## Research Article

# General sum-connectivity index and general Randić index of trees with given maximum degree 

Elize Swartz, Tomáš Vetrík*<br>Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

(Received: 28 August 2023. Received in revised form: 10 November 2023. Accepted: 13 November 2023. Published online: 11 December 2023.)
© 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).


#### Abstract

For trees with given number of vertices $n$ and maximum degree $\Delta$, we present lower bounds on the general sum-connectivity index $\chi_{a}$ if $a>0$ and $3 \leq \Delta \leq n-1$, and an upper bound on the general Randić index $R_{a}$ if $-0.283 \leq a<0$ and $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. All the extremal trees for our bounds are given.


Keywords: general sum-connectivity index; general Randić index; tree; maximum degree.
2020 Mathematics Subject Classification: 05C09, 05C07.

## 1. Introduction

For a graph $G$, let $V(G)$ and $E(G)$ be the set of vertices and edges, respectively. The order of $G$ is the number of vertices of $G$. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ is the number of edges incident with $v$. The maximum degree $\Delta$ of $G$ is the degree of a vertex which has the largest degree in $G$. A pendant path of $G$ is a path whose one end vertex has degree 1 in $G$, the other end vertex has degree at least 3 in $G$ and all the internal vertices have degree 2 in $G$. A tree is a connected graph which does not contain cycles. A leaf is a vertex having degree one.

Indices of graphs are studied because of their wide applications, especially in chemistry. The general sum-connectivity index of a graph $G$ was introduced by Zhou and Trinajstić [12]. For $a \in \mathbb{R}$, it is defined as

$$
\chi_{a}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]^{a}
$$

For $a \in \mathbb{R}$, the general Randić index

$$
R_{a}(G)=\sum_{u v \in E(G)}\left[d_{G}(u) d_{G}(v)\right]^{a}
$$

of a graph $G$ was first investigated by Bollobás and Erdős [4] in 1998. Extremal results on $\chi_{a}$ and $R_{a}$ can be found in survey papers [3] and [9], respectively. General indices were investigated also in [2], [5] and [10]. We study trees with given order $n$ and maximum degree $\Delta$. We introduce families of trees which have extremal $\chi_{a}$ and $R_{a}$ among trees with prescribed $n$ and $\Delta$.

For $3 \leq \Delta \leq n-1$, let $X_{n, \Delta}$ be a set of trees such that every tree in $X_{n, \Delta}$ has order $n$ and contains exactly one vertex of degree greater than 2 which is an end vertex of $\Delta$ pendant paths. Note that the sum of the lengths of those $\Delta$ pendant paths is $n-1$, since every tree of order $n$ has $n-1$ edges. Trees in $X_{n, \Delta}^{\prime}$ satisfy one additional condition that if all the $\Delta$ pendant paths of a tree $T$ from $X_{n, \Delta}$ have length at least 2 , then $T$ belongs to the set $X_{n, \Delta}^{\prime}$. So $X_{n, \Delta}^{\prime} \subseteq X_{n, \Delta}$.

We denote a tree in $X_{n, \Delta}$ whose $\Delta-1$ pendant paths have length 1 (and the last pendant path has length $n-\Delta+1$ ) by $B_{n, \Delta}$; see Figure 1.

Let $\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta \leq n-1$ where $\Delta \geq 3$. We denote a tree in $X_{n, \Delta}$ which contains $2 \Delta-n+1$ pendant paths of length 1 and $n-\Delta-1$ pendant paths of length 2 by $S_{n, \Delta}^{\star}$; see Figure 2.

For $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$, the double star $S_{\Delta, n-\Delta}$ is a tree with $n-2$ leaves and two other vertices $u$ and $v$, where $u v \in E\left(S_{\Delta, n-\Delta}\right), u$ is adjacent to $\Delta-1$ leaves and $v$ is adjacent to $n-\Delta-1$ leaves; see Figure 3.

Let us present extremal results on $\chi_{a}$ for trees with given order $n$ and maximum degree $\Delta$. Raza et al. [8] showed that for $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$, the tree $S_{\Delta, n-\Delta}$ has the smallest $\chi_{a}$ if $a<0$, the tree $S_{\Delta, n-\Delta}$ also has the largest $\chi_{a}$ if $a>1$, the tree $B_{n, \Delta}$ has the smallest $\chi_{a}$ if $a>1$, and $S_{n, \Delta}^{\star}$ has the largest $\chi_{a}$ if $a<0$. The extremal tree $S_{n, \Delta}^{\star}$ was found also by Jamil and

[^0]

Figure 1: Tree $B_{n, \Delta}$.


Figure 2: Tree $S_{n, \Delta}^{\star}$.


Figure 3: Tree $S_{\Delta, n-\Delta}$.

Tomescu [6] who showed that for $-1.703 \leq a<0$, the tree $S_{n, \Delta}^{\star}$ has the largest $\chi_{a}$ if $\frac{n}{2} \leq \Delta \leq n-1$ and trees in $X_{n, \Delta}^{\prime}$ have the largest $\chi_{a}$ if $2 \leq \Delta \leq \frac{n-1}{2}$. The same results for $-1 \leq a<0$ were given in [1].

We show that for $3 \leq \Delta \leq n-1$, the tree $B_{n, \Delta}$ has the smallest $\chi_{a}$ if $a>1$, and every tree in $X_{n, \Delta}$ has the smallest $\chi_{a}$ if $a=1$. We also prove that for $0<a<1$, the tree $S_{n, \Delta}^{\star}$ has the smallest $\chi_{a}$ if $\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta \leq n-1$, and every tree in the set $X_{n, \Delta}^{\prime}$ has the smallest $\chi_{a}$ if $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Liu, Yan and Yan [7] showed that for $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$, the tree $S_{n, \Delta}^{\star}$ has the largest $R_{a}$ if $a<0$, the tree $S_{\Delta, n-\Delta}$ has the largest $R_{a}$ if $a \geq 1$, and $S_{\Delta, n-\Delta}$ also has the smallest $R_{a}$ if $a<0$. Moreover, $B_{n, \Delta}$ has the smallest $R_{a}$ for $a>0$ and $3 \leq \Delta \leq n-1$.

