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Abstract

In this article, a new graph coloring, called the bq-coloring, is introduced. A bq-coloring of a graph G is a proper vertex
coloring of G with k colors such that every color class c admits a set of vertices S of size at most q provided that every
color except c appears in the neighborhood of S. The aim of this coloring is to generalize the domination constraint given in
the b-coloring of a graph where every color admits only one dominating vertex (adjacent to every other color). The largest
positive integer k for which a graph has a bq-coloring using k colors is the bq-chromatic number. Some classes of graphs for
which the bq-chromatic number has maximum value are presented. Also, the exact values of this parameter for paths and
cycles are given. Furthermore, some bounds for Cartesian products of graphs are presented.
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1. Introduction

We consider graphs without loops or multiple edges. Let G be a graph with vertex set V (G) and edge set E(G) where
|V (G)| is the order of G and |E(G)| is the size of G. In the graph G, the neighborhood of a vertex x ∈ V (G) is the set of
vertices adjacent to x and it is denoted NG(x). By extension, the neighborhood of a subset of vertices V ′ ⊆ V (G) is the set
of vertices in V (G)\V ′ adjacent to a vertex of V ′ (i.e. NG(V ′) =

⋃
v∈V ′ NG(v)\V ′). The degree of a vertex x is then defined

by dG(x) = |NG(x)| and the maximum degree of the graph is ∆(G) = max{dG(x)|x ∈ V (G)}. If there is no ambiguity,
parameters NG(x), NG(V ) and dG(x) are denoted respectively by N(x), N(V ) and d(x).

A proper k-coloring c : V (G) → {1, 2, . . . , k} of G is an assignment of colors 1, 2, . . . , k to the vertices of G such that
c(u) 6= c(v) for all adjacent vertices u and v. Note that if a vertex u has a neighbor colored by c, we say that u and c are
adjacent. By extension, a subset of vertices V ′ is adjacent to a set of colors C if every color of C is adjacent to at least one
vertex of V ′.

The smallest number of colors needed to have a proper coloring of a graph G is called its chromatic number and is
denoted χ(G). To determine the chromatic number is an NP-complete problem for non-bipartite graphs, i.e. χ(G) ≥ 3.
The parameter was intensively studied (recently [4, 11, 17]) and many derived parameters were defined. An achromatic
coloring of a graph G is a proper vertex coloring of G where every pair of colors appears on at least one pair of adjacent
vertices. The achromatic number of G, denoted ψ(G), is the maximum number of colors in any achromatic coloring of G.
The parameter was introduced by Harary and Hedetniemi in [8] and determining the achromatic number of a graph was
also proved as an NP-complete problem [20].

In a proper k-coloring, a subset of vertices Di ⊆ V (G) such that N(Di) contains a vertex of each color {1, 2, . . . , k}\{i} is
called a dominating set for the color i. Each vertex in such a subset is a dominating vertex. A b-coloring of a graph G is a
proper vertex k-coloring ofGwhere every color i, 1 ≤ i ≤ k, admits a dominating set of size one. Such a coloring is clearly an
achromatic coloring. The maximum number of colors within a b-coloring of a graphG is called the b-chromatic number and
denoted ϕ(G). This coloring was introduced by Irving and Manlove [10] and they proved the NP-completeness to determine
the b-chromatic number of a graph. This parameter was studied for many classes of graphs [1, 3, 5–7, 12, 14–16, 18, 19]
(see [13] for a survey on this parameter).

This property of domination is very interesting because there is a privileged relation between the color classes through
these dominating vertices. However, having only one dominating vertex for every color makes them very vulnerable to
structure modifications of the graph. The constraint, for a vertex, to be a dominating vertex is strong and the deletion
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of a dominating vertex or one of its neighbors can impact the entire coloring (since determining a new dominating vertex
is generally hard). In the following, we present a relaxed b-coloring of graphs where the size of dominating sets can be
larger than one. Thus in Section 2 we define the bq-coloring of a graph. We also introduce the bq-chromatic number as the
largest positive integer k for which a graph admits a bq-coloring using k colors. In Section 3 we propose some results on
this coloring. In particular, we present classes of graphs for which the bq-chromatic number has maximum value and we
prove exact values of the parameter for cycles and paths. We also propose a Nordhaus-Gaddum type inequality and some
bounds of the bq-chromatic number for Cartesian products of graphs. Finally in Section 4 we conclude and suggest further
work.

