 e ≤ ∆.
So, both results hold for ∆ = n−1

2 . It follows that if n is odd, then the only tree in X ′
n,n−1

2

is S?
n,n−1

2

.
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Let us note that the value a = 0 is not included in Tables 1 and 2, because trivially for every tree T , we have

χ0(T ) =
∑

uv∈E(T )

[dT (u) + dT (v)]0 =
∑

uv∈E(T )

1 = |E(T )| = n− 1

and
R0(T ) =

∑
uv∈E(T )

[dT (u) dT (v)]0 = n− 1.

So, it remains to solve the cases included in Problems 3.1 and 3.2.

Problem 3.1. Among trees of order n and maximum degree ∆, find trees having the smallest χa for

• a < 0 and ∆ ≤ bn−1
2 c,

and trees having the largest χa for

• a < −1.703 and ∆ ≤ bn−1
2 c,

• 0 < a < 1,

• a ≥ 1 and ∆ ≤ bn−1
2 c.

Problem 3.2. Among trees of order n and maximum degree ∆, find trees having the smallest Ra for

• a < 0 and ∆ ≤ bn−1
2 c,

and trees having the largest Ra for

• a < −0.283 and ∆ ≤ bn−1
2 c,

• 0 < a < 1,

• a ≥ 1 and ∆ ≤ bn−1
2 c.
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