Discrete Mathematics Letters Discrete Math. Lett. 12 (2023) 181-188
www.dmlett.com DOI: 10.47443/dml.2023.140

Research Article
General sum-connectivity index and general Randi¢ index of trees with given maximum
degree

Elize Swartz, Tomas Vetrik*

Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa
(Received: 28 August 2023. Received in revised form: 10 November 2023. Accepted: 13 November 2023. Published online: 11 December 2023.)

© 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For trees with given number of vertices n and maximum degree A, we present lower bounds on the general sum-connectivity
index x, ifa > 0and 3 < A < n—1, and an upper bound on the general Randi¢ index R, if —0.283 < a < 0and3 < A < L"T’lj
All the extremal trees for our bounds are given.
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1. Introduction

For a graph G, let V(G) and E(G) be the set of vertices and edges, respectively. The order of G is the number of vertices
of G. The degree d¢(v) of a vertex v € V(G) is the number of edges incident with v. The maximum degree A of G is the
degree of a vertex which has the largest degree in G. A pendant path of G is a path whose one end vertex has degree 1 in
G, the other end vertex has degree at least 3 in G and all the internal vertices have degree 2 in GG. A tree is a connected
graph which does not contain cycles. A leaf is a vertex having degree one.

Indices of graphs are studied because of their wide applications, especially in chemistry. The general sum-connectivity
index of a graph G was introduced by Zhou and Trinajsti¢ [12]. For a € R, it is defined as

Xa(@) = Y [de(w) +da ().

w€EE(G)

For a € R, the general Randi¢ index
R(G)= D lda(u)dg(v)®
weE(G)
of a graph G was first investigated by Bollobas and Erdés [4] in 1998. Extremal results on y, and R, can be found in survey
papers [3] and [9], respectively. General indices were investigated also in [2], [5] and [10]. We study trees with given order
n and maximum degree A. We introduce families of trees which have extremal y, and R, among trees with prescribed n
and A.

For 3 <A <n—1,let X,, o be a set of trees such that every tree in X,, » has order n and contains exactly one vertex
of degree greater than 2 which is an end vertex of A pendant paths. Note that the sum of the lengths of those A pendant
paths is n — 1, since every tree of order n has n — 1 edges. Trees in X, 5 satisfy one additional condition that if all the A
pendant paths of a tree 7' from X, A have length at least 2, then 7" belongs to the set X, 5. So X], A € X, a.

We denote a tree in X,, A whose A — 1 pendant paths have length 1 (and the last pendant path has length n — A +1) by
B, a; see Figure 1.

Let (”Tfl] < A <n—1where A > 3. We denote a tree in X,, » which contains 2A —n + 1 pendant paths of length 1 and
n — A — 1 pendant paths of length 2 by S ; see Figure 2.

For [4] < A < n — 2, the double star Sa,_a is a tree with n — 2 leaves and two other vertices v and v, where
uwv € E(San-na), uis adjacent to A — 1 leaves and v is adjacent to n — A — 1 leaves; see Figure 3.

Let us present extremal results on y, for trees with given order n and maximum degree A. Raza et al. [8] showed that
for [5] < A <n — 2, the tree Sx ,,_a has the smallest x, if a < 0, the tree Sa ,— also has the largest x, if a > 1, the tree
B, A has the smallest x, if a > 1, and S} A has the largest y, if a < 0. The extremal tree S}, , was found also by Jamil and
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Figure 1: Tree B, A.

2A —n+1 n—A-—1

Figure 2: Tree S A.

Figure 3: Tree Sa n—a.

Tomescu [6] who showed that for —1.703 < a < 0, the tree S;; , has the largest x, if § < A <n — 1 and trees in X, , have

the largest x, if 2 < A < "T_l The same results for —1 < a < 0 were given in [1].

We show that for 3 < A <n — 1, the tree B,, o has the smallest x, if a« > 1, and every tree in X,, A has the smallest x,
if a = 1. We also prove that for 0 < a < 1, the tree S}, , has the smallest x, if ["T_W < A <n -1, and every tree in the set

X, A has the smallest y, if 3 <A < |22 ).

Liu, Yan and Yan [7] showed that for [§] < A < n — 2, the tree RN has the largest R, if a < 0, the tree Sa ,—a has
the largest R, if a > 1, and Sa »,—a also has the smallest R, if a < 0. Moreover, B;,, o has the smallest R, for ¢ > 0 and

3<A<n-1.