We prove that every tree in the set $X_{n, \Delta}^{\prime}$ has the largest $R_{a}$ for $-0.283 \leq a<0$ and $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Our results and all the known trees with given $n$ and $\Delta$ having the smallest and largest $\chi_{a}$ and $R_{a}$ are presented in tables in Section 3.

## 2. Results

First, we present a few lemmas.
Lemma 2.1. Let $c, p, r, x \in \mathbb{R}$ where $c, p, r>0$ and $\{p, r\} \neq\{1\}$. Then the function $g_{c, p, r}(x)=c p^{x}+r^{x}$ is strictly convex.
Proof. The second derivative $g_{c, p, r}^{\prime \prime}(x)=(\ln p)^{2} c p^{x}+(\ln r)^{2} r^{x}>0$, thus $g_{c, p, r}(x)$ is strictly convex.

## Lemma 2.2. We have

(i) $2\left(5^{x}\right)+3^{x}-3\left(4^{x}\right)>0$ for $x>0$,
(ii) $6^{x}+3^{x}-2\left(4^{x}\right)>0$ for $x>0$,
(iii) $2\left(6^{x}\right)+2^{x}-3\left(4^{x}\right)<0$ for $-0.283 \leq x<0$,
(iv) $3\left(8^{x}\right)+2\left(2^{x}\right)-5\left(4^{x}\right)<0$ for $-0.584 \leq x<0$,
(v) $10^{x}+2^{x}-2\left(4^{x}\right)<0$ for $-0.349 \leq x<0$,
(vi) $4\left(10^{x}\right)+3\left(2^{x}\right)-7\left(4^{x}\right)<0$ for $-0.349 \leq x<0$.

Proof. By Lemma 2.1, the functions

$$
\begin{gathered}
g_{2, \frac{5}{4}, \frac{3}{4}}(x)=2\left(\frac{5}{4}\right)^{x}+\left(\frac{3}{4}\right)^{x}, g_{1, \frac{3}{2}, \frac{3}{4}}(x)=\left(\frac{3}{2}\right)^{x}+\left(\frac{3}{4}\right)^{x}, g_{2, \frac{3}{2}, \frac{1}{2}}(x)=2\left(\frac{3}{2}\right)^{x}+\left(\frac{1}{2}\right)^{x}, \\
g_{\frac{3}{2}, 2, \frac{1}{2}}(x)=\frac{3}{2}\left(2^{x}\right)+\left(\frac{1}{2}\right)^{x} \text { and } g_{1, \frac{5}{2}, \frac{1}{2}}(x)=\left(\frac{5}{2}\right)^{x}+\left(\frac{1}{2}\right)^{x}
\end{gathered}
$$

are strictly convex for $x \in \mathbb{R}$.
(i) We have $g_{2, \frac{5}{4}, \frac{3}{4}}(-1)=\frac{44}{15}<3$ and $g_{2, \frac{5}{4}, \frac{3}{4}}(0)=3$. Since $g_{2, \frac{5}{4}, \frac{3}{4}}(x)$ is strictly convex, we get $g_{2, \frac{5}{4}, \frac{3}{4}}(x)>3$ for $x>0$. So $2\left(\frac{5}{4}\right)^{x}+\left(\frac{3}{4}\right)^{x}>3$, which means that $2\left(5^{x}\right)+3^{x}>3\left(4^{x}\right)$ for $x>0$.
(ii) We have $g_{1, \frac{3}{2}, \frac{3}{4}}(-1)=g_{1, \frac{3}{2}, \frac{3}{4}}(0)=2$. Since $g_{1, \frac{3}{2}, \frac{3}{4}}(x)$ is strictly convex, we get $g_{1, \frac{3}{2}, \frac{3}{4}}(x)>2$ for $x>0$. So $\left(\frac{3}{2}\right)^{x}+\left(\frac{3}{4}\right)^{x}>2$, which means that $6^{x}+3^{x}>2\left(4^{x}\right)$ for $x>0$.
(iii) We have $g_{2, \frac{3}{2}, \frac{1}{2}}(-0.283)<3$ and $g_{2, \frac{3}{2}, \frac{1}{2}}(0)=3$. Since $g_{2, \frac{3}{2}, \frac{1}{2}}(x)$ is strictly convex, we get $g_{2, \frac{3}{2}, \frac{1}{2}}(x)<3$ for $-0.283 \leq x<0$. So $2\left(\frac{3}{2}\right)^{x}+\left(\frac{1}{2}\right)^{x}<3$, which means that $2\left(3^{x}\right)+1^{x}<3\left(2^{x}\right)$, and consequently $2\left(6^{x}\right)+2^{x}-3\left(4^{x}\right)<0$ for $-0.283 \leq x<0$.
(iv) We have $g_{\frac{3}{2}, 2, \frac{1}{2}}(-0.584)<\frac{5}{2}$ and $g_{\frac{3}{2}, 2, \frac{1}{2}}(0)=\frac{5}{2}$. Thus $g_{\frac{3}{2}, 2, \frac{1}{2}}(x)<\frac{5}{2}$ for $-0.584 \leq x<0$. So $\frac{3}{2}\left(2^{x}\right)+\left(\frac{1}{2}\right)^{x}<\frac{5}{2}$, which means that $3\left(2^{x}\right)+2\left(\frac{1}{2}\right)^{x}-5<0$, and consequently $3\left(8^{x}\right)+2\left(2^{x}\right)-5\left(4^{x}\right)<0$ for $-0.584 \leq x<0$.
(v) We get $g_{1, \frac{5}{2}, \frac{1}{2}}(-0.349)<2$ and $g_{1, \frac{5}{2}, \frac{1}{2}}(0)=2$, thus $g_{1, \frac{5}{2}, \frac{1}{2}}(x)<2$ for $-0.349 \leq x<0$. So $\left(\frac{5}{2}\right)^{x}+\left(\frac{1}{2}\right)^{x}<2$, which means that $10^{x}+2^{x}<2\left(4^{x}\right)$ for $-0.349 \leq x<0$.
(vi) For $-0.349 \leq x<0$, we obtain $4\left(10^{x}\right)+3\left(2^{x}\right)-7\left(4^{x}\right)=10^{x}-4^{x}+3\left[10^{x}+2^{x}-2\left(4^{x}\right)\right]<0$ since $10^{x}-4^{x}<0$ and by (v), we have $10^{x}+2^{x}-2\left(4^{x}\right)<0$.

