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Abstract
A natural extension of the well-known Albertson irregularity of graphs is the so-called σ-irregularity. For a simple graph
G, it is defined as σ(G) =

∑
uv∈E(G)(dG(u) − dG(v))

2, where dG(v) denotes the degree of a vertex v of G. In this study,
we characterize trees with minimal and maximal σ-irregularity among trees with a given degree sequence. Specifically,
we show that greedy trees minimize σ-irregularity, while adopting trees maximize it among trees with a prescribed degree
sequence.
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1. Introduction

Let G be a simple undirected connected graph with |V (G)| = n vertices and |E(G)| = m edges. The degree of a vertex v in
G is the number of edges incident with v and it is denoted by dG(v). A graph G is regular if all its vertices have the same
degree, otherwise, it is irregular. Knowing how irregular a given graph is important in many applications and problems.

The imbalance of an edge e = uv ∈ E, defined as imb(e) = |dG(u)− dG(v)|, appears implicitly in the context of Ramsey
problems with repeat degrees [9], and later in the work of Chen, Erdős, Rousseau, and Schlep [12], where 2-colorings of
edges of a complete graph were considered. In [8], Albertson defined the irregularity of G as the sum of imbalances of all
edges of a graph, i.e.,

irr(G) =
∑

e∈E(G)

imb(e) =
∑

uv∈E(G)

|dG(u)− dG(v)|.

For results on the Albertson irregularity, we refer the readers to [2,4,8,18,19].
To overcome certain shortcomings of the Albertson irregularity, as pointed out in [1], a new measure of irregularity of

a graph, so-called the total irregularity of a graph, was defined as

irrt(G) =
1

2

∑
(u,v)∈V (G)×V (G)

|dG(u)− dG(v)| .

Results of the total irregularity as well as a comparison between the irregularity and the total irregularity of a graph was
studied in [3, 5, 6, 15, 16, 23]. Trying to avoid the absolute value calculation in the Albertson irregularity, one naturally
arrived at the irregularity measure σ(G) introduced in [20] and defined as

σ(G) =
∑

uv∈E(G)

(dG(u)− dG(v))2.

In [7] graphs with maximal σ-irregularity were characterized. The inverse σ-irregularity problem was solved in [20].
k-cyclic graphs with maximal σ-irregularity were determined in [10]. For complete split-like graphs, which represent a
broad subclass of bidegreed connected graphs, in [22] it was shown that for these graphs the equality σ(G) = n2Var(G)

holds. Here Var(G) is the variance of the vertex degrees of a graph G

Var(G) =
1

n

∑
v∈V (G)

dG(v)2 −

 1

n

∑
v∈V (G)

dG(v)

2

, (1)
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another well-established irregularity measure also known as Bell’s irregularity measure [11].
A sequence D = (d1, d2, . . . , dn) is graphical if there is a graph whose vertex degrees are di, i = 1, . . . , n. If in addition

d1 ≥ d2 ≥ · · · ≥ dn, then D is a degree sequence. In the rest of the paper we assume that the degrees of the pendent vertices
are excluded from the degree sequence.

For a tree T and i = 0, 1, . . . , let Li = Li(T ) be the set of vertices in T , whose minimum distance from to the set of
pendent vertices of T is i. Clearly, L0 is exactly the set of pendent vertices in T .

Lin, Gao, Chen, and Lin in [21], and Gan, Liu, and You in [17] introduced the so-called switching transformation when
they studied the atom-bond connectivity index. Next, we present it in the context of σ-irregularity.

Proposition 1.1. LetG = (V,E) be a connected graph with uv, xy ∈ E(G) and uy, xv /∈ E(G). LetH = G−uv−xy+uy+xv.
If d(u) ≥ d(x) and d(v) ≤ d(y), then σ(H) ≤ σ(G), with the equality if and only if d(u) = d(x) or d(v) = d(y).

Proof. The change of the σ-irregularity after the above transformation is

∆σ(H,G) = σ(H)− σ(G)

= (d(u)− d(y))2 + (d(x)− d(v))2 − (d(u)− d(v))2 − (d(x)− d(y))2

= 2(d(u)− d(x))(d(v)− d(y)) ≤ 0.