We prove that every tree in the set X ;L A has the largest R, for —0.283 <a <0and3 <A < L"T‘lj. Our results and all

the known trees with given n and A having the smallest and largest x, and R, are presented in tables in Section 3.

2. Results

First, we present a few lemmas.

Lemma 2.1. Let c,p,r,x € Rwhere c,p,r > 0and {p,r} # {1}. Then the function g., ,(x) = cp” + r® is strictly convex.

1
cp,r

Proof. The second derivative g
Lemma 2.2. We have
(i) 2(5%) 4 3% — 3(4%) > 0 for = > 0,
(ii) 67 + 37 — 2(4%) > 0 for = > 0,
(iii) 2(6%) + 27 — 3(4%) < 0 for —0.283 < x < 0,
(iv) 3(8%) +2(2%) — 5(4%) < 0 for —0.584 < z < 0,
() 10° + 2% — 2(4%) < 0 for —0.349 < z < 0,
(vi) 4(10%) 4 3(27) — 7(4%) < 0 for —0.349 < z < 0.

Proof. By Lemma 2.1, the functions

92

o
wleo

are strictly convex for = € R.

(z) = (In p)*cp” + (In r)*r® > 0, thus g. , () is strictly convex.

=2 (2) 4 2) = () + (0 =
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(i) We have g, 5 3(—1) = # <3and 92,3,2(0) = 3. Since g, 5 3 (x) is strictly convex, we get g, 5 s(x) > 3 for z > 0. So
2(2)" + (2)" > 3, which means that 2(5%) + 37 > 3(4%) for z > 0.

(i) We have g; 3 s (—1) = g1,3 5 (0) = 2. Since g s s () is strictly convex, we get g, 5 s () > 2 forz > 0. So ) +(3)" > 2,
which means that 6* + 3% > 2(4%) for z > 0.

(iii) We have g, 5 1(—0.283) <3 and g, 3 1 (0)=3. Since g, 3 1 (x) is strictly convex, we get g, 3 1 (z) <3 for —0.283 <z <0.
So2(2)" + (3)” < 3, which means that 2(3%) + 1 < 3(27), and consequently 2(67) + 2% — 3(4%) < 0 for —0.283 < z < 0.

(iv) We have g3 , 1 (—0.584) < § and g3 5 1(0) = 3. Thus g3 5 1(z) < 5 for —0.584 <z < 0. So 5(27) + (1)* < 2, which
means that 3(27) +2 (3)” — 5 < 0, and consequently 3(8%) +2(2%) — 5(4%) < 0 for —0.584 < z < 0.

(v) We get g, 5 1(—0.349) < 2.and g, 5 1(0) = 2, thus g, 5 1 (v) < 2 for —0.349 <z < 0. So (3)" + (3)” < 2, which means
that 10° + 2% < 2(4%) for —0.349 < z < 0.

(vi) For —0.349 < x < 0, we obtain 4(10%) + 3(2%) — 7(4”) = 10" — 4® + 3[10” + 2* — 2(4")] < 0 since 10 — 4” < 0 and by
(v), we have 10* + 2% — 2(4*) < 0. O

Lemma 2.3 was presented in [11] and it is used in the proofs of Lemma 2.4, and Theorems 2.1 and 2.2.

Lemma 2.3. Let 1 <z <yandc>0. Then for a > 1and a <0,
(240 — 2% < (y+ )" — y".

For 0 < a < 1, we have
(z+0)* =2 > (y+c)" —y*

We prove that some extremal trees have only one vertex of degree greater than 2.

Lemma 2.4. Among trees of order n and maximum degree A, where 3 < A < n — 1, let T’ be a tree having the smallest x,
for a > 0 (the largest R, for —0.283 < a < 0). Then T’ contains only one vertex of degree greater than 2.

Proof. Let T’ be a tree having the smallest y, for a > 0 (the largest R, for —0.283 < a < 0). We prove Lemma 2.4 by
contradiction. Assume that 7’ contains at least two vertices of degree greater than 2. Let w be a vertex of degree A in
T’'. Among vertices of 7’ having degree at least 3, let v be a vertex furthest from w. So dy/(v) = x > 3 where v # w. We
can denote the vertices adjacent to v in T’ by vy, v, ..., v, where v, is the vertex on the path connecting w and v (possibly
v, = w). Note that v is an end vertex of x — 1 pendant paths. It follows that 1 < dg/(v;) < 2fori = 1,2,...,2 — 1. We
consider three cases.