2. The bq-coloring of graphs

As described above, in a b-coloring of a graph the domination constraint is focused on only one vertex. We propose to
generalize this coloring by relaxing the domination property to larger dominating sets. A bq-coloring of a graph G is then
defined as a proper vertex coloring of G where each color class admits a dominating set of size at most q (and at least one).
The bq-chromatic number of G, denoted ϕq(G), is the maximum number of colors such that G admits a bq-coloring. In a
bq-coloring, we denote the dominating set for every color i by Di.

Definition 2.1. Let G be a graph. A bq-coloring of G is a proper vertex k-coloring of G such that every color i, 1 ≤ i ≤ k,
admits a set of dominating vertices denoted Di where 1 ≤ |Di| ≤ q and Di is adjacent to colors {1, 2, . . . , k}\{i}.

Note that if we required at least q dominating vertices for every color, with q > 1, in the definition of a bq-coloring, then
such a coloring would not necessarily exist. Therefore, it is better to assume 1 ≤ |Di| ≤ q and not |Di| ≥ q.

From this definition, we can see that such a coloring always exists since a b-coloring has dominating sets of size 1 (i.e.
ϕq(G) ≥ ϕ1(G) = ϕ(G) for q > 1). More generally, we have the following relation.

Claim 2.1. For any graph G, if q > 1, then ϕq(G) ≥ ϕq−1(G).

Proof. By Definition 2.1, a bq−1-coloring of G is also a bq-coloring of G.

By definition, the bq-coloring of a graph is an achromatic coloring. The bq-chromatic number can then be bounded by
the achromatic and b-chromatic numbers.

Property 2.1. Let G be a graph. Then
χ(G) ≤ ϕ(G) ≤ ϕq(G) ≤ ψ(G).

More particularly, the bq-chromatic number of a graph can be upper bounded by the maximum degree of this graph.

Theorem 2.1. For a graph G we have ϕq(G) ≤ q∆(G) + 1.

Proof. Each dominating set has at most q vertices of degree ∆(G). Therefore ϕq(G) ≤ q∆(G) + 1.

A relation between the bq-chromatic number of a graph and its stability number can also be established.

Theorem 2.2. Let G be a graph with stability number α. Then ϕq(G) ≤ n− α+ 1.

Proof. Let S be a stable set of G of order α. In a bq-coloring C of G, p colors are used in S (colors C = {1, 2, . . . , p} with
1 ≤ p ≤ α).
Consider p = 1. Since S is a maximum stable set, every vertex of G\S is adjacent to a vertex of S colored by 1. Thus
ϕq(G\S) ≤ n− α and ϕq(G) ≤ n− α+ 1.
Consider p ≥ 2. We distinguish two subcases. If none of the vertices in S is a dominating vertex in C , then at least p
vertices of G\S are colored with the colors of C. Otherwise, let c be a color of C with a dominating vertex in S. Since S is
stable, then the p− 1 other colors of C are on vertices of G\S. Thus from both subcases, at least p− 1 vertices of G\S are
colored with colors of C. The number of other colors is then at most (n− α)− (p− 1) and we deduce ϕq(G) ≤ n− α+ 1.

3. Some results on the bq-chromatic number of graphs

In this section, we present some results for the bq-chromatic number of some graphs. We present some cases for which the
upper bound of the parameter is reached, in particular for regular graphs and graphs with large independent sets. Then
we propose an inequality of Nordhaus-Gaddum type and we prove the exact value of the bq-chromatic number for paths
and cycles. Finally, we propose some results on the Cartesian product of graphs. We start the section with some simple
graphs.
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Theorem 3.1. Let Kn, Sn and Kn,n′ be respectively a complete graph of order n, a stable graph of order n, and a complete
bipartite graph with partitions of sizes n and n′. Then we have ϕq(Kn) = n, ϕq(Sn) = 1, and ϕq(Kn,n′) = 2 for any q ≥ 2.

Proof. The graph Kn cannot be properly colored if two vertices are in the same color class. Thus we have n dominating
sets of size 1 and ϕq(Kn) = n.

A coloring of Sn cannot have a dominating vertex for each color if it is colored with more than one color. Thus ϕq(Sn) = 1.
Finally, if a proper coloring ofKn,n′ has more than one color in a partition, these colors cannot have dominating vertices.

Thus at most one color appears in each partition and we have ϕq(Kn,n′) = 2.