Lemma 2.3 was presented in [11] and it is used in the proofs of Lemma 2.4, and Theorems 2.1 and 2.2.
Lemma 2.3. Let $1 \leq x<y$ and $c>0$. Then for $a>1$ and $a<0$,

$$
(x+c)^{a}-x^{a}<(y+c)^{a}-y^{a} .
$$

For $0<a<1$, we have

$$
(x+c)^{a}-x^{a}>(y+c)^{a}-y^{a} .
$$

We prove that some extremal trees have only one vertex of degree greater than 2.
Lemma 2.4. Among trees of order $n$ and maximum degree $\Delta$, where $3 \leq \Delta \leq n-1$, let $T^{\prime}$ be a tree having the smallest $\chi_{a}$ for $a>0$ (the largest $R_{a}$ for $-0.283 \leq a<0$ ). Then $T^{\prime}$ contains only one vertex of degree greater than 2 .

Proof. Let $T^{\prime}$ be a tree having the smallest $\chi_{a}$ for $a>0$ (the largest $R_{a}$ for $-0.283 \leq a<0$ ). We prove Lemma 2.4 by contradiction. Assume that $T^{\prime}$ contains at least two vertices of degree greater than 2 . Let $w$ be a vertex of degree $\Delta$ in $T^{\prime}$. Among vertices of $T^{\prime}$ having degree at least 3 , let $v$ be a vertex furthest from $w$. So $d_{T^{\prime}}(v)=x \geq 3$ where $v \neq w$. We can denote the vertices adjacent to $v$ in $T^{\prime}$ by $v_{1}, v_{2}, \ldots, v_{x}$ where $v_{x}$ is the vertex on the path connecting $w$ and $v$ (possibly $\left.v_{x}=w\right)$. Note that $v$ is an end vertex of $x-1$ pendant paths. It follows that $1 \leq d_{T^{\prime}}\left(v_{i}\right) \leq 2$ for $i=1,2, \ldots, x-1$. We consider three cases.

Case 1: $v$ is adjacent to $x-1$ leaves.
So $d_{T^{\prime}}\left(v_{1}\right)=d_{T^{\prime}}\left(v_{2}\right)=\cdots=d_{T^{\prime}}\left(v_{x-1}\right)=1$. We define $T_{1}$ with $V\left(T_{1}\right)=V\left(T^{\prime}\right)$ and

$$
E\left(T_{1}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{x-2} v_{x-1}\right\} \cup E\left(T^{\prime}\right) \backslash\left\{v v_{2}, v v_{3}, \ldots, v v_{x-1}\right\} .
$$

Clearly, $T_{1}$ is a tree of order $n$ and maximum degree $\Delta$. For $\chi_{a}$, we have

$$
\begin{aligned}
\chi_{a}\left(T_{1}\right)-\chi_{a}\left(T^{\prime}\right)= & {\left[d_{T_{1}}(v)+d_{T_{1}}\left(v_{x}\right)\right]^{a}-\left[d_{T^{\prime}}(v)+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}+\left[d_{T_{1}}(v)+d_{T_{1}}\left(v_{1}\right)\right]^{a} } \\
& +\sum_{i=1}^{x-2}\left[d_{T_{1}}\left(v_{i}\right)+d_{T_{1}}\left(v_{i+1}\right)\right]^{a}-\sum_{i=1}^{x-1}\left(d_{T^{\prime}}(v)+d_{T^{\prime}}\left(v_{i}\right)\right)^{a} \\
= & {\left[2+d_{T_{1}}\left(v_{x}\right)\right]^{a}-\left[x+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}+(2+2)^{a}+\left[(x-3)(2+2)^{a}+(2+1)^{a}\right]-(x-1)(x+1)^{a} } \\
= & {\left[2+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}-\left[x+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}+3^{a}-(x+1)^{a}+(x-2)\left[4^{a}-(x+1)^{a}\right] . }
\end{aligned}
$$

For $x \geq 3$ and $a>0$, we get

$$
\left[2+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}<\left[x+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}, 3^{a}<(x+1)^{a} \text { and } 4^{a} \leq(x+1)^{a}
$$

thus $\chi_{a}\left(T_{1}\right)-\chi_{a}\left(T^{\prime}\right)<0$ which means that $\chi_{a}\left(T_{1}\right)<\chi_{a}\left(T^{\prime}\right)$, so $T^{\prime}$ does not have the smallest $\chi_{a}$, a contradiction.
For $R_{a}$, we have

$$
\begin{aligned}
R_{a}\left(T_{1}\right)-R_{a}\left(T^{\prime}\right) & =\left[d_{T_{1}}(v) d_{T_{1}}\left(v_{x}\right)\right]^{a}-\left[d_{T^{\prime}}(v) d_{T^{\prime}}\left(v_{x}\right)\right]^{a}+\left[d_{T_{1}}(v) d_{T_{1}}\left(v_{1}\right)\right]^{a}+\sum_{i=1}^{x-2}\left[d_{T_{1}}\left(v_{i}\right) d_{T_{1}}\left(v_{i+1}\right)\right]^{a}-\sum_{i=1}^{x-1}\left(d_{T^{\prime}}(v) d_{T^{\prime}}\left(v_{i}\right)\right)^{a} \\
& =\left[2 \cdot d_{T^{\prime}}\left(v_{x}\right)\right]^{a}-\left[x \cdot d_{T^{\prime}}\left(v_{x}\right)\right]^{a}+(2 \cdot 2)^{a}+\left[(x-3)(2 \cdot 2)^{a}+(2 \cdot 1)^{a}\right]-(x-1)(x \cdot 1)^{a} \\
& >2^{a}-x^{a}+(x-2)\left(4^{a}-x^{a}\right) .
\end{aligned}
$$