Case 1: v is adjacent to = — 1 leaves.

So dr:(vy) = dgi(vy) = -+ - = dr(vz—1) = 1. We define Ty with V(T}) = V(1) and
E(Ty) = {v1v2, 0203, . . ., Vg 20,1} U E(T") \ {vvg, vv3,. .., 00,1}
Clearly, T} is a tree of order n and maximum degree A. For x,, we have

Xa(Th) = Xa(T") = [dr, (v) + dr, (v2)]* = [d7 (v) + drr (02)]* + [dr, (v) + dr,y (v1)]

r—2 z—1

+ D [dr, (vi) + dy (vig1)]* = D (dae (v) + dos (v))*

i=1 =1
=[24dp (v2)]" =[x +dr ()" + (24+2) +[(z - 3)(2+2)" + 2+ D] = (z - D(z + 1)
= 2+ dr (v2)]* = [+ dp (02)]" +3° = (2 + 1) + (2 = 2)4° — (2 + 1)°].

For x > 3 and a > 0, we get
[2 + dpi(v)]* < [x+ dp(ve)], 3% < (x4 1)* and 4 < (z + 1)°,
thus x,(71) — xa(T") < 0 which means that x,(71) < x.(I”), so 7" does not have the smallest x,, a contradiction.

For R,, we have

r—2 r—1

Ro(T1) = Ro(T") = [dr (0)dr, (v2)]" = [dr+ (v)dr (v2)]* + [dr, (v)dr, (01)]* + Y [dr, (vi)dr, (vi1)]" = Y (dre (v)ds (v))"

— 2 dp ()] — [ () + (2-2)7 + [~ 3)(2 2+ (2217 — (2~ V(- 1)*
> 2% — 2%+ (z —2)(4% — x?).
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For x > 4 and a < 0, we get 2% > 2% and 4% > 2%, thus R,(T}) — R.(T") > 0. For z = 3 and a < 0, we have
Ro(Ty) — Ro(T') > 2% — 3% +4° — 3% > 0,

since by Lemma 2.3, we obtain 4% — 3* > 3* — 2%, Hence R,(T1) > R,(T"), a contradiction
Case 2: v is adjacent to at least one leaf and at most xz — 2 leaves.

Without the loss of generality, we can assume that d;/(v1) = 1 and dg/(ve) = 2. Let u be the leaf of 7’ which is on the
pendant path that contains v;. Let z be the vertex adjacent to u in 7" (possibly z = v3). We define T with V(1) = V(T7)
and E(Tz) = {uv1} U E(T") \ {vv1}. Clearly, T3 is a tree of order n and maximum degree A. For x,, we obtain

Xa(T2) = Xa(T") = [dr, (v1) + dr, (w)]* — [dp (v1) + dpr (v)]* + [d, () + dr, (2)]" = [dre (u) + dr (2)]

x

+ ) ([, (v) + di, (v3)]* = [doe (v) + dre (v7)])
=2

= (142" = (1+2)"+2+2)" = (1+2)"+Y_([(@ = 1)+ dp (v)]" = [z + dp(v)]")
=2

=4 = (1+2)* + Y ([z = 1+ dp (v)]* = [z + o (v3)]%).
=2
Forz >3 anda > 0,we get 4° < (1+ )" and [x — 1 + dp (v:)]* < [z + dp/(v;)]* for each i = 2,3, ..., z, thus x,(T2) < xa(T"),
a contradiction.
For R,, we obtain

Ro(Ta) = Ra(T") = [dr, (v1)dr, (w)]* — [dr (v1)dr (0)]* + [dr, (u)dr, (2)]* — [dr (w)dr (2)]*

x

+ > (ldz, (v)dz, (0))* = [dr+ (0)dr (v)]°)

