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Abstract

The total vertex irregularity strength tvs(G) of a simple graph G(V,E) is the smallest positive integer k so that there exists
a function ϕ : V ∪ E → [1, k] provided that all vertex-weights are distinct, where a vertex-weight is the sum of labels of
a vertex and all of its incident edges. In the paper [Nurdin, E. T. Baskoro, A. N. M. Salman, N. N. Gaos, Discrete Math.
310 (2010) 3043–3048], two conjectures regarding the total vertex irregularity strength of trees and general graphs were
posed as follows: (i) for every tree T , tvs(T ) = max{d(n1 + 1)/2e, d(n1 + n2 + 1)/3e, d(n1 + n2 + n3 + 1)/4e}, and (ii) for every
graph G with minimum degree δ and maximum degree ∆, tvs(G) = max{d(δ +

∑i
j=1 nj)/(i + 1)e : i ∈ [δ,∆]}, where nj

denotes the number of vertices of degree j. In this paper, we disprove both of these conjectures by giving infinite families of
counterexamples.
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1. Introduction

All (multi)graphs considered here are finite and undirected. We follow [5,12] for terminologies and notations not defined
in this paper. For a (multi)graph G, denote by δ the minimum degree of vertices of G, and by ∆ the maximum degree of
vertices of G. A vertex that has degree one is called a pendant vertex. Any non-pendant vertex of degree at least two is
called an exterior vertex if it is adjacent to a pendant vertex, otherwise it is called an interior vertex. Any edge incident to
a pendant vertex is called a pendant edge, otherwise it is called an interior edge. Given integers a, b with a 6 b, we write
[a, b] := {a, a+ 1, . . . , b}.

Let G = (V,E) be a graph. Let k be a positive integer. We say that a function ϕ : V ∪ E → [1, k] is a vertex irregular
total k-labeling of G if wt(u) 6= wt(v) for every pair of two vertices u, v of G, where wt(v), the vertex-weight of v, is given
by wt(v) = ϕ(v) +

∑
uv∈E ϕ(uv). The smallest k for which G admits a vertex irregular total labeling is known as the total

vertex irregularity strength of G and is denoted by tvs(G).
The notion of total vertex irregularity strength was introduced by Bača et al. [3] inspired by the work of Chartrand et

al. [4] who defined the classical irregularity strength of graphs. Since then, this graph invariant has gained a significant
interest from many graph theorists around the globe. Some recent results on this subject can be seen in [1,7,10,13]. For
a comprehensive survey on graph labelings, one may consult Gallian’s survey [6].

In [9], a general lower bound for the total vertex irregularity strength of any tree T with maximum degree ∆ was derived
as follows:

tvs(T ) > max{ti : i ∈ [1,∆]}, (1)

where

ti = d(
i∑

j=1

nj + 1)/(i+ 1)e

and nj is the number of vertices of degree j. Susanto et al. [14] reduced the number of variables involved in (1) and proved
that

tvs(T ) > max{t1, t2, t3}.
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For general graphs, it was also proved in [9] that

tvs(G) > max

{⌈
δ +

∑i
j=1 nj

i+ 1

⌉
: i ∈ [δ,∆]

}
, (2)

for every graph G with minimum degree δ and maximum degree ∆. In the same paper, they proposed the two conjectures
given below; the first of which is a special case of the second.

Conjecture 1.1. [9] For every tree T , tvs(T ) = max {t1, t2, t3}.

Conjecture 1.2. [9] For any graph G consisting of ni vertices of degree i with minimum degree δ and maximum degree ∆,

tvs(G) = max

{⌈
δ +

∑i
j=1 nj

i+ 1

⌉
: i ∈ [δ,∆]

}
.

Results supporting Conjectures 1.1 and 1.2 have been provided for many tree classes [13,16–18], and for general graph
classes [8,11]. However, in general, both of these conjectures are still open.

Recently, we characterized all trees having total vertex irregularity strength t1 [15]. In the quest of characterizing trees
with total vertex irregularity strength t2 and t3, unexpectedly, we find counterexamples to Conjecture 1.1. In particular,
we construct an infinite family of trees with maximum degree at least three having total vertex irregularity strength one
more than that of Conjecture 1.1. By utilizing some graph operations, we also obtain an infinite family of general graphs
with total vertex irregularity strength one more than that of Conjecture 1.2. Our main purpose in this paper is to prove
the following theorem.

Theorem 1.1. There are infinitely many connected graphs G consisting of ni vertices of degree i with minimum degree one
and maximum degree ∆ > 3 that satisfy

tvs(G) = max

{⌈∑i
j=1 nj + 1

i+ 1

⌉
: i ∈ [1,∆]

}
+ 1.