We recall that χ(G) ≥ |V (G)|
α(G) ; see [2]. Now, we prove the following result.

Proposition 3.1. Let Kq,s be a complete bipartite graph. Let G be a connected Kq,s-free graph with q ≥ 2, then ϕq(G) ≤
(q + s− 1)χ(G) + 1− q.

Proof. For a graph G, we consider a bq-coloring of k colors where at least one dominating set D has size |D| = q (otherwise
ϕq(G) = ϕq−1(G)). Thus there exists a set S of k− 1 neighbors of D with distinct colors. Let H be the subgraph induced by
D ∪ S. By hypothesis on G we have α(H) ≤ q + s − 1. Moreover, it is clear that χ(H) ≤ χ(G). Thus k − 1 + q = |V (H)| ≤
α(H).χ(H) ≤ (q + s− 1)χ(G) and we deduce k ≤ (q + s− 1)χ(G) + 1− q.

Note that under conditions, if a graph is partially colored with a bq-coloring on k colors, this coloring can be extended
to the whole graph without introducing new colors.

Property 3.1. Let G be a graph. If an induced subgraph G′ of G is bq-colored with k colors, and every vertex of V (G)\V (G′)

has a degree lower than k, then G admits a bq-coloring with k colors.

Proof. For any non-colored vertex u ∈ V (G), since its degree is d(u) < k, then there exists a color c to properly color u, with
1 ≤ c ≤ k.

Regular graphs
We can note that for graphs with a sufficiently large independent set, the upper bound of the bq-chromatic number is
reachable. In a graph G, we denote by dist(u, v) the minimum distance between vertices u and v.

Theorem 3.2. Let G be a graph of maximum degree ∆. Consider integers q ≥ 2 and k = q2∆ + q. If G contains vertices
S = {u1, u2, . . . , uk} such that d(ui) = ∆ and dist(ui, uj) ≥ 4, then ϕq(G) = q∆ + 1, for every i, j ∈ {1, . . . , k}, i 6= j.

Proof. Consider the set of colors C = {1, 2, . . . , q∆+1}. Let Si be the subset of S defined by Si = {x(i−1)q+1, x(i−1)q+2, . . . , xiq},
with 1 ≤ i ≤ q∆ + 1 (note that

⋃q∆+1
i=1 Si = S). We have |N(Si)| = q∆ since the distance between two vertices of Si is at least

four. Color the vertices of Si with color i and the vertices ofN(Si) with the q∆ other colors of C . Due to the distance between
vertices of S, the partial coloring of G on (q∆ + 1) colors is proper, and set S is a dominating set of this partial coloring.
Since every non-colored vertex has a degree at most ∆ it can be colored properly by Property 3.1 to have a bq-coloring of G
where S is the dominating set. Therefore ϕq(G) ≥ q∆ + 1 and by Theorem 2.1 the result holds.

This property allows us to find some characteristics for regular graphs to get the upper bound for the bq-chromatic
number.

Theorem 3.3. Let G be a d-regular graph of order n. If n ≥ q2d4, then ϕq(G) = qd + 1, with d ≥ 3 and q ≥ 2 or d = 2 and
q ≥ 4.

Proof. Choose an arbitrary vertex u1. Remove it and its neighbors at distance at most three. The number of removed
vertices is at most 1 + d + d(d − 1) + d(d − 1)2 = d3 − d2 + d + 1. Repeat the operation q(qd + 1) times. Thus the number
of removed vertices is at most (q2d+ q)(d3 − d2 + d+ 1) = q2d4 + (q − q2)d3 + (q2 − q)d2 + (q2 + q)d+ q ≤ q2d4 if d ≥ 3 and
q ≥ 2 or d = 2 and q ≥ 4. In the stable set given by the chosen vertices (each of degree d = ∆(G)), the distance between
each vertex is at least four and by Theorem 3.2 we deduce ϕq(G) = qd+ 1.

Corollary 3.1. Let G be a d-regular graph of order n. If n ≥ q2d4 + 3 with d = 2 and q = 3 (respectively if n ≥ q2d4 + 6 with
d = q = 2), then ϕq(G) = qd+ 1.