For $x \geq 4$ and $a<0$, we get $2^{a}>x^{a}$ and $4^{a} \geq x^{a}$, thus $R_{a}\left(T_{1}\right)-R_{a}\left(T^{\prime}\right)>0$. For $x=3$ and $a<0$, we have

$$
R_{a}\left(T_{1}\right)-R_{a}\left(T^{\prime}\right)>2^{a}-3^{a}+4^{a}-3^{a}>0,
$$

since by Lemma 2.3, we obtain $4^{a}-3^{a}>3^{a}-2^{a}$. Hence $R_{a}\left(T_{1}\right)>R_{a}\left(T^{\prime}\right)$, a contradiction
Case 2: $v$ is adjacent to at least one leaf and at most $x-2$ leaves.
Without the loss of generality, we can assume that $d_{T^{\prime}}\left(v_{1}\right)=1$ and $d_{T^{\prime}}\left(v_{2}\right)=2$. Let $u$ be the leaf of $T^{\prime}$ which is on the pendant path that contains $v_{2}$. Let $z$ be the vertex adjacent to $u$ in $T^{\prime}$ (possibly $z=v_{2}$ ). We define $T_{2}$ with $V\left(T_{2}\right)=V\left(T^{\prime}\right)$ and $E\left(T_{2}\right)=\left\{u v_{1}\right\} \cup E\left(T^{\prime}\right) \backslash\left\{v v_{1}\right\}$. Clearly, $T_{2}$ is a tree of order $n$ and maximum degree $\Delta$. For $\chi_{a}$, we obtain

$$
\begin{aligned}
\chi_{a}\left(T_{2}\right)-\chi_{a}\left(T^{\prime}\right)= & {\left[d_{T_{2}}\left(v_{1}\right)+d_{T_{2}}(u)\right]^{a}-\left[d_{T^{\prime}}\left(v_{1}\right)+d_{T^{\prime}}(v)\right]^{a}+\left[d_{T_{2}}(u)+d_{T_{2}}(z)\right]^{a}-\left[d_{T^{\prime}}(u)+d_{T^{\prime}}(z)\right]^{a} } \\
& +\sum_{i=2}^{x}\left(\left[d_{T_{2}}(v)+d_{T_{2}}\left(v_{i}\right)\right]^{a}-\left[d_{T^{\prime}}(v)+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}\right) \\
= & (1+2)^{a}-(1+x)^{a}+(2+2)^{a}-(1+2)^{a}+\sum_{i=2}^{x}\left(\left[(x-1)+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}-\left[x+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}\right) \\
= & 4^{a}-(1+x)^{a}+\sum_{i=2}^{x}\left(\left[x-1+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}-\left[x+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}\right) .
\end{aligned}
$$

For $x \geq 3$ and $a>0$, we get $4^{a} \leq(1+x)^{a}$ and $\left[x-1+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}<\left[x+d_{T^{\prime}}\left(v_{i}\right)\right]^{a}$ for each $i=2,3, \ldots, x$, thus $\chi_{a}\left(T_{2}\right)<\chi_{a}\left(T^{\prime}\right)$, a contradiction.

For $R_{a}$, we obtain

$$
\begin{aligned}
R_{a}\left(T_{2}\right)-R_{a}\left(T^{\prime}\right)= & {\left[d_{T_{2}}\left(v_{1}\right) d_{T_{2}}(u)\right]^{a}-\left[d_{T^{\prime}}\left(v_{1}\right) d_{T^{\prime}}(v)\right]^{a}+\left[d_{T_{2}}(u) d_{T_{2}}(z)\right]^{a}-\left[d_{T^{\prime}}(u) d_{T^{\prime}}(z)\right]^{a} } \\
& +\sum_{i=2}^{x}\left(\left[d_{T_{2}}(v) d_{T_{2}}\left(v_{i}\right)\right]^{a}-\left[d_{T^{\prime}}(v) d_{T^{\prime}}\left(v_{i}\right)\right]^{a}\right) \\
= & (1 \cdot 2)^{a}-(1 \cdot x)^{a}+(2 \cdot 2)^{a}-(1 \cdot 2)^{a}+\sum_{i=2}^{x}\left(\left[(x-1) d_{T^{\prime}}\left(v_{i}\right)\right]^{a}-\left[x \cdot d_{T^{\prime}}\left(v_{i}\right)\right]^{a}\right) \\
= & 4^{a}-x^{a}+\sum_{i=2}^{x}\left(\left[(x-1) d_{T^{\prime}}\left(v_{i}\right)\right]^{a}-\left[x d_{T^{\prime}}\left(v_{i}\right)\right]^{a}\right) .
\end{aligned}
$$

For $x \geq 4$ and $a<0$, we get $4^{a} \geq x^{a}$ and $\left[(x-1) d_{T^{\prime}}\left(v_{i}\right)\right]^{a}>\left[x d_{T^{\prime}}\left(v_{i}\right)\right]^{a}$ for each $i=2,3, \ldots, x$, thus $R_{a}\left(T_{2}\right)-R_{a}\left(T^{\prime}\right)>0$.
For $x=3$ and $-0.283 \leq a<0$, we obtain

$$
\begin{aligned}
R_{a}\left(T_{2}\right)-R_{a}\left(T^{\prime}\right) & =4^{a}-3^{a}+\left[2 d_{T^{\prime}}\left(v_{2}\right)\right]^{a}-\left[3 d_{T^{\prime}}\left(v_{2}\right)\right]^{a}+\left[2 d_{T^{\prime}}\left(v_{3}\right)\right]^{a}-\left[3 d_{T^{\prime}}\left(v_{3}\right)\right]^{a} \\
& =4^{a}-3^{a}+(2 \cdot 2)^{a}-(3 \cdot 2)^{a}+\left[2 d_{T^{\prime}}\left(v_{3}\right)\right]^{a}-\left[3 d_{T^{\prime}}\left(v_{3}\right)\right]^{a} \\
& >2\left(4^{a}\right)-3^{a}-6^{a} .
\end{aligned}
$$