Consequently, there are infinitely many trees T with maximum degree ∆ > 3 that satisfy

tvs(T ) = max{t1, t2, t3}+ 1.

The proof of Theorem 1.1 is given in Section 3. Beforehand, we present in Section 2 some definitions that we need to
construct our counterexamples. In Section 4, we give some consequences of Theorem 1.1 and provide some questions for
further study.

2. Some definitions

We begin by defining two graph operations that will be needed in constructing our counterexamples.

Definition 2.1. Let G be a (multi)graph and uv ∈ E(G). The D-substitution of uv is defined by removing uv and adding
a digon (two parallel edges) e1, e2 with e1 = e2 = xy, and connecting u to x and v to y.

Definition 2.2. Let G be a (multi)graph and uv, u′v′ ∈ E(G), uv 6= u′v′. The E-subdivision of uv and u′v′ is defined by
subdividing uv and u′v′ once each, and joining the two subdivided vertices.

Our counterexamples are constructed in three steps, where the second step is defined recursively. The next definition
provides the basis of the recursive step.

Definition 2.3. Let p > 2, q ∈ {0, 1}, and ∂ > 4. Let T0 be a tree consisting only of p+ 2 + (∂ − 2)q vertices of degree one, p
vertices of degree three and q vertices of degree ∂. Define Tp,q as the class of all trees constructed from T0 by attaching exactly
two pendant vertices to every vertex of degree one in T0.

Obviously, every T ∈ Tp,q has order 4p + (3∂ − 5)q + 6 with maximum degree ∆ = 3 if q = 0, and ∆ = ∂ if q = 1. Also,
every exterior vertex in T is of degree three. Now we are ready to define the recursive step of our construction.

Definition 2.4. Let p > 2 and q ∈ {0, 1}. Let Gp,q be the class of all (multi)graphs defined recursively as follows.
Basis step: Every tree T ∈ Tp,q is a member of Gp,q.
Recursive step: If a (multi)graph G is a member of Gp,q then a (multi)graph G′ obtained from G by D-substituting r (> 0)

edges of G and E-subdividing s (> 0) pairs of two edges of G, where r + s > 0, is also a member of Gp,q.
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From Definition 2.4, it follows that for every (multi)graph G ∈ Gp,q there exists a non-negative integer g, a tree T ∈ Tp,q,
and a sequence of (multi)graphs T = G0, G1, . . . , Gg = G so that Gi+1 is obtained from Gi by D-substituting ri edges of Gi

and E-subdividing si pairs of two edges of Gi, where ri + si > 0 for each i. Moreover, the integer g and the subsequence
G1, G2, . . . , Gg−1 may not be unique. If there are two integers g and g′ with corresponding subsequences G1, G2, . . . , Gg−1
and G′1, G′2 . . . , G′g′−1, respectively, then

∑g−1
i=0 (ri + si) =

∑g′−1
i=0 (r′i + s′i). Figure 1 illustrates two different subsequences G1

and G′1, G′2 in the construction of a graph G ∈ G2,0 from a basis tree T ∈ T2,0.

T

G1

G

G′
1 G′

2

r0 = 1, s0 = 2 r1 = 0, s1 = 2

r′0 = 1, s′0 = 1

r′1 = 0, s′1 = 2

r′2 = 0, s′2 = 1

Figure 1: Two different constructions of a (multi)graph G ∈ G2,0 from a basis tree T ∈ T2,0.

The last step of the construction is given in the next definition.

Definition 2.5. Let p > 2 and q ∈ {0, 1}. Let G ∈ Gp,q with sequence T = G0, G1, . . . , Gg = G, for some T ∈ Tp,q and
non-negative integer g. Suppose EInt = E1

Int ∪ E2
Int be a partition of interior edges of G, where E1

Int is the set of all interior
edges joining vertices of degree three, and E2

Int is the set of all other interior edges in G.
Define G∗ as a graph obtained from G by subdividing every edge in E1

Int either one or two times, and subdividing every
edge in E2

Int either zero or one time so that G∗ contains exactly 4p+ (∂ − 2)q + 6
∑g−1

i=0 (ri + si) + 1 vertices of degree two but
no multiple edges. Denote by G∗p,q the class of all possible G∗ constructed from all G ∈ Gp,q.

We note that the edge subdivisions in Definition 2.5 are always feasible. To see this, let us consider the argument
as follows. By simple calculation, the number of interior edges in T ∈ Tp,q is 2p + (∂ − 1)q + 1. Furthermore, every
D-substitution of an edge inGi contributes three new interior edges toGi+1, and every E-subdivision of a pair of two edges
in Gi contributes three new interior edges to Gi+1. So, the number of interior edges in G ∈ Gp,q is

|E1
Int|+ |E2

Int| = |EInt| = 2p+ (∂ − 1)q + 3

g−1∑
i=0

(ri + si) + 1.