=2
=(1-2)"=(1-2)"+(2-2)" = (1-2)" + Z([(z — Ddp (0)]* = [ - do+ (v3)]?)
=4 — 2"+ ([(& = Vdr (v)]* = [w dps(v3)]%)-

i=2
For x > 4 and a < 0, we get 4* > z® and [(z — 1)dy (v;)]* > [z dr/ (v;)]* for each i = 2,3, ..., 2, thus R,(T2) — R.(T") > 0.
For x = 3 and —0.283 < a < 0, we obtain
Ra(Tg) — Ra(TI) =4* - 3%+ [2 dT/(’UQ)]a — [3 dr (’L)Q)]a —+ [2 drr (’Ug)]a — [3 dr ('Ug)]a
=4% - 3%+ (2 . 2)a — (3 . 2)(1 + [QdT/ (’Ug)]a — [3dT/(U3)]a
> 2(4%) — 3* — 6%,
We have
2(4%) — 8% — 6% = [3(4%) — 2° — 2(6")] + (2* — 3)(1 - 2°) >0,
since 2% — 3% > 0, 1 — 2% > 0 and by Lemma 2.2 (iii), 3(4%) — 2% — 2(6*) > 0. Hence R,(7%) > R,(T"), a contradiction.
Case 3: v is not adjacent to a leaf.

So dr:(v1) = dpi(ve) = -+ = dp/(ve—1) = 2. Let S be the sum of lengths of the 2 — 1 pendant paths with an end vertex v.
We replace those x — 1 pendant paths by one path of length S to obtain a new tree 75 from 7”. So dr,(v) = 2. Clearly, T5 is
a tree of order n and maximum degree A. For y,, we obtain
Xa(T') = Xa(T3) = [z + d7/(v2)]" — [2 + dry (02)]" + (x = 1) (2 +2)" + (z = 2)(2+ 1)* — (22 — 3)(2 + 2)°
>(x—1)(z+2)*+ (x—2)3% — (2z — 3)4%,

since z > 3 and dr (v;) = dr, (Vz)-
For x = 3 and ¢ > 0, by Lemma 2.2 (i), we obtain

Xa(T') = Xa(T5) > 2(5%) + 3% — 3(4%) > 0.
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For x > 4 and a > 0, we have

Xa(T') = Xa(T3) > (z = 1)(z +2)* + (x - 2)3" — (22 — 3)4°
=(x—1D[(z+2)*+ 3% —2(4%)] +4* — 3¢
> (x —1)[6% + 3% —2(4%)],

since 4 > 3% and (z + 2)* > 6°. By Lemma 2.2 (ii), we have
Xa(T") = Xa(T3) > (z —1)[2(4%) — 6* — 3%] > 0,

hence x.(T") > x.(T3), a contradiction
For R,, we obtain

Ro(T") = Ra(Ts) =[x+ drr (v0)]" = [2- dry (v0)]" + (2 = 1)(2- 2)" + (2 = 2)(2- 1) — (22— 3)(2-2)"
< (z—1)(22)* + (z — 2)2% — (22 — 3)4%,

since z > 3 and dr (v;) = dr, (Vz).
For x = 3 and —0.283 < a < 0, by Lemma 2.2 (iii), we obtain

R, (T") — Ro(T3) < 2(6%) + 2% — 3(4%) < 0.
For z = 4, by Lemma 2.2 (iv), we obtain
R, (T') — Ru(T3) < 3(8%) 4+ 2(2%) — 5(4%) < 0.
For z = 5, by Lemma 2.2 (vi), we obtain
R, (T") — Ro(T3) < 4(10%) + 3(2%) — 7(4%) < 0.

Let us consider the function
f(z) =(x—1)(2z)* + (x — 2)2% — (2z — 3)4“

for > 5. Note that f(5) < 0. We have

J'(@) = (20)° + (@ — 1)(2)"aa* " +2° — 2(4%)
< (22)% + 2% — 2(4%)
<10% + 2% — 2(49)

which is less than 0 by Lemma 2.2 (v). Since f/(z) < 0 for z > 5, the function f(z) is strictly decreasing which means that
f(x) < f(5) for x > 6. So Ro(T") — Ra(T3) < f(x) < f(5) < 0for x > 6. Hence R,(T") < R,(T3) for every z > 3, which means
that 7" does not have the largest R,, a contradiction. O

We use Lemma 2.5 in the proof of Theorem 2.1 (iii).
Lemma 2.5. Let © > 1 and a < 0. Then the function f(x) = (2z)* — z is strictly increasing.

Proof. We get f'(z) = (2% — 1)ax®~t. For a < 0, we have 2 — 1 < 0 and 2%~ > 0. So f/(z) > 0. Thus f(x) is strictly
increasing. O

In Theorem 2.1, we present the main results of this paper.
Theorem 2.1. Let T be any tree of order n and maximum degree A > 3. Then
@) Xa(T)>(n—A-D[(A+2)*+3]+(2A—n+ 1)(A+1)*if [22] <A<n-land 0<a<]1,
(i) Xa(T) > A[(A+2)2 439+ (n—2A-1)4°if3< A< |2 |and 0<a <],
(iii) Ro(T) < A[(2A)" +27)+ (n—2A —1)4% if 3< A < [ 251 ] and —0.283 < a < 0.