Proof. Use the same proof as for Theorem 3.3. Remove an arbitrary vertex and its neighbors at distance at most three
(q(qd + 1) times) to finally remove nr = q2d4 + (q − q2)d3 + (q2 − q)d2 + (q2 + q)d + q vertices. Since nr ≤ q2d4 + 3 if d = 2

and q = 3, and nr ≤ q2d4 + 6 if d = q = 2, then nr ≤ n in both cases. And since the distance between two arbitrary chosen
vertices is at least four, then Theorem 3.2 gives ϕq(G) = qd+ 1.
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Inequality of Nordhaus-Gaddum type
Theorem 3.4. Let G be a graph of order n and G its complement. For q ≥ 2 we have ϕq(G) + ϕq(G) ≤ n.

Proof. Consider bq-colorings C and C of respectively G and G with respectively ϕq and ϕq colors. The dominating set of
the color i is denoted Di in C and Di in C . Moreover note that every class of color Ci in C gives a complete graph Kni

in
G, with 1 ≤ i ≤ ϕq. And remark that for any dominating set Di in C we have dG(Di) ≥ ϕq − 1 and dG(Di) ≤ n− ϕq − q + 1.
We distinguish two cases.
Suppose there exists a color i such that a vertex is a dominating vertex in C and in C (i.e. Di ∩ Di 6= ∅). Thus ϕq − 1 ≤
dG(Di) ≤ n− ϕq − q + 1. Therefore ϕq + ϕq ≤ n− q + 2 ≤ n since q ≥ 2.
If for every i, 1 ≤ i ≤ ϕq, we have Di ∩Di = ∅, then the number of vertices able to be dominating vertices in C is at most
n′ =

∑ϕq

i=1(ni−|Di|) ≤
∑ϕq

i=1(ni−1) ≤ n−ϕq, where ni is the number of vertices colored with color i. Thus ϕq ≤ n′ ≤ n−ϕq
and the result holds.

Cycles and paths
We now focus on the bq-coloring of cycles. We start by presenting the following results on large cycles.

Lemma 3.1. If q ≥ 2, k = 2q + 1 and n = qk, then ϕq(Cn) = 2q + 1.

Proof. Let V (Cn) = {v1, v2, . . . , vn}. Consider the complete graph Kk and let V (Kk) = {x1, x2, . . . , xk}. A shortest closed
walk in Kk that contains every of its edges is given by solving the Chinese postman problem and this walk has length
` = k2−k

2 because k is odd. Moreover in this walk, each vertex of Kk appears `
k = q times. Thus by traversing the ` edges of

such a walk, each edge (xj , xj′), with 1 ≤ j, j′ ≤ k, allows to color Cn by c(vi) = j where 1 ≤ i ≤ ` = qk. Every vertex colored
by j is then adjacent to two different colors and we have a bq-coloring with k colors where every vertex is a dominating
vertex. Thus ϕq(Cn) ≥ 2q + 1. Moreover Theorem 2.1 gives ϕq(Cn) ≤ 2q + 1 and the equality holds.

Corollary 3.2. If q ≥ 2, k = 2q + 1 and n ≥ qk + 2, then ϕq(Cn) = 2q + 1.

Proof. Let V (Cn) = {v1, v2, . . . , vn}. By Lemma 3.1 there exists a bq-coloring of Cqk with k colors, denoted C . Copy the
coloring C on the qk first vertices of Cn, then put c(vqk+1) = c(v1) and c(vn) = c(vqk) (note that c(v1) 6= c(vqk) in C ).
Dominating vertices in C keep dominating in the partial coloring ofCn and non-colored vertices have degree 2. By Property
3.1 we obtain a bq-coloring of Cn on 2q+1 colors. Since Theorem 2.1 gives ϕq(Cn) ≤ 2q+1, the equality holds. As in Lemma
3.1, note that every dominating vertex is adjacent to two different colors.

Then we propose a construction of a bq-coloring for smaller cycles.

Lemma 3.2. If q ≥ 2, k = 2q + 1 and qk − q ≤ n < qk, then ϕq(Cn) ≥ 2q.

Proof. Consider the cycleCqk and its coloring C on k colors given by Lemma 3.1. Note that in this coloring every dominating
set has size q and all the vertices are dominating vertices. Thus every vertex is adjacent to two different colors. Do the
following operations:

1. Remove the color k from C ,

2. Remove qk − n non-colored vertices (and connect their two neighbors, which have different colors),

3. Color remaining non colored vertices by Property 3.1 (they have degree 2).

Thus remaining dominating vertices given in C keep dominating and we have a bq-coloring ofCn with k−1 colors. Therefore
ϕq(Cn) ≥ 2q.