As |E2
Int| = ∂q, we have

2|E1
Int|+ |E2

Int| = 4p+ (∂ − 2)q + 6

g−1∑
i=0

(ri + si) + 2.

Thus, if we subdivide all edges in E1
Int twice and |E2

Int| − 1 in E2
Int once, or we subdivide |E1

Int| − 1 in E1
Int twice, one edge

in E1
Int once, and all edges in E2

Int once, then we obtain the required number of degree two in G∗.
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Since any interior edge in G ∈ Gp,q is subdivided at most two times, any vertex of degree two in G∗ ∈ G∗p,q is always
adjacent to a vertex of degree three. Moreover, since any pendant edge in G is not subdivided, any pendant vertex in G∗ is
always adjacent to a vertex of degree three.

By Definition 2.3, it is clear that any tree T ∈ Tp,q has 2p + (∂ − 2)q + 2 vertices of degree three and p + (∂ − 2)q + 2

exterior vertices. So, the difference between these two numbers is p > 2. Furthermore, the D-substitution of an edge in
Gi increases the number of exterior vertices in Gi+1 by at most one, and increases the number of vertices of degree three
in Gi+1 by two. Also, the E-subdivision of a pair of two edges in Gi increases the number of exterior vertices in Gi+1 by at
most one, and increases the number of vertices of degree three in Gi+1 by two.

Let ` denotes the number of exterior vertices of G∗ ∈ G∗p,q. Then, by the above argument, we have that ` + 2 is at most
2p+ (∂ − 2)q + 2

∑g−1
i=0 (ri + si) + 2, the number of vertices of degree three in G∗.

3. Proof of Theorem 1.1

First, we prove the first part of the theorem. Let G∗ ∈ G∗p,q for p > 2 and q ∈ {0, 1}. Our aim is to show that

tvs(G∗) = max

{⌈∑i
j=1 nj + 1

i+ 1

⌉
: i ∈ [1,∆]

}
+ 1.

We know that G∗ has 2p + 2(∂ − 2)q + 4 vertices of degree one, 4p + (∂ − 2)q + 6
∑g−1

i=0 (ri + si) + 1 vertices of degree two,
2p+ (∂ − 2)q + 2

∑g−1
i=0 (ri + si) + 2 vertices of degree three, and q vertex of degree ∂. With respect to (2),

tvs(G∗) > max

{⌈∑i
j=1 nj + 1

i+ 1

⌉
: i ∈ [1,∆]

}
= 2p+ (∂ − 2)q + 2

g−1∑
i=0

(ri + si) + 2.

Let

k = 2p+ (∂ − 2)q + 2

g−1∑
i=0

(ri + si) + 2.

For the sake of contradiction, assume that there exists a vertex irregular total k-labeling ofG∗. Then the integers 2, 3, . . . , 4k

must be realizable as the vertex weights of degrees one, two, and three. In particular, the weights 3k + 1, 3k + 2, . . . , 4k

must be assigned to the vertices of degree three since otherwise, a vertex of degree j, j ∈ {1, 2} or one of its incident edges
would receive label greater than k, a contradiction.

Let v1, v2, . . . , vk be the vertices of degree three with wt(vi) = 3k+ i for i ∈ [1, k]. Clearly, the weight 2 must be assigned
to a pendant vertex, say u1. The vertex u1 must be adjacent to v1 since otherwise, the vertex vj for some j > 1, or one of its
incident edges would receive label greater than k, a contradiction. So v1 is labeled k, u1v1 is labeled 1 and other incident
edges of v1 are labeled k.

Assume that the weight 3 is assigned to a vertex of degree two, say x. Then x is adjacent to vj for some j > 1. As xvj is
labeled 1 and wt(vj) > 3k + 1, vj or one of its incident edges would receive label greater than k, a contradiction. Thus the
weight 3 must be assigned to a pendant vertex, say u2. By similar argument with the previous one, we get that u2 must be
adjacent to v2, and so v2 is labeled k, u2v2 is labeled 2 and other incident edges of v2 are labeled k.

By repeating the above process for the weights 4, 5, . . . , `+ 1, we find that for i ∈ [3, `], the weight i+ 1 must be assigned
to a pendant vertex ui that is adjacent to vi, which implies that vi is labeled k, uivi is labeled i and other incident edges of
vi are labeled k.