Observe that H in the above proposition is not necessarily connected. As it was pointed out in [13], if G is for example
the path vuwyx, then H is a disjoint union of K3 and K2. H is disconnected only if in G− uv − xy there is no v − u, v − y,
x− u, or x− y paths.

In the following two sections, we consider the trees with minimal and maximal σ-irregularity among trees with a given
degree sequence. The results, and their corresponding proofs, presented there are close to those presented in [14], where
trees of a given degree sequence that maximize the sum of the products of the degrees of adjacent vertices were determined.
Related results concerning the Randić index, atom-bond connectivity index and Wiener index were presented in [24–26].

2. Trees with fixed degree sequence and minimal σ-irregularity

First, we prove some properties of the trees with minimum σ-irregularity. These lead to an algorithm that constructs a
tree with minimum σ-irregularity, also known as a greedy tree.

Lemma 2.1. Let T be a tree with minimum σ-irregularity among the trees with fixed degree sequence. Let P = v1v2 . . . vt be
a path in T , where t ≥ 4 and d(v1) < d(vt). Then, d(v2) ≤ d(vt−1).

Proof. Assume that the claim of the proposition is not true and that d(v2) > d(vt−1). Let T ′ be the tree obtained by deleting
the edges v1v2 and vt−1vt, and adding the edges v1vt−1 and v2vt to T . Notice that T and T ′ have the same degree sequence.
With the above relation of the degrees d(v1), d(v2), d(vt−1), d(vt), applying Proposition 1.1, we get that σ(T ′) − σ(T ) < 0.
This is a contradiction to the initial assumption that T is a tree with minimum σ-irregularity.

As a consequence of Lemma 2.1, one can obtain the following three corollaries. The argument of the proof of the next
corollary is adopted from [14].

Corollary 2.1. Let T be a tree with minimum σ-irregularity among the trees with fixed degree sequence. Then there is no
path P = v1v2 . . . vt in T with t ≥ 3 such that d(v1) > d(vi) and d(vt) > d(vi) for some 2 ≤ i ≤ t− 1.

Proof. We assume that the above claim is false and that there is a path P = v1v2 . . . vt in T with t ≥ 3, such that for some
2 ≤ i ≤ t− 1, the relations d(v1) > d(vi) and d(vt) > d(vi) hold. Also, it holds that 2 ≤ d(vi).

Firstly, consider the case when d(vi) < d(vi+1). Let P ′ = v−kv−k+1 . . . v0v1 . . . vivi+1 be a path such that d(v−k) = 1.
Note that k ≥ 0, since d(v1) > d(vi). By Lemma 2.1, d(v−k) < d(vi+1) implies d(v−k+1) ≤ d(vi), and thus, d(v−k+1) < d(vi).
Again applying Lemma 2.1, d(v−k+1) < d(vi) implies d(v−k+2) ≤ d(vi), and consequently d(v−k+2) < d(vi). Repeating this
argument, we obtain d(v1) ≤ d(vi), which is a contradiction to the initial assumption d(v1) > d(vi).

Secondly, consider the case when d(vi) > d(vi+1). Now, let P ′ = vivi+1 . . . vtvt+1 . . . vt+k−1vt+k be a path such that
d(vt+k) = 1. Applying repeatedly Lemma 2.1 as in the previous case, we obtain that d(vi+1) ≥ d(vt+k−1), . . . , d(vi+1) ≥ d(vt),
and thus, d(vi) > d(vt), a contradiction to the assumption d(vi) < d(vt).
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Finally, assume that d(vi) = d(vi+1). Let p be the smallest index larger than i+ 1 such that d(vi) > d(vp) or d(vi) < d(vp)

is satisfied. Notice that if not before this is satisfied when p = t, namely then by the initial assumption d(vi) < d(vt). Then,
d(vi) = d(vp−1) < d(vp) or d(vi) = d(vp−1) > d(vp) and we can proceed as in one of the two previous cases, to obtain again a
contradiction.

Corollary 2.2. Let T be a tree with minimum σ-irregularity among the trees with fixed degree sequence. For every positive
integer d, the vertices with degrees at least d induce a subtree of T .