The equality in (i) holds if and only if T is S} r. The equalities in (ii) and (iii) hold if and only if T is in the set X, .
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Proof. Among trees of order n and maximum degree A, let 77 be a tree having the smallest x, for0 < a < land3 < A <n-1
(the largest R, for —0.283 < a < 0 and 3 < A < 231). Let w be a vertex of degree A in 7’. By Lemma 2.4, every vertex
different from w has degree at most 2 in 7”. So, 7" is in X, a.

Claim 1. All pendant paths of 7’ either have length at least 2 or they have length at most 2.

Assume to the contrary that 7’ contains a pendant path of length 1 and a pendant path of length p > 3. We replace those
two pendant paths by pendant paths of lengths 2 and p — 1 to obtain a new tree T from 7”. For x,, we obtain

Xa(T1) — Xa(T") = (A +2)" — (A +1)* + 3% — 4% <0,

since for 0 < a < 1, by Lemma 2.3, (A +2)% — (A + 1)* < 4% — 3%. So x4(T1) < Xxa(T"), a contradiction.
For R,, we obtain
Ry(Th) — Ry (T') = (2A)* — A® + 2% — 4% > 0,
since for —0.283 < a < 0, by Lemma 2.5, we have (2A)% — A* > 4% — 2%, Thus R,(T1) > R.(T"), so T’ does not have the
largest R,, which is a contradiction. The proof of Claim 1 is complete.

() Let [252] < A < n — 1. Then, clearly also 25! < A holds, which means that n < 2A + 1. Then no pendant path of
T’ has length greater than 2 (otherwise if 77 contains a pendant path of length at least 3, then by Claim 1, all the other
A — 1 pendant paths have length at least 2, and then 77 would have at least 2A + 2 vertices which contradicts the fact that
n < 2A + 1). So, each of the A pendant paths has length 1 or 2.

Let k& be the number of vertices of degree 2 adjacent to w. Then w is adjacent to A — k leaves which implies that
n=1+2k+(A—k)=1+k+ A and consequently k =n — A —1. So 7" is S}, 5 and

Xa(Spa) =kA+2)"+k2+1)"+(A-Ek)(A+1)"
=n—A-D[(A+2)*+34+(2A —n+1)(A+1)"
(ii) and (iii) Let 3 < A < [251]. Then also A < 271 holds, which means that n > 2A + 1. Then no pendant path of 7’
has length 1 (otherwise if 77 contains a pendant path of length 1, then by Claim 1, all the other A — 1 pendant paths have
length 1 or 2, and then 7’ would have at most 2A vertices which contradicts the fact that n > 2A + 1). So, each of the A

pendant paths has length at least 2 which means that 7" is in the set X, ,. Note that w is adjacent to A vertices of degree
2, T" has A leaves and n — 1 — 2A edges with both end vertices of degree 2. Thus

Xa(T') = A[(A+2)* + 3%+ (n — 2A — 1)4°

and
R, (T") = A[(2A)* 4+ 2%] + (n — 2A — 1)4°.
O

In Section 1, we mentioned that it was shown in [8] that B, A has the smallest x, fora > 1and [§] <A <n —2. We
extend that result also for A < [5].

Theorem 2.2. Let T be any tree of order n and maximum degree A, where 3 < A <n — 1. Then for a > 1,
Xa(T) > (A=1D(A+1D)*"+ (A+2)"+ (n— A —2)4* + 3¢
with equality if and only if T is B, a.

Proof. Among trees of order n and maximum degree A, where 3 < A < n — 1, let 7’ be a tree having the smallest x, for
a > 1. Let w be a vertex of degree A in 7’. By Lemma 2.4, every vertex different from w has degree at most 2 in 7”. So, T"
is in X, . We prove that 7" is B, a.