Corollary 3.3. If q ≥ 2, k = 2q + 1 and n = qk + 1, then ϕq(Cn) ≥ 2q.

Proof. Use the construction given in Lemma 3.2 to transform the coloring of Cqk+2 on 2q + 1 colors (Corollary 3.2) into a
coloring for Cn by removing one color and one dominating vertex of this color. As in Lemma 3.2 we see that the remaining
dominating vertices from the coloring ofCn+1 keep dominating and Property 3.1 completes the coloring to have a bq-coloring
of Cn with 2q colors.
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Before presenting the result on cycles, we recall the following result of Harary et al. [9] on the achromatic number of
cycles:

Theorem 3.5. [9] If k
⌈
k−1

2

⌉
≤ n < (k + 1)

⌈
k
2

⌉
, then

ψ(Cn) =

{
k − 1 if n = k

⌈
k−1

2

⌉
+ 1 and k odd,

k otherwise.

Thus we present the exact value of the bq-chromatic number for cycles.

Theorem 3.6. Let Cn be a cycle of order n ≥ 3. If q ≥ 2 and k = 2q + 1, then

ϕq(Cn) =


2q + 1 if n ≥ qk and n 6= qk + 1, (a)

2q if n = qk + 1 or qk − q ≤ n < qk, (b)

ϕq−1(Cn) if n < qk − q. (c)

Proof. Let V (Cn) = {v1, v2, . . . , vn}.

(a) Given by Lemma 3.1 and Corollary 3.2.

(b) Consider n = q(2q + 1) + 1. Let the integer s = 2q + 1. Since s is odd and n = s s−1
2 + 1, then Theorem 3.5 gives that

ψ(Cn) = s− 1 = 2q. By Property 2.1 we deduce ϕq(Cn) ≤ ψ(Cn) = 2q. Moreover Corollary 3.3 shows ϕq(Cn) ≥ 2q. Thus the
equality holds.
If qk − q ≤ n < qk, then Lemma 3.2 shows ϕq(Cn) ≥ 2q. Suppose there exists a bq-coloring of Cn with k′ ≥ 2q + 1 = k

colors. Since ∆(Cn) = 2, then dominating sets have at least q vertices and n ≥ qk′ ≥ qk which is a contradiction. Therefore
ϕq(Cn) ≤ 2q and the result holds.

(c) Consider n < qk− q. Claim 2.1 shows ϕq(Cn) ≥ ϕq−1(Cn). Suppose ϕq(Cn) > ϕq−1(Cn). Thus there exists a dominating
set D such that |D| = q, otherwise we have a contradiction since ϕq(Cn) = ϕq−1(Cn). Moreover every dominating vertex
x ∈ D is adjacent to at least one color not present in the neighborhood of the other dominating vertices ofD. Indeed if every
neighboring color of x is also in the neighborhood of another dominating vertex ofD, thenD′ = D\{x} is also a dominating
set of size |D′| < |D| = q and we have a contradiction too. Thus since |D| = q and every dominating vertex is adjacent to a
particular color, the coloring has at least 2q = k − 1 colors. Since ∆(Cn) = 2, then dominating sets have at least q vertices
(otherwise a dominating set is adjacent to at most 2q − 2 colors). Thus we have n ≥ q(k − 1), a contradiction. Therefore
ϕq(Cn) = ϕq−1(Cn).

We now present the exact value of the bq-chromatic number for paths.

Theorem 3.7. Let Pn be a path of order n ≥ 3. If q ≥ 2 and k = 2q + 1, then

ϕq(Pn) =


2q + 1 if n ≥ qk + 2 (a)

2q if qk − q ≤ n < qk + 2, (b)

ϕq−1(Pn) if n < qk − q. (c)

Proof. Let V (Pn) = {v1, v2, . . . , vn}.

(a) Consider the cycle Cn and its bq-coloring on k colors given by Corollary 3.2. Then remove the edge (vn−2, vn−1) to obtain
the graph Pn. It is clear that the coloring of Cn keeps a bq-coloring of Pn since neither vn−1 nor vn−2 is a dominating vertex.
Therefore k ≤ ϕq(Pn) ≤ 2q + 1 (by Theorem 2.1) and the result holds.