Proof. Let T ′ be the graph induced by the vertices of degree at least d. Assume that T ′ is not a tree. Let vi and vj be two
vertices that belong to different components of T ′. Consider the path P between vi and vj in T . Since vi and vj belong
to different components of T ′, there must exist a vertex vk in P with d(vk) < d. However, due to Corollary 2.1, it is not
possible.

Corollary 2.3. Let T be a tree with minimum σ-irregularity among the trees with fixed degree sequence. Then there are no
two non-adjacent edges v1v2 and v3v4 such that d(v1) < d(v3) ≤ d(v4) < d(v2).

Proof. Having two edges v1v2 and v3v4, let consider the possible paths in T , which contain all vertices v1, v2, v3, and v4 and
begin and end with one them. There are four such possibilities: P1 = v1v2 . . . v3v4, P2 = v1v2 . . . v4v3, P3 = v2v1 . . . v3v4, and
P4 = v2v1 . . . v4, v3.

If there exist the path P1, by the claim of the corollary, we have that d(v1) < d(v4) and d(v3) < d(v2). On the other hand,
applying Lemma 2.1, it follows that d(v2) ≤ d(v3), which is a contradiction.

Similarly, contradictions can be shown if there exist paths P2, P3, and P4.

By Corollary 2.2 the degrees of vertices of T at level Li are not larger than the degrees of vertices at Li+1 for all
i = 0, 1, 2, . . . . Thus the vertices of larger degrees have farther distances from L0 than the vertices of smaller degrees. It
is not difficult to see that the tree T with minimal σ-irregularity is not always uniquely determined up to isomorphism
(see Figure 1 for an example). However, having the above properties one can efficiently construct a tree with minimal
σ-irregularity, with the algorithm first proposed by Delorme et al. [10] and later generalized by Wang [24] and named the
greedy algorithm. Now, by this algorithm, an extremal tree T that achieves the minimum σ-irregularity among the trees
with fixed degree sequence D = {d1, d2, . . . , dm} can be constructed as:

1. Label the vertex with the largest degree as v (the root).

2. Label the neighbors of v as v1, v2, . . . , assign the largest degree available to them such that d(v1) ≥ d(v2) ≥ . . . .

3. Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the largest degrees available and that
d(v11) ≥ d(v12) ≥ . . . , then do the same for v2, v3, . . . .

4. Repeat 3. for all newly labeled vertices, always starting with the neighbors of the labeled vertex with the largest
degree whose neighbors are not labeled yet.

Theorem 2.1. Given the degree sequence, the greedy tree minimizes the σ-irregularity.

Proof. The greedy tree obviously satisfies Lemma 2.1 and Corollaries 2.1–2.3. However, there could be other trees for which
these conditions hold (see Example 2.1). Now, we only show that the σ-irregularity of the greedy tree achieves the minimum
among these trees. Let denote the greedy tree by T . Assume that T does not minimize the σ-irregularity. Let T ′ be a rooted
tree that has minimum σ-irregularity. Since T ′ is not a greedy tree, there are two vertices vi and vk, with d(vi) ≥ d(vk)

and i > k, such that vi has a child vj and vk has a child vl, with d(vk) ≤ d(vl). We apply the switching transformation from
Proposition 1.1 by deleting edges vivj and vkvl and adding edges vivl and vkvi. Observe that after this transformation, the
resulting tree remains connected since there is a path between vi and vk. After this transformation, the σ-irregularity does
not increases. We apply as many times the switching transformation as above until we obtain a greedy tree T . After all
this transformations the σ-irregularity does not increase. Since T ′ is a tree with minimum σ-irregularity and the obtained
greedy tree T does not have larger σ-irregularity, it follows that the greedy tree has also minimum σ-irregularity.

Example 2.1. In Figure 1 two trees, which have maximum σ-irregularity among all trees with degree sequence D =

(5, 5, 5, 4, 3, 3, 3, 2, 2), are presented. The tree T is obtained by the “greedy algorithm”.

We would like to note that for a given degree sequence, the greedy tree, which achieves the minimum σ-irregularity
also archived the minimum (general) Randić index for α < 0 [24], the minimum atom-bond connectivity index [17,21,25]
and the minimum Wiener index [26].
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Figure 1: Two extremal trees of degree sequence D = (5, 5, 5, 4, 3, 3, 3, 2, 2) with the minimum σ-irregularity. Observe that
only T is obtained by the “greedy algorithm”.