Assume to the contrary that 7" is not B, a. It follows that 7" contains (at least) two pendant paths of lengths n; > 2
and no > 2, respectively. We replace those two pendant paths by pendant paths of lengths 1 and n; + ny — 1 to obtain a
new tree T} from 7. We obtain

Xa(T1) = Xa(T") = (A +1)* — (A +2)* +4% —3* <0,

since for a > 1, by Lemma 2.3, we have 4% — 3% < (A +2)% — (A + 1)%. So xa(T1) < Xa(T”). Thus 7”7 does not have the
smallest x,, a contradiction. Hence 7" is B,, A and

Xa(Bna)=(A-=1)(A+1)"+ (A+2)"+ (n — A —2)4% 4 37
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3. Conclusion

In Theorems 2.1 and 2.2, we presented lower bounds on x, for 0 < ¢ < 1 and a > 1, respectively. It is easy to find extremal
trees for a = 1. By Lemma 2.4, a tree T’ of order n and maximum degree A (where 3 < A < n — 1) with the smallest y,
contains only one vertex of degree greater than 2. So 7” is in the set X,, o. Every tree in X,, A has the degree sequence

(A,2,...,2,1,...,1). Thus
—— ——
n—A—1 A

T = > [de@+dr@)]' = > [de@P=A+Mn-A-1)2°+A-1°=4n+ A* - 3A -4,
wveE(T") veV(T’)

So, all the trees in X, o have the same yx, therefore each of them is the extremal tree with the smallest x;.

Let us present trees with the largest x;. Since x1(7T) = ZveV(T) [dr(v)]?, having two vertices with degrees = and y for
x < y yields a smaller x; than having two vertices with degrees z — 1 and y + 1 in a tree 7. Therefore, among trees with
given n and A for [§] < A <n — 2, a tree with the degree sequence

(Ayn—AL ..., 1)
——

n—2

has the largest x;. The only tree with such a degree sequence is Sa n—a.

For every tree of order n > 3 and maximum degree A, we have 2 < A < n — 1. The only tree having maximum degree
2 is the path P, and the only tree having maximum degree n — 1 is the star S,,, therefore we are interested in the case
3 < A < n—2. Known trees with the smallest and largest y, and R, are presented in Tables 1 and 2. A bold text is used
for our new results. When a result holds for say 3 < A < L"glj, we do not mention the lower bound on A in our tables,
because that bound is obvious. Similarly, if an upper bound on A is n — 2 or n — 1, we again do not mention it in the tables.

a trees with the smallest y, trees with the largest y,

(=00,0) | tree San-aif [5] <A | set X] A if —1.703 <a <Oand A < [ 25!
tree S; A if [5] <A

(0,1) | set X, if A < |25*]

tree Sy, , if [255] < A

{1} set X,, A tree Sa ,—a if f%] <A

(1, 00) tree B, A tree Sa n—a if [%W <A

Table 1: Trees having the smallest and largest x, among trees of order n and maximum degree A for different intervals.

a trees with the smallest R, trees with the largest R,

(—00,0) | tree San-aif[3] <A | set X/ ,if—0.283<a <Oand A < |25*|

tree S; A if [251] <A

(0,1) tree B, A

1, 00) tree B, A tree San-—a if [5] <A

Table 2: Trees having the smallest and largest R, among trees of order n and maximum degree A for different intervals.

It is interesting that in some cases there is only one tree having the extremal index, and in some cases there is a set
of trees having the extremal index. To make this clearer, we included the words “tree” and “set” in the tables. Another
interesting observation is that B, o has the smallest R, for every ¢ > 0. On the other hand, our results on y, show that
there are several different trees having the smallest R, in that interval (0, co).

In Table 1, we can see that any tree in X, 5 has the smallest x, if A < |271], and S}, , has the smallest y, if [25+] < A.
So, both results hold for A = ”7*1 It follows that if n is odd, then the only tree in X T’L jnt is S:L%
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Let us note that the value a = 0 is not included in Tables 1 and 2, because trivially for every tree T', we have

(@)= Y [dr(w) +dr@)]’= Y  1=|E(T)|=n~-1

wveE(T) wveE(T)

and

Ro(T) = Z [dT(U) dT(’U)]O =n-—1.

wveE(T)

So, it remains to solve the cases included in Problems 3.1 and 3.2.
Problem 3.1. Among trees of order n and maximum degree A, find trees having the smallest x, for
* a<Oand A< |2,
and trees having the largest x, for
* a<-1703and A < |25,
* 0<ax<l,
*a>land A < |25
Problem 3.2. Among trees of order n and maximum degree A, find trees having the smallest R, for

* a<Oand A< |2,

and trees having the largest R, for
* < —028and A < |2,
* 0<ax<l,

*a>land A< |2
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