We have

$$
2\left(4^{a}\right)-3^{a}-6^{a}=\left[3\left(4^{a}\right)-2^{a}-2\left(6^{a}\right)\right]+\left(2^{a}-3^{a}\right)\left(1-2^{a}\right)>0,
$$

since $2^{a}-3^{a}>0,1-2^{a}>0$ and by Lemma 2.2 (iii), $3\left(4^{a}\right)-2^{a}-2\left(6^{a}\right)>0$. Hence $R_{a}\left(T_{2}\right)>R_{a}\left(T^{\prime}\right)$, a contradiction.
Case 3: $v$ is not adjacent to a leaf.
So $d_{T^{\prime}}\left(v_{1}\right)=d_{T^{\prime}}\left(v_{2}\right)=\cdots=d_{T^{\prime}}\left(v_{x-1}\right)=2$. Let $S$ be the sum of lengths of the $x-1$ pendant paths with an end vertex $v$. We replace those $x-1$ pendant paths by one path of length $S$ to obtain a new tree $T_{3}$ from $T^{\prime}$. So $d_{T_{3}}(v)=2$. Clearly, $T_{3}$ is a tree of order $n$ and maximum degree $\Delta$. For $\chi_{a}$, we obtain

$$
\begin{aligned}
\chi_{a}\left(T^{\prime}\right)-\chi_{a}\left(T_{3}\right) & =\left[x+d_{T^{\prime}}\left(v_{x}\right)\right]^{a}-\left[2+d_{T_{3}}\left(v_{x}\right)\right]^{a}+(x-1)(x+2)^{a}+(x-2)(2+1)^{a}-(2 x-3)(2+2)^{a} \\
& >(x-1)(x+2)^{a}+(x-2) 3^{a}-(2 x-3) 4^{a}
\end{aligned}
$$

since $x \geq 3$ and $d_{T^{\prime}}\left(v_{x}\right)=d_{T_{3}}\left(v_{x}\right)$.
For $x=3$ and $a>0$, by Lemma 2.2 (i), we obtain

$$
\chi_{a}\left(T^{\prime}\right)-\chi_{a}\left(T_{3}\right)>2\left(5^{a}\right)+3^{a}-3\left(4^{a}\right)>0 .
$$

For $x \geq 4$ and $a>0$, we have

$$
\begin{aligned}
\chi_{a}\left(T^{\prime}\right)-\chi_{a}\left(T_{3}\right) & >(x-1)(x+2)^{a}+(x-2) 3^{a}-(2 x-3) 4^{a} \\
& =(x-1)\left[(x+2)^{a}+3^{a}-2\left(4^{a}\right)\right]+4^{a}-3^{a} \\
& >(x-1)\left[6^{a}+3^{a}-2\left(4^{a}\right)\right],
\end{aligned}
$$

since $4^{a}>3^{a}$ and $(x+2)^{a} \geq 6^{a}$. By Lemma 2.2 (ii), we have

$$
\chi_{a}\left(T^{\prime}\right)-\chi_{a}\left(T_{3}\right)>(x-1)\left[2\left(4^{a}\right)-6^{a}-3^{a}\right]>0,
$$

hence $\chi_{a}\left(T^{\prime}\right)>\chi_{a}\left(T_{3}\right)$, a contradiction
For $R_{a}$, we obtain

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right)-R_{a}\left(T_{3}\right) & =\left[x \cdot d_{T^{\prime}}\left(v_{x}\right)\right]^{a}-\left[2 \cdot d_{T_{3}}\left(v_{x}\right)\right]^{a}+(x-1)(2 \cdot x)^{a}+(x-2)(2 \cdot 1)^{a}-(2 x-3)(2 \cdot 2)^{a} \\
& <(x-1)(2 x)^{a}+(x-2) 2^{a}-(2 x-3) 4^{a},
\end{aligned}
$$

since $x \geq 3$ and $d_{T^{\prime}}\left(v_{x}\right)=d_{T_{3}}\left(v_{x}\right)$.
For $x=3$ and $-0.283 \leq a<0$, by Lemma 2.2 (iii), we obtain

$$
R_{a}\left(T^{\prime}\right)-R_{a}\left(T_{3}\right)<2\left(6^{a}\right)+2^{a}-3\left(4^{a}\right)<0 .
$$

For $x=4$, by Lemma 2.2 (iv), we obtain

$$
R_{a}\left(T^{\prime}\right)-R_{a}\left(T_{3}\right)<3\left(8^{a}\right)+2\left(2^{a}\right)-5\left(4^{a}\right)<0 .
$$

For $x=5$, by Lemma 2.2 (vi), we obtain

$$
R_{a}\left(T^{\prime}\right)-R_{a}\left(T_{3}\right)<4\left(10^{a}\right)+3\left(2^{a}\right)-7\left(4^{a}\right)<0 .
$$

Let us consider the function

$$
f(x)=(x-1)(2 x)^{a}+(x-2) 2^{a}-(2 x-3) 4^{a}
$$

for $x \geq 5$. Note that $f(5)<0$. We have

$$
\begin{aligned}
f^{\prime}(x) & =(2 x)^{a}+(x-1)(2)^{a} a x^{a-1}+2^{a}-2\left(4^{a}\right) \\
& <(2 x)^{a}+2^{a}-2\left(4^{a}\right) \\
& \leq 10^{a}+2^{a}-2\left(4^{a}\right)
\end{aligned}
$$

which is less than 0 by Lemma 2.2 (v). Since $f^{\prime}(x)<0$ for $x \geq 5$, the function $f(x)$ is strictly decreasing which means that $f(x)<f(5)$ for $x \geq 6$. So $R_{a}\left(T^{\prime}\right)-R_{a}\left(T_{3}\right)<f(x)<f(5)<0$ for $x \geq 6$. Hence $R_{a}\left(T^{\prime}\right)<R_{a}\left(T_{3}\right)$ for every $x \geq 3$, which means that $T^{\prime}$ does not have the largest $R_{a}$, a contradiction.