(b) We have qk − q ≤ n < qk + 2. Consider the path Pqk+2 and its coloring given in case (a) where every dominating vertex
is adjacent to two different colors. Uncolored vertices of color k. Remove qk + 2 − n non-colored vertices (and connect the
two neighbors of every removed vertex if it is not and endvertex of the path). Note that the remaining dominating vertices
given by the initial coloring keep dominating in the partial coloring of Pn. Finally color remaining non-colored vertices
(which have degree at most 2) by Property 3.1 to obtain a bq-coloring on k − 1 = 2q colors for Pn. Thus ϕq(Pn) ≥ 2q.
Suppose there exists a bq-coloring of Pn with k′ ≥ 2q+1 colors. By Theorem 2.1 we have ϕq(Pn) ≤ 2q+1, thus k′ = k = 2q+1.
Since k′ = 2q+1, each dominating set Di has size q, 1 ≤ i ≤ k′ (due to the maximum degree 2 of vertices). If all dominating
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vertices are internal vertices of Pn, then we have n ≥ k′|Di|+2 ≥ (2q+1)q+2, a contradiction. Thus at least one endvertex
of Pn is a dominating vertex. Let D be the dominating set containing this endvertex. Since |D| = q, D contains also either
q − 1 internal vertices and d(D) = 2(q − 1) + 1 = 2q − 1 < k′ − 1 (a contradiction to be a dominating set), or q − 2 internal
vertices and the second endvertex and d(D) = 2(q − 2) + 2 = 2q − 2 < k′ − 1 (a contradiction too). Therefore no bq-coloring
on k′ colors exists and ϕq(Pn) ≤ 2q.

(c) Consider n < qk − q. We use the same reasoning as in Theorem 3.6(c). Thus Claim 2.1 shows ϕq(Pn) ≥ ϕq−1(Pn) and
we suppose ϕq(Pn) > ϕq−1(Pn). We observe that at least one dominating set D has size |D| = q and every dominating
vertex x ∈ D is adjacent to a unique color not present in the neighborhoods of the other dominating vertices of D. Thus
the bq-coloring of Pn has at least 2q colors. Since ∆(Pn) = 2, then dominating sets have at least q vertices and n ≥ q(k− 1),
which is a contradiction. Therefore ϕq(Cn) = ϕq−1(Cn).

Cartesian product of graphs
The Cartesian product of two graphs G and H, denoted G�H, has the vertex set V (G) × V (H) and the neighborhood of
every vertex (x, y) is NG�H((x, y)) = (x×NH(y)) ∪ (NG(x)× y), where x ∈ V (G) ad y ∈ V (H). Thus in the graph G�H we
find several copies of graphs G and H denoted respectively by Gi and Hj , with 1 ≤ i ≤ |V (H)| and 1 ≤ j ≤ |V (G)|.

Proposition 3.2. Let G and H be two graphs, then ϕq(G�H) ≥ max{ϕq(G), ϕq(H)}.

Proof. Suppose ϕq(G) ≥ ϕq(H). Color the vertex (x, y) of G�H with c(x) + c(y) − 1 modulo ϕq(G). For an edge e =

((x, y1), (x, y2)) we have (y1, y2) ∈ E(H) and y1 and y2 have different colors in a bq-coloring of H. Thus edge e is properly
colored. Similarly we can show that edges ((x1, y), (x2, y)) are also properly colored. Thus the coloring of G�H is proper.
Moreover, choose a copy of G corresponding to a vertex y ∈ V (H) such that c(y) = 1. The coloring of this copy is similar to
the coloring of G and the dominating sets are found. Therefore the coloring is a bq-coloring of G�H.

If the graphs G and H are bipartite, one more color can be used in a bq-coloring of G�H.

Proposition 3.3. Let G be a bipartite graph. Let P3 be a path of order 3. Then ϕq(G�P3) ≥ ϕq(G) + 1.

Proof. Suppose that G admits a bq-coloring on k colors. The proof is given by construction. Let X and Y be the two vertex
partitions of G (and respectively Xi and Y i the two vertex partitions of the copy Gi in G�H, with 1 ≤ i ≤ 3).
Color the copyG2 with the coloring ofG. This gives dominating sets for colors 1 to k denotedDi in the partial coloring, with
1 ≤ i ≤ k. Color vertices of Y 1 and X3 with color k + 1. Then color vertices of X1 and Y 3 with the coloring of respectively
X and Y with these modifications:

• use a cyclic permutation of colors {1, 2, . . . , k − 2, k − 1} to use respectively colors {2, 3, . . . , k − 1, 1},

• color k is replaced by color k + 1.