As `+ 2 6 k, the weight `+ 2 must be assigned to a vertex of degree two, say y. Then y is adjacent to vj for some j > `.
Since the label of yvj is at most ` and wt(vj) > 3k + `, vj or one of its incident edges would receive label greater than k, a
contradiction. Therefore

tvs(G∗) > k + 1.

Let us construct a total labeling ϕ on vertices and edges of G∗ as follows. Let v1, v2, . . . , v` be the exterior vertices of G∗
so that vi is adjacent to two pendant vertices for i ∈ [1, 2p+ 2(∂ − 2)q − `+ 4], and vi is adjacent to one pendant vertex for
i ∈ [2p+ 2(∂ − 2)q − `+ 5, `]. By the symbol vij we mean the jth pendant vertex adjacent to vi. Then, we define

ϕ(vi1) = 1 for i ∈ [1, `],

ϕ(vi2) = i for i ∈ [1, 2p+ 2(∂ − 2)q − `+ 4],

ϕ(vivi1) = i for i ∈ [1, `],

ϕ(vivi2) = k for i ∈ [1, 2p+ 2(∂ − 2)q − `+ 4],
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ϕ(vi) = k for i ∈ [1, `].

Let x1, x2, . . . , xk−` be the interior vertices of degree three in G∗. For i ∈ [1, k− `], let yi be a vertex of degree two so that
yi is adjacent to xi and another vertex y′i of degree two, and yi 6= y′j for i 6= j. Then, we define

ϕ(xi) = k + 1 for i ∈ [1, k − `],

ϕ(yi) = 1 for i ∈ [1, k − `],

ϕ(y′i) = 2p+ 2(∂ − 2)q − `+ i+ 4 for i ∈ [1, k − `− 1],

ϕ(y′k−`) = k − `,

ϕ(xiyi) = `+ i− 1 for i ∈ [1, k − `],

ϕ(yiy
′
i) = 1 for i ∈ [1, k − `− 1],

ϕ(yk−`y
′
k−`) = 2p+ 2(∂ − 2)q − `+ 5.

Suppose that z1, z2, . . . , z`−p−(∂−2)q−2, z′1, z′2, . . . , z′`−p−(∂−2)q−2 are the vertices of degree two such that ziz′i ∈ E(G∗) for
i ∈ [1, `− p− (∂ − 2)q − 2]. Then, we define

ϕ(zi) = 2 for i ∈ [1, `− p− (∂ − 2)q − 2],

ϕ(z′i) = 3 for i ∈ [1, `− p− (∂ − 2)q − 2],

ϕ(ziz
′
i) = k + 2p+ 2(∂ − 2)q − 2`+ 2i+ 2 for i ∈ [1, `− p− (∂ − 2)q − 2].

Finally, we assign k to all the remaining edges, 2, 3, . . . , k to the (k − 1) remaining vertices of degree two, and 1 to a vertex
of degree ∂ (if exists).

From the above construction, the weights of pendant vertices form the set

{2, 3, . . . , `+ 1} ∪ {k + 1, k + 2, . . . , k + 2p+ 2(∂ − 2)q − `+ 4}.

For the vertices of degree two, three, and ∂ (if exists), their corresponding weights are of the forms {` + 2, ` + 3, . . . , k} ∪
{k + 2p+ 2(∂ − 2)q − `+ 5, k + 2p+ 2(∂ − 2)q − `+ 6, . . . , 3k}, {3k + 1, 3k + 2, . . . , 4k}, and {∂k + 1}, respectively. Moreover,
it is obvious that the labels used in the construction are at most k + 1. Thus ϕ is a vertex irregular total (k + 1)-labeling
of G∗, and so

tvs(G∗) = k + 1. (3)

Next, we prove the second part of the theorem. Let T ∈ Tp,q for p > 2 and q ∈ {0, 1}. Then, T ∗ is a tree and a member
of G∗p,q. Therefore,

tvs(T ∗) = max

{⌈∑i
j=1 nj + 1

i+ 1

⌉
: i ∈ [1,∆]

}
+ 1 = max{t1, t2, t3}+ 1 = 2p+ (∂ − 2)q + 3.

This finishes the proof of the theorem.
An example of a graph G∗ ∈ G∗2,1 with total vertex irregularity strength 15 can be found in Figure 2.