3. Trees with fixed degree sequence and maximal σ-irregularity

As in the previous section, here also several results and definition will be adapted from [17,21,24,25]. The next result is
crucial for characterizing and constructing trees with maximum σ-irregularity and a given degree sequence.

Lemma 3.1. Let T be a tree with maximum σ-irregularity. Then, every path with end-vertices of degree 1, can be enumerated
as v0v1 . . . vtvt+1 in T , where d(v0) = d(vt+1) = 1 and 1 ≤ i ≤ (t+ 1)/2, such that the following properties hold:

(a) if i is odd, then d(vi) ≥ d(vt+1−i) ≥ d(vk) for i < k < t+ 1− i;

(b) if i is even, then d(vi) ≤ d(vt+1−i) ≤ d(vk) for i < k < t+ 1− i.

Proof. We prove the above claims by induction on i.
For i = 1, we have to show that d(v1) ≥ d(vt) ≥ d(vk), for 2 ≤ k ≤ t− 1.
Firstly, if d(v1) ≥ d(vt) does not hold, then we enumerate the vertices in the considered path in the reversed order.

Then, we stay by this enumeration.
Secondly, we show that d(v1) ≥ d(vk). We assume that it is not true and that d(v1) < d(vk). We obtain a tree T ′ from

T by deleting the edges v0v1 and vkvk+1 and adding edges v0vk and v1vk+1. With the constraints, d(vk+1) > d(v0) = 1 and
d(vk) > d(v1), by Proposition 1.1, we have that σ(T ′)− σ(T ) > 0. This contradicts the claim that T is a tree with maximum
σ-irregularity, and thus, d(v1) ≥ d(vk), 2 ≤ k ≤ t− 1, holds.

The relation d(vt) ≥ d(vk), 2 ≤ k ≤ t− 1, we prove similarly. Now, we delete the edges vtvt+1 and vk−1vk and add edges
vtvk−1 and vt+1vk from T obtaining the tree T ′. With the assumption d(vt) < d(vk) and the relation d(vk−1) > d(v0) = 1, by
Proposition 1.1, we obtain that σ(T ′) − σ(T ) > 0. This is again a contradiction. It follows that d(vt) ≥ d(vk), for 2 ≤ k ≤ t

and thereby the case i = 1 is proven.
Now assume that i ≥ 2 is even. Then i − 1 is odd, and by the induction hypothesis, we may assume that d(vi−1) ≥

d(vt−i+2) ≥ d(vk), for i− 1 < k < t+ 2− i. We want to show that d(vi) ≥ d(vt+1−i) ≥ d(vk), for i < k < t+ 1− i. Assume that
this is not true and that d(vi) > d(vt+1−i) > d(vk). Here, we delete the edges vi−1vi and vkvk+1 and add the edges vi−1vk
and vivk+1 to T obtaining a tree T ′ with same degree sequence as T . For i < k < t + 1 − i, it holds that d(vi−1) > d(vk+1)

and d(vi) > d(vk). Thus, σ(T ′)− σ(T ) > 0, which is a contradiction to the maximum optimality of T , and we may conclude
that d(vi) ≥ d(vk), for i ≤ k ≤ t+ 1− i. In the same way, we can prove d(vi) ≥ d(vt+1−i).

When i ≥ 2 is odd, we can similarly show d(vi) ≥ d(vt+1−i) ≥ d(vk) by the same argument as we use above for even i.

Lemma 3.1 implies the following weaker statement:

Corollary 3.1. In a tree with maximum σ-irregularity, let vi ∈ Li for i = 0, 1, . . . , then we may assume, for j > i ≥ 1, that

• d(vi) ≥ d(vj) if i is odd;

• d(vi) ≤ d(vj) if i is even.

For a tree T , let d∗ be the minimum degree of vertices in the set L1(T ). Let V ∗p (T ) represent the set of pendant vertices
whose adjacent vertices have a degree of d∗ in tree T . Let V ∗p (T ) be the set of pendant vertices in tree T that are not part
of V ∗p (T ).