In such a coloring, note that vertices ofDi, 1 ≤ i ≤ k, are adjacent to color k+1 either in Y 1 or inX3. Thus every setDi is a
dominating set in the final coloring. It remains to determine a dominating set for the color k+ 1. Consider the dominating
set Dk in G2. Choose the same set called D′ in the graph G′ = X3 ∪ Y 1. By construction, every vertex of D′ is adjacent to
color k in G2. Moreover, since vertices of Dk are adjacent to colors 1 to k− 1 in G2, then vertices of D′ are adjacent to colors
1 to k in G′. Thus D′ is the dominating set Dk+1 for the coloring of G�P3 and ϕq(G�P3) ≥ ϕq(G) + 1.

Theorem 3.8. Let G and H be two bipartite graphs with vertex partitions respectively XG, YG and XH , YH . If H is not a
disjoint union of K2, then ϕq(G�H) ≥ ϕq(G) + 1.

Proof. Let x be a vertex of XH and y1, y2 be two neighbors of x in YH . The induced subgraph given by vertices {y1, x, y2}
is a path P3. Proposition 3.3 shows that ϕq(G�P3) ≥ ϕq(G) + 1 and gives a coloring where Cx and Cy are the colorings of
copies of G corresponding to vertices x and y1 in H. Then for every vertex v ∈ XG (v 6= x) color the corresponding copy
of G in G�H by Cx and for every vertex w ∈ YG (w 6= y1, y2) color the corresponding copy of G in G�H by Cy. Since H is
bipartite, the coloring is proper and ϕq(G�H) ≥ ϕq(G) + 1.

Finally, if the induced subgraphs given by dominating sets of G and H are stable sets with a dominating set of size one,
the bq-chromatic number of G�H depends on ϕ(G) and ϕ(H).

Theorem 3.9. Let G and H be two graphs of orders respectively nG and nH . For q ≥ 2, G and H have bq-colorings of kG
and kH colors respectively (kG ≥ kH ) such that the subgraphs induced by their dominating sets are stable. In the coloring of
G (respectively H) if a dominating set has size 1, then ϕq(G�H) ≥ ϕq(G) + ϕq(H)− 1.
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Proof. Let SG = {x1, x2, . . . , xn} (respectively SH = {y1, y2, . . . , yn′}) be the subset of dominating vertices in the color-
ing of G (respectively H). The subset of remaining vertices is denoted UG = {xn+1, xn+2, . . . , xnG

} (respectively UH =

{yn′+1, yn′+2, . . . , ynH
}). Note that since SG and SH are stable, SG�SH is also stable. By hypothesis, SG (respectively

SH ) contains a unique dominating vertex for a color c (respectively c′), denoted xp with 1 ≤ p ≤ n (respectively yq with
1 ≤ q ≤ n′). Wlog, consider in each coloring that c = 1 (respectively c′ = 1).
We present a coloring for the graph G�H. Let C1 = {1, 2, . . . , kG} be a set of colors and CkG+1, CkG+2, . . . , CkG+kH−1 be
kH − 1 different circular permutations of C1 (possible since kG ≥ kH ). Start by coloring the copy Gq with the coloring of G.
Then for every vertex yi, with 1 ≤ i 6= q ≤ n′, a dominating vertex for color c (1 ≤ c ≤ kG), color the copy Gi as follow:

• the vertices of SiG with the color kG + c− 1,

• the vertices of U iG as the set UG with the color set CkG+c−1 (each color class used in the coloring of UG is replaced by
the corresponding color class given by CkG+c−1).

Note that since SH is stable, copies Gj are disjointed and the partial coloring is currently proper.
From the construction sets SiH , 1 ≤ i ≤ n, are already colored as in the initial coloring of H where the initial set of colors
{1, 2, . . . , kH} is replaced by {c(xi), kG + 1, kG + 2, . . . , kG + kH − 1}. We complete the coloring of Hi by coloring the sets
U iH with the same coloring as in H by using the set of colors {c(xi), kG + 1, kG + 2, . . . , kG + kH − 1} (color classes in the
initial coloring are replaced by the new color classes). Since the copies Hj are disjointed (because SG is stable), the partial
coloring is always proper. Note that Hp contains colors {1, kG + 1, kG + 2, . . . , kG + kH − 1}.
It remains to color the vertices ofUG�UH . From the coloring, vertices ofUpH are colored with colors {1, kG+1, kG+2, . . . , kG+