We use Lemma 2.5 in the proof of Theorem 2.1 (iii).
Lemma 2.5. Let $x \geq 1$ and $a<0$. Then the function $f(x)=(2 x)^{a}-x^{a}$ is strictly increasing.
Proof. We get $f^{\prime}(x)=\left(2^{a}-1\right) a x^{a-1}$. For $a<0$, we have $2^{a}-1<0$ and $x^{a-1}>0$. So $f^{\prime}(x)>0$. Thus $f(x)$ is strictly increasing.

In Theorem 2.1, we present the main results of this paper.
Theorem 2.1. Let $T$ be any tree of order $n$ and maximum degree $\Delta \geq 3$. Then
(i) $\chi_{a}(T) \geq(n-\Delta-1)\left[(\Delta+2)^{a}+3^{a}\right]+(2 \Delta-n+1)(\Delta+1)^{a}$ if $\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta \leq n-1$ and $0<a<1$,
(ii) $\chi_{a}(T) \geq \Delta\left[(\Delta+2)^{a}+3^{a}\right]+(n-2 \Delta-1) 4^{a}$ if $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $0<a<1$,
(iii) $R_{a}(T) \leq \Delta\left[(2 \Delta)^{a}+2^{a}\right]+(n-2 \Delta-1) 4^{a}$ if $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $-0.283 \leq a<0$.

The equality in (i) holds if and only if $T$ is $S_{n, \Delta}^{\star}$. The equalities in (ii) and (iii) hold if and only if $T$ is in the set $X_{n, \Delta}^{\prime}$.

Proof. Among trees of order $n$ and maximum degree $\Delta$, let $T^{\prime}$ be a tree having the smallest $\chi_{a}$ for $0<a<1$ and $3 \leq \Delta \leq n-1$ (the largest $R_{a}$ for $-0.283 \leq a<0$ and $3 \leq \Delta \leq \frac{n-1}{2}$ ). Let $w$ be a vertex of degree $\Delta$ in $T^{\prime}$. By Lemma 2.4, every vertex different from $w$ has degree at most 2 in $T^{\prime}$. So, $T^{\prime}$ is in $X_{n, \Delta}$.

Claim 1. All pendant paths of $T^{\prime}$ either have length at least 2 or they have length at most 2.
Assume to the contrary that $T^{\prime}$ contains a pendant path of length 1 and a pendant path of length $p \geq 3$. We replace those two pendant paths by pendant paths of lengths 2 and $p-1$ to obtain a new tree $T_{1}$ from $T^{\prime}$. For $\chi_{a}$, we obtain

$$
\chi_{a}\left(T_{1}\right)-\chi_{a}\left(T^{\prime}\right)=(\Delta+2)^{a}-(\Delta+1)^{a}+3^{a}-4^{a}<0,
$$

since for $0<a<1$, by Lemma 2.3, $(\Delta+2)^{a}-(\Delta+1)^{a}<4^{a}-3^{a}$. So $\chi_{a}\left(T_{1}\right)<\chi_{a}\left(T^{\prime}\right)$, a contradiction.
For $R_{a}$, we obtain

$$
R_{a}\left(T_{1}\right)-R_{a}\left(T^{\prime}\right)=(2 \Delta)^{a}-\Delta^{a}+2^{a}-4^{a}>0
$$

since for $-0.283 \leq a<0$, by Lemma 2.5, we have $(2 \Delta)^{a}-\Delta^{a}>4^{a}-2^{a}$. Thus $R_{a}\left(T_{1}\right)>R_{a}\left(T^{\prime}\right)$, so $T^{\prime}$ does not have the largest $R_{a}$, which is a contradiction. The proof of Claim 1 is complete.
(i) Let $\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta \leq n-1$. Then, clearly also $\frac{n-1}{2} \leq \Delta$ holds, which means that $n \leq 2 \Delta+1$. Then no pendant path of $T^{\prime}$ has length greater than 2 (otherwise if $T^{\prime}$ contains a pendant path of length at least 3 , then by Claim 1 , all the other $\Delta-1$ pendant paths have length at least 2 , and then $T^{\prime}$ would have at least $2 \Delta+2$ vertices which contradicts the fact that $n \leq 2 \Delta+1$ ). So, each of the $\Delta$ pendant paths has length 1 or 2.

Let $k$ be the number of vertices of degree 2 adjacent to $w$. Then $w$ is adjacent to $\Delta-k$ leaves which implies that $n=1+2 k+(\Delta-k)=1+k+\Delta$ and consequently $k=n-\Delta-1$. So $T^{\prime}$ is $S_{n, \Delta}^{\star}$ and

$$
\begin{aligned}
\chi_{a}\left(S_{n, \Delta}^{\star}\right) & =k(\Delta+2)^{a}+k(2+1)^{a}+(\Delta-k)(\Delta+1)^{a} \\
& =(n-\Delta-1)\left[(\Delta+2)^{a}+3^{a}\right]+(2 \Delta-n+1)(\Delta+1)^{a} .
\end{aligned}
$$

(ii) and (iii) Let $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Then also $\Delta \leq \frac{n-1}{2}$ holds, which means that $n \geq 2 \Delta+1$. Then no pendant path of $T^{\prime}$ has length 1 (otherwise if $T^{\prime}$ contains a pendant path of length 1 , then by Claim 1 , all the other $\Delta-1$ pendant paths have length 1 or 2 , and then $T^{\prime}$ would have at most $2 \Delta$ vertices which contradicts the fact that $n \geq 2 \Delta+1$ ). So, each of the $\Delta$ pendant paths has length at least 2 which means that $T^{\prime}$ is in the set $X_{n, \Delta}^{\prime}$. Note that $w$ is adjacent to $\Delta$ vertices of degree $2, T^{\prime}$ has $\Delta$ leaves and $n-1-2 \Delta$ edges with both end vertices of degree 2 . Thus

$$
\chi_{a}\left(T^{\prime}\right)=\Delta\left[(\Delta+2)^{a}+3^{a}\right]+(n-2 \Delta-1) 4^{a}
$$

and

$$
R_{a}\left(T^{\prime}\right)=\Delta\left[(2 \Delta)^{a}+2^{a}\right]+(n-2 \Delta-1) 4^{a} .
$$

In Section 1, we mentioned that it was shown in [8] that $B_{n, \Delta}$ has the smallest $\chi_{a}$ for $a>1$ and $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$. We extend that result also for $\Delta<\left\lceil\frac{n}{2}\right\rceil$.