Lemma 3.2. Let v′ and v′′ be two vertices of a tree T such that v′ ∈ V ∗p (T ) and v′′ ∈ V ∗p (T ). We obtain trees T ∗1 and T ∗2 by
identifying the roots ri of an arbitrary tree Ti with v′ and v′′, respectively. Then, σ(T ∗1 ) > σ(T ∗2 ).
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Proof. Suppose v1 and v2 are adjacent to v′ and v′′, respectively. Obviously, d(v1) < d(v2). It holds

σ(T ∗1 )− σ(T ∗2 ) = (d(v1)− (d(ri) + 1))2 + (1− d(v2))2 − (1− d(v1))2 − (d(v2)− (d(ri) + 1))2

= (d(v1)− (d(ri) + 1))2 + (1− d(v2))2

= −2d(ri)(d(v1)− d(v2)) > 0.

By Lemma 3.2, a tree with maximum σ-irregularity is obtained by attaching a tree Ti to a vertex in T . We now construct
an extremal tree with a given degree sequence using the following adopting algorithm [17]. The obtained tree will be
referred to as an adopting tree.

Let D = (d1, d2, . . . , dm) represent the degree sequence corresponding to the non-pendant vertices v1, v2, . . . , vm. Recall
that, as per the definition of a degree sequence given in the introduction, it is assumed that d1 ≥ d2 ≥ · · · ≥ dm

1. We create subtrees Ti as follows:

• T1 is rooted at r1 and is assigned dm − 1 children whose degrees are d1, d2, . . . , ddm−1. These dm − 1 children are
exclusively adjacent to pendant vertices, in addition to being adjacent to a non-pendant root vertex.

• T2 is rooted at r2 and is assigned ddm−1 − 1 children whose degrees are ddm , ddm+1, . . . , ddm+ddm−1−2. Similarly,
except to the root r2, these ddm−1 − 1 children are solely adjacent to pendant vertices.

• We continue similarly to create trees T3, T4, . . . rooted at r3, r4, . . ., each of which is assigned dm−2−1, dm−3−1, . . .

children, respectively.

2. We terminate this process by the tree Tl rooted at rl when one of the following conditions is met: either there are
fewer than dm−l+1 − 1 children available for assignment, or there are no remaining degrees to choose from for Tl+1.
As a result, we obtain subtrees T1, T2, . . . , Tl with d(rl) = dm−l+1.

3. Let r = rl and T = Tl. We obtain T (l−1) from T and Tl−1 rooted at rl−1 by identifying a pendant vertex from T with
rl−1. Next, we let T = T (l−1). We obtain T (l−2) from T and Tl−2 rooted at rl−2. This process continues similarly for
Tl−3, . . . , T1.

4. We terminate the construction by setting T = T 1.

The tree T obtained by the above algorithm is not necessarily unique, since a subtree Tl may be rooted in several ways, as
shown below in Example 3.1.

Theorem 3.1. Given a degree sequence, an adopting tree T obtained by the adopting algorithm has the maximum
σ-irregularity.

Proof. It is easy to check that T satisfies Lemma 3.1 and Corollary 3.1. Next, we show that T indeed has the maximum
σ-irregularity among the trees with the same degree sequence. Assume that it is not true and that another tree T ′, with
the same degree sequence as T , not obtained by the adopting algorithm, has the maximum σ-irregularity, larger than σ(T ).

Next, we show that T ′ must contain the subtree T1, as described in the adopting algorithm, otherwise, it cannot have
maximum σ-irregularity. Recall that the subtree T1 has a radius 2, and it is rooted at r1(vm). Its children are vertices with
degrees d1, d2, . . . , ddm−1 and its grandchildren all have a degree 1. A vertex of degree d1 in T is adjacent to a vertex of
degree dm and d1 − 1 vertices of degree 1. Assume that in T ′ this is not true and a vertex of degree d1 is adjacent to a non-
pendent vertex of degree dj different from dm. Observe that dj > dm, since dm is the smallest degree of the non-pendent
vertices. Let dk be a degree of a non-pendent vertex in T ′ adjacent to a vertex of degree dm. It holds that dk ≥ dm. Also
dk 6= d1, due to the above assumption that a vertex of degree d1 is not adjacent to a non-pendent vertex of degree dm. Thus,
d1 > dk, since d1 is the largest degree. Denote by vj , vk, and vm, the vertices with degrees dj , dk, and dm, respectively. Let
T ′′ = T ′ − v1vj − vmvk + v1vm + vjvk. Then,

σ(T ′′)− σ(T ′) = −(d1 − dj)2 − (dm − dk)2 + (d1 − dm)2 + (dj + dk)2 = 2(d1 − dk)(dj − dm) > 0.