kH − 1}. For each vertex yi ∈ UpH , colored by c ∈ {1, kG + 1, kG + 2, . . . , kG + kH − 1}, color the vertices of U iG as the set
UG with the color set Cc. Thus, if c((xp, yi)) = 1, then copy Gi has the same coloring as G and when c((xp, yi)) ≥ kG + 1,
vertices of U iG have colors 1 to kG. Thus copies Gi, n′ ≤ i ≤ nH , are properly colored. Moreover, since two distinct color
classes of UpH are associated with two distinct circular permutations of C1, then copies Hj , n ≤ j ≤ nG, are also properly
colored. Therefore the coloring is proper. Figure 1 illustrates the above coloring.
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Figure 1: A bq-coloring of G, H and G�H, where white vertices are dominating vertices.
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We now prove that the coloring is a bq-coloring. Consider the set of vertices given by D = SqG ∪ SpH . From the above
construction, colors 1, 2, . . . , kG + kH − 1 appear D (colors 1, 2, . . . , kG on SqG and colors kG + 1, kG + 2, . . . , kG + kH − 1 on
SpH ). Furthermore, every color appears at most q times in D because the coloring is based on the dominating sets of G and
H. Then we check that every dominating vertex is adjacent to colors 1 to kG. Since Gq is colored as G, then vertices of SqG
are adjacent to these colors. Moreover, since xp is the unique dominating set for color 1 in the coloring of G and colors 1 to
kG appear on U iG, 1 ≤ i ≤ n′, then every vertex of SpH is also adjacent to these colors. Similarly, we check that vertices of D
are adjacent to colors kG + 1 to kG + kH − 1. Since Hp is colored as H with colors {1, kG + 1, kG + 2, . . . , kG + kH − 1}, then
vertices of SpH are adjacent to these colors. Moreover, since yq is the unique dominating set for color 1 in the coloring of H
and colors kG+ 1 to kG+kH − 1 appear on U jH , 1 ≤ j ≤ n, then every vertex of SqG is also adjacent to these colors. Therefore
we have a bq-coloring of G�H where D is a dominating set and ϕq(G�H) ≥ ϕq(G) + ϕq(H)− 1.

Note that the inequality of Theorem 3.9 is not obvious and we can find counterexamples. Thus we have ϕ1(P2) =

ϕ2(P2) = 2. Then a b1-coloring ofKn�P2 cannot have more than n colors otherwise some colors have no dominating vertex.
Thus ϕ1(Kn�P2) = ϕ1(Kn) with n ≥ 3. We can also see that P2�P2 ≡ C4 and ϕ2(P2�P2) = ϕ2(C4) = 2 = ϕ2(P2).

4. Conclusion

A b-coloring of a graph allows to determine a dominating vertex for each color, adjacent to every other color used in the
coloring. In this article, we introduced a relaxed b-coloring of graphs, called bq-coloring, in order to reduce the domination
constraints carried by the single dominating vertex of each color. Finding a vertex with strong constraints would be more
difficult than finding several vertices with the lowest constraints to replace it. Thus the bq-coloring is a proper vertex
coloring whose aim is to maximize the number of colors used to color a graph by determining a dominating set of size at
most q for every color. We positioned the bq-chromatic number relatively to other graph parameters (stability number,
chromatic, and achromatic numbers). We proposed some bounds and exact values for some classical classes of graphs in
particular for cycles, paths, regular graphs, and Cartesian product of graphs. Interesting questions could be to identify
the values of q to have ϕq(G) > ϕ(G) or to determine the minimum integer q to have ϕq(G) = ψ(G).

Replace a unique dominating vertex with a dominating set to reduce the constraints may imply dominating sets with
very different sizes. An extension of this coloring could be proposed. The equitable bq-coloring of a graph could be intro-
duced as a bq-coloring for which two dominating sets would differ in size by at most one. This allows to homogenize the
sizes of the dominating sets. If we denote by ϕeq(G) the maximum number of colors to have an equitable bq-coloring of
a graph G, we have clearly ϕq(G) ≥ ϕeq(G) ≥ ϕ(G). This second parameter could also be studied for different classes of
graphs.
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