Theorem 2.2. Let $T$ be any tree of order $n$ and maximum degree $\Delta$, where $3 \leq \Delta \leq n-1$. Then for $a>1$,

$$
\chi_{a}(T) \geq(\Delta-1)(\Delta+1)^{a}+(\Delta+2)^{a}+(n-\Delta-2) 4^{a}+3^{a}
$$

with equality if and only if $T$ is $B_{n, \Delta}$.
Proof. Among trees of order $n$ and maximum degree $\Delta$, where $3 \leq \Delta \leq n-1$, let $T^{\prime}$ be a tree having the smallest $\chi_{a}$ for $a>1$. Let $w$ be a vertex of degree $\Delta$ in $T^{\prime}$. By Lemma 2.4, every vertex different from $w$ has degree at most 2 in $T^{\prime}$. So, $T^{\prime}$ is in $X_{n, \Delta}$. We prove that $T^{\prime}$ is $B_{n, \Delta}$.

Assume to the contrary that $T^{\prime}$ is not $B_{n, \Delta}$. It follows that $T^{\prime}$ contains (at least) two pendant paths of lengths $n_{1} \geq 2$ and $n_{2} \geq 2$, respectively. We replace those two pendant paths by pendant paths of lengths 1 and $n_{1}+n_{2}-1$ to obtain a new tree $T_{1}$ from $T^{\prime}$. We obtain

$$
\chi_{a}\left(T_{1}\right)-\chi_{a}\left(T^{\prime}\right)=(\Delta+1)^{a}-(\Delta+2)^{a}+4^{a}-3^{a}<0,
$$

since for $a>1$, by Lemma 2.3, we have $4^{a}-3^{a}<(\Delta+2)^{a}-(\Delta+1)^{a}$. So $\chi_{a}\left(T_{1}\right)<\chi_{a}\left(T^{\prime}\right)$. Thus $T^{\prime}$ does not have the smallest $\chi_{a}$, a contradiction. Hence $T^{\prime}$ is $B_{n, \Delta}$ and

$$
\chi_{a}\left(B_{n, \Delta}\right)=(\Delta-1)(\Delta+1)^{a}+(\Delta+2)^{a}+(n-\Delta-2) 4^{a}+3^{a} .
$$

## 3. Conclusion

In Theorems 2.1 and 2.2, we presented lower bounds on $\chi_{a}$ for $0<a<1$ and $a>1$, respectively. It is easy to find extremal trees for $a=1$. By Lemma 2.4, a tree $T^{\prime}$ of order $n$ and maximum degree $\Delta$ (where $3 \leq \Delta \leq n-1$ ) with the smallest $\chi_{a}$ contains only one vertex of degree greater than 2 . So $T^{\prime}$ is in the set $X_{n, \Delta}$. Every tree in $X_{n, \Delta}$ has the degree sequence $(\Delta, \underbrace{2, \ldots, 2}_{n-\Delta-1}, \underbrace{1, \ldots, 1}_{\Delta})$. Thus

$$
\chi_{1}\left(T^{\prime}\right)=\sum_{u v \in E\left(T^{\prime}\right)}\left[d_{T^{\prime}}(u)+d_{T^{\prime}}(v)\right]^{1}=\sum_{v \in V\left(T^{\prime}\right)}\left[d_{T^{\prime}}(v)\right]^{2}=\Delta^{2}+(n-\Delta-1) 2^{2}+\Delta \cdot 1^{2}=4 n+\Delta^{2}-3 \Delta-4 .
$$

So, all the trees in $X_{n, \Delta}$ have the same $\chi_{1}$, therefore each of them is the extremal tree with the smallest $\chi_{1}$.
Let us present trees with the largest $\chi_{1}$. Since $\chi_{1}(T)=\sum_{v \in V(T)}\left[d_{T}(v)\right]^{2}$, having two vertices with degrees $x$ and $y$ for $x \leq y$ yields a smaller $\chi_{1}$ than having two vertices with degrees $x-1$ and $y+1$ in a tree $T$. Therefore, among trees with given $n$ and $\Delta$ for $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-2$, a tree with the degree sequence

$$
(\Delta, n-\Delta, \underbrace{1, \ldots, 1}_{n-2})
$$

has the largest $\chi_{1}$. The only tree with such a degree sequence is $S_{\Delta, n-\Delta}$.
For every tree of order $n \geq 3$ and maximum degree $\Delta$, we have $2 \leq \Delta \leq n-1$. The only tree having maximum degree 2 is the path $P_{n}$ and the only tree having maximum degree $n-1$ is the star $S_{n}$, therefore we are interested in the case $3 \leq \Delta \leq n-2$. Known trees with the smallest and largest $\chi_{a}$ and $R_{a}$ are presented in Tables 1 and 2 . A bold text is used for our new results. When a result holds for say $3 \leq \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, we do not mention the lower bound on $\Delta$ in our tables, because that bound is obvious. Similarly, if an upper bound on $\Delta$ is $n-2$ or $n-1$, we again do not mention it in the tables.