4. Some consequences and questions

Ali et al. [2] defined a modification of a vertex irregular total labeling called a modular vertex irregular total labeling. A
total labeling ϕ : V ∪ E → [1, k] of a graph G on n vertices is called a modular vertex irregular total k-labeling of G if the
modular total vertex-weights, wt(v) = ϕ(v) +

∑
uv∈E ϕ(uv) (mod n), are all distinct. The least integer k for which there

exists a modular vertex irregular total labeling is called the modular total vertex irregularity strength of G, denoted by
mtvs(G). Obviously, for a graph G,

mtvs(G) > tvs(G). (4)

Recall that the set of vertex-weights under the vertex irregular total labeling ϕ of G∗ described in the previous section
is {2, 3, . . . , 4k} if q = 0, and {2, 3, . . . , 4k, ∂k + 1} if q = 1, where k = 2p + (∂ − 2)q + 2

∑g−1
i=0 (ri + si) + 2. Evidently, when

q = 0, the modular total vertex-weights in the set {2, 3, . . . , 4k} are all distinct.
Now let q = 1, and ∂ = 4a + b for some integers a > 1 and b ∈ [0, 3]. Then ∂k + 1 = (4a + b)k + 1 ≡ bk + 1 (mod 4k). If

b = 0 then the modular total vertex-weights in the set {2, 3, . . . , 4k, ∂k + 1} are all distinct. If b ∈ [1, 3] then we modify the
labeling ϕ in the following way. Let u1, u2, . . . , u4k denote the vertices of G∗ so that under the labeling ϕ,

wt(ui) = i+ 1 for i ∈ [1, 4k − 1],
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Figure 2: A vertex irregular total 15-labeling of a graph G∗ ∈ G∗2,1.

wt(u4k) = ∂k + 1.

For i ∈ [bk, 3k+`−1], increase by 1 the label of the vertex ui. Next, for i ∈ [3k+`, 4k−1] and some j ∈ [k+2p+2∂−`+1, 3k−1],
increase by 1 the label of the edge uiuj , and decrease by 1 the label of the vertex uj .

Then, the weights of the vertices ubk, ubk+1, . . . , u4k−1 increase by 1 and the others remain unchanged, that is

{wt(ui) : i ∈ [1, 4k]} = {2, 3, . . . , 4k + 1, ∂k + 1}\{bk + 1},

which means that the modular total vertex-weights in this set are all distinct. Furthermore, the labels used in the modified
labeling belong to the set {1, 2, . . . , k + 1}. Therefore, mtvs(G∗) 6 k + 1. Combining this with (3) and (4), mtvs(G∗) = k + 1.
Thus, the next corollary holds.

Corollary 4.1. Let p > 2 and q ∈ {0, 1}. Let G ∈ Gp,q with sequence T = G0, G1, . . . , Gg = G, for some T ∈ Tp,q and some
non-negative integer g. Then, for every graph G∗ ∈ G∗p,q,

mtvs(G∗) = 2p+ (∂ − 2)q + 2

g−1∑
i=0

(ri + si) + 3.

Let T ∈ Tp,1 for p > 2. Clearly, the number of vertices of degree one, two, three, and ∂ in T is 2p+ 2∂, 4p+ ∂ − 1, 2p+ ∂,
and 1, respectively. If ∂ = 4 then

n3 = 2p+ 4 = 1 +
4p+ 3

2
+

3

2
= n4 +

n2
2

+
3

2
⇔ n2 = 2n3 − 2n4 − 3.
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Similarly, if ∂ = 5 then

n4 = 0 = 2p+ 5− 4p+ 4

2
− 3

2
− 3

2
= n3 −

n2
2
− 3n5

2
− 3

2
⇔ n2 = 2n3 − 2n4 − 3n5 − 3.

Consequently, the results of Susilawati et al. [16] (Theorems 3 and 4) and Susilawati et al. [17] (Theorems 2.3 and 2.4)
should be revised. In particular, for a tree T with t2 = t3, tvs(T ) may not be equal to max{t1, t2, t3}. This leads to the
following question.

Question 4.1. What are the necessary and sufficient conditions for a tree T with tvs(T ) > max{t1, t2, t3}?

In Theorem 1.1, we have presented infinite families of trees and general graphs containing pendant vertices, whose the
total vertex irregularity strength is one more than that of Conjectures 1.1 and 1.2, respectively. Until now, we could not
find graphs without pendant vertices which are counterexamples to Conjecture 1.2, and so we propose the following.

Question 4.2. Does there exist a graph without pendant vertices which is a counterexample to Conjecture 1.2?

Finally, we also ask a natural question regarding the upper bound on the total vertex irregularity strength of arbitrary
graphs.

Question 4.3. Does there exist a constant c so that for every graph G consisting of ni vertices of degree i with minimum
degree δ and maximum degree ∆,

tvs(G) 6 max

{⌈
δ +

∑i
j=1 nj

i+ 1

⌉
: i ∈ [δ,∆]

}
+ c?
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