This is a contradiction on the assumption that T ′ has maximum σ-irregularity. It follows that T ′ has a maximum
σ-irregularity if in T ′ v1 is adjacent to a vertex with degree dm. With this conclusion, applying the same argument we
can show that if T ′ has a maximum σ-irregularity then v2 is adjacent to a vertex with degree dm. We may continue with
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the same argumentation for v3, v4, . . . , vm−1. Thus, we may conclude that T ′ has a maximum σ-irregularity if it contains
T1 as subtree.

Similarly, we may conclude that the rest of the subtrees Ti, i = 2, . . . , l, must be subtrees of T ′ if T ′ has maximum
σ-irregularity.

Lemma 3.2 guarantees the way of connecting the subtrees Ti, i = 1, . . . l such that the resulting tree has maximum
σ-irregularity. Observe that in this way, the subtrees Ti, i = 1, . . . l are connected by the adopting algorithm. Therefore,
T ′ must be isomorphic to one of the trees, if there is more than one, obtained by the adopting algorithm. Thus, we may
conclude that T ′ and T have the maximum σ-irregularity.

Example 3.1. In Figure 2 four trees, which have maximum σ-irregularity among all trees with degree sequence D =

(5, 5, 5, 4, 3, 3, 3, 2, 2), are presented. All trees T, T ′, T ′′, and T ′′′ can be obtained by the “adopting algorithm”.

T T ′

r2

T2

r3

T3

r4

T4

r1

T1

r(r4)

r3 r2

r1

r3

r1r2

r3 r3

r2 r2r1

r1

T ′′ T ′′′

r(r4)

r(r4) r(r4)

Figure 2: The subgraphs T1, T2, T3, and T4 generated from the degree sequence D = (5, 5, 5, 4, 3, 3, 3, 2, 2) as described
in the first step of the “adopting algorithm”. Based on these subtrees, the four trees T, T ′, T ′′, and T ′′′ with maximum
σ-irregularity are obtained.

Notice also here that for a given degree sequence, the adopting tree, which achieves the maximum σ-irregularity also
achieved the maximum (general) Randić index for α > 0 [24], and the minimum atom-bond connectivity index [17,25].

4. Conclusion and further work

In this work, we characterize the trees with minimum and maximum σ-irregularity of given order and fixed degree se-
quence. The trees, which have minimal (respectively maximal) values for several graph topological invariants (including
the (general) Randić index, the atom-bond connectivity index, the Albertson irregularity) also minimize/maximize the
σ-irregularity.
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It is easy to see that the greedy tree is always unique. The tree generated by the adopting algorithm is unique when
all degrees larger than one occur only once in the degree sequence. However, in general, it is not unique.

Problem 4.1. Find the sufficient and necessary conditions for the extremal tree with respect to σ-irregularity to be unique.

When the tree with extremal σ-irregularity is not unique it will be of interest to find a way to enumerate all of them.

Problem 4.2. Modify the greedy and adopting algorithms such that they generate all trees with minimal, respectively
maximal, σ-irregularity.
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[25] R. Xing, B. Zhou, Extremal trees with fixed degree sequence for atom-bond connectivity index, Filomat 26 (2012) 683–688.
[26] X.-D. Zhang, Q.-Y. Xiang, L.-Q. Xu, R.-Y. Pan, The Wiener index of trees with given degree sequences, MATCH Commun. Math. Comput. Chem. 60 (2008) 623–644.

172


	Introduction
	Trees with fixed degree sequence and minimal -irregularity.
	Trees with fixed degree sequence and maximal -irregularity.
	Conclusion and further work