| $a$ | trees with the smallest $\chi_{a}$ | trees with the largest $\chi_{a}$ |
| :---: | :---: | :---: |
| $(-\infty, 0)$ | tree $S_{\Delta, n-\Delta}$ if $\left\lceil\frac{n}{2}\right\rceil \leq \Delta$ | $\begin{gathered} \text { set } X_{n, \Delta}^{\prime} \text { if }-1.703 \leq a<0 \text { and } \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor \\ \text { tree } S_{n, \Delta}^{\star} \text { if }\left\lceil\frac{n}{2}\right\rceil \leq \Delta \end{gathered}$ |
| $(0,1)$ | $\begin{aligned} & \text { set } X_{n, \Delta}^{\prime} \text { if } \Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor \\ & \text { tree } S_{n, \Delta}^{\star} \text { if }\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta \end{aligned}$ |  |
| \{1\} | set $X_{n, \Delta}$ | tree $S_{\Delta, n-\Delta}$ if $\left\lceil\frac{n}{2}\right\rceil \leq \Delta$ |
| $(1, \infty)$ | tree $B_{n, \Delta}$ | tree $S_{\Delta, n-\Delta}$ if $\left\lceil\frac{n}{2}\right\rceil \leq \Delta$ |

Table 1: Trees having the smallest and largest $\chi_{a}$ among trees of order $n$ and maximum degree $\Delta$ for different intervals.

| $a$ | trees with the smallest $R_{a}$ | trees with the largest $R_{a}$ |
| :---: | :---: | :---: |
| $(-\infty, 0)$ | tree $S_{\Delta, n-\Delta}$ if $\left\lceil\frac{n}{2}\right\rceil \leq \Delta$ | set $\boldsymbol{X}_{\boldsymbol{n}, \Delta}^{\prime}$ if $-\mathbf{0 . 2 8 3} \leq \boldsymbol{a}<\mathbf{0}$ and $\Delta \leq\left\lfloor\frac{n-\mathbf{1}}{\mathbf{2}}\right\rfloor$ |
| tree $S_{n, \Delta}^{\star}$ if $\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta$ |  |  |
| $(0,1)$ | tree $B_{n, \Delta}$ |  |
| $[1, \infty)$ | tree $B_{n, \Delta}$ | tree $S_{\Delta, n-\Delta}$ if $\left\lceil\frac{n}{2}\right\rceil \leq \Delta$ |

Table 2: Trees having the smallest and largest $R_{a}$ among trees of order $n$ and maximum degree $\Delta$ for different intervals.

It is interesting that in some cases there is only one tree having the extremal index, and in some cases there is a set of trees having the extremal index. To make this clearer, we included the words "tree" and "set" in the tables. Another interesting observation is that $B_{n, \Delta}$ has the smallest $R_{a}$ for every $a>0$. On the other hand, our results on $\chi_{a}$ show that there are several different trees having the smallest $R_{a}$ in that interval $(0, \infty)$.

In Table 1, we can see that any tree in $X_{n, \Delta}^{\prime}$ has the smallest $\chi_{a}$ if $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, and $S_{n, \Delta}^{\star}$ has the smallest $\chi_{a}$ if $\left\lceil\frac{n-1}{2}\right\rceil \leq \Delta$. So, both results hold for $\Delta=\frac{n-1}{2}$. It follows that if $n$ is odd, then the only tree in $X_{n, \frac{n-1}{2}}^{\prime}$ is $S_{n, \frac{n-1}{2}}^{\star}$.

Let us note that the value $a=0$ is not included in Tables 1 and 2, because trivially for every tree $T$, we have

$$
\chi_{0}(T)=\sum_{u v \in E(T)}\left[d_{T}(u)+d_{T}(v)\right]^{0}=\sum_{u v \in E(T)} 1=|E(T)|=n-1
$$

and

$$
R_{0}(T)=\sum_{u v \in E(T)}\left[d_{T}(u) d_{T}(v)\right]^{0}=n-1 .
$$

So, it remains to solve the cases included in Problems 3.1 and 3.2.
Problem 3.1. Among trees of order $n$ and maximum degree $\Delta$, find trees having the smallest $\chi_{a}$ for

- $a<0$ and $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$,
and trees having the largest $\chi_{a}$ for
- $a<-1.703$ and $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$,
- $0<a<1$,
- $a \geq 1$ and $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Problem 3.2. Among trees of order $n$ and maximum degree $\Delta$, find trees having the smallest $R_{a}$ for

- $a<0$ and $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$,
and trees having the largest $R_{a}$ for
- $a<-0.283$ and $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$,
- $0<a<1$,
- $a \geq 1$ and $\Delta \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.


## Acknowledgment

The work of T. Vetrík is based on the research supported by the National Research Foundation of South Africa (Grant Number 129252).

## References

[1] S. Ahmed, On the maximum general sum-connectivity index of trees with a fixed order and maximum degree, Discrete Math. Algorithms Appl. 13 (2021) \#2150042.
[2] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index ( $\chi_{\alpha}$ ) with given cyclomatic number when $\alpha>1$, Discrete Appl. Math. 257 (2019) 19-30.
[3] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311
[4] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[5] S. Elumalai, T. Mansour, On the general zeroth-order Randić index of bargraphs, Discrete Math. Lett. 2 (2019) 6-9.
[6] M. K. Jamil, I. Tomescu, General sum-connectivity index of trees and unicyclic graphs with fixed maximum degree, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 20 (2019) 11-17.
[7] H. Liu, X. Yan, Z. Yan, Bounds on the general Randić index of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 58 (2007) 155-166.
[8] Z. Raza, S. Balachandran, S. Elumalai, A. Ali, On general sum-connectivity index of trees of fixed maximum degree and order, MATCH Commun. Math. Comput. Chem. 88 (2022) 643-658.
[9] E. Swartz, T. Vetrík, Survey on the general Randić index: extremal results and bounds, Rocky Mountain J. Math. 52 (2022) 1177-1203.
[10] T. Vetrík, S. Balachandran, General Randić index of unicyclic graphs with given number of pendant vertices, Discrete Math. Lett. 8 (2022) 83-88.
[11] T. Vetrík, M. Masre, General eccentric connectivity index of trees and unicyclic graphs, Discrete Appl. Math. 284 (2020) 301-315.
[12] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.


[^0]:    *Corresponding author (VetrikT@ufs.ac.za).

