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Abstract

Let G be a graph of order n. A spanning subgraph F of G is said to be a P≥k-factor of G if every component of F is a path
with at least k vertices, where k ≥ 2. In this paper, we introduce the concept of an ID-P≥k-factor critical graph; a graph G is
said to be an ID-P≥k-factor critical graph if for any independent set I of G, G− I admits a P≥k-factor. We prove that a graph
G of a given order is an ID-P≥2-factor critical graph if its binding number is at least 2. We also prove that a graph G of a
fixed order is an ID-P≥3-factor critical graph if its binding number is at least 9

4
. Furthermore, we show that the obtained

results are the best possible in some sense.
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1. Introduction

In this work, we consider only undirected finite graphs which have no multiple edges and no loops. Let G = (V (G), E(G))

be a graph, where V (G) denotes the vertex set of G and E(G) denotes the edge set of G. For every x ∈ V (G), dG(x) denotes
the degree of x in G and NG(x) denotes the neighborhood of x in G. We define δ(G) = min{dG(x) : x ∈ V (G)}. For any
X ⊆ V (G), G[X] denotes the subgraph of G induced by X, and we define NG(X) = ∪x∈XNG(x) and G−X = G[V (G) \X].
A set Y ⊆ V (G) is independent if G[Y ] has no edges. We denote by I(G) the set of isolated vertices of G and by i(G) the
number of isolated vertices of G. We use Kn to denote the complete graph of order n, and use Kn,m to denote the complete
bipartite graph with partite sets A and B, with |A| = n, |B| = m, and A∪B = V (Kn,m). Let G1 and G2 be two graphs. The
graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1), y ∈ V (G2)} is denoted by G1 ∨G2.

The binding number of a graph was first introduced by Woodall [15], and is defined as follows:

bind(G) = min

{
|NG(X)|
|X|

: ∅ 6= X ⊆ V (G), NG(X) 6= V (G)

}
.

Lemma 1.1 (see [15]). Let G be a graph of order n and let β be a positive real. If bind(G) ≥ β, then δ(G) ≥ n− n−1
β .

A spanning subgraph F of G is said to be a path factor of G if all components of F are paths. We denote by Pk the path
with k vertices, and write P≥k = {Pi|i ≥ k}, where k is a positive integer. Therefore, a P≥k-factor means a path factor, each
component of which is a path with at least k vertices. It is easy to see that a perfect matching is a P≥2-factor with each
component being P2. A graph G is called an ID-P≥k-factor critical graph if for any independent set I of G, G− I admits a
P≥k-factor.

Let R be a graph. If R − u has a perfect matching for every vertex u of R, then R is called factor-critical. A graph H is
called a sun ifH = K1, H = K2 orH is the corona of a factor-critical graph R with at least three vertices, i.e., H is obtained
from R by adding a new vertex w = w(u) together with a new edge uw for any u ∈ V (R). A sun with at least six vertices is
called a big sun. We denote the number of sun components of a graph G by sun(G).

Vergnas [10] posed a criterion for a graph having a P≥2-factor. Matsubara, Matsumura, Tsugaki and Yamashita [9]
provided a degree sum condition for the existence of path factors in bipartite graphs. Kelmans [8] obtained some results
about path factors in claw-free graphs. Zhang and Zhou [17] gave two necessary and sufficient conditions for graphs to
have P≥k-factors containing any given edge e, where k = 2, 3. Zhou, Wu and Xu [29] presented two results on the existence
of path factors in graphs with prescribed properties. In [13,16,20,21,26,27] several results on the graphs admitting path
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factors were derived. The relationships between binding number and graph factors can be found in [1,7,11,18]. For more
results on graph factors, we refer the reader to [2,6,12,14,19,22–25,28,30].

Vergnas [10] proved a necessary and sufficient condition for a graph having a P≥2-factor.

Theorem 1.1 (see [10]). A graph G has a P≥2-factor if and only if i(G−X) ≤ 2|X| for any X ⊆ V (G).

Kaneko [3] obtained a necessary and sufficient condition for a graph having a P≥3-factor, which is very useful in the
proof of our main theorems; Kano, Katona and Király [5] provided a simpler proof for the mentioned result of Kaneko.

Theorem 1.2 (see [3,5]). A graph G has a P≥3-factor if and only if sun(G−X) ≤ 2|X| for any X ⊆ V (G).

A claw is a graph isomorphic toK1,3; namely, the graph with four vertices and three edges having a common end-vertex.
A graph is called claw-free if it contains no induced subgraph isomorphic to a claw. Kaneko, Kelmans and Nishimura [4]
proved the following result on the existence of a P3-factor in a claw-free graph.

Theorem 1.3 (see [4]). Suppose that G is a 2-connected claw-free graph of order n. If n ≡ 1 (mod 3), then G − {x} has a
P3-factor for some x ∈ V (G).

Kelmans [8] proved that if we replace 2-connected by 3-connected in Theorem 1.3, then a stronger claim holds.

Theorem 1.4 (see [8]). Suppose that G is a 3-connected claw-free graph of order n. If n ≡ 1 (mod 3), then G − {x} has a
P3-factor for any x ∈ V (G).

Theorem 1.5 (see [8]). Suppose that G is a 3-connected claw-free graph of order n. If n ≡ 2 (mod 3), then G− {x, y} has a
P3-factor for every edge xy in G.

Note that {x} is an independent set ofG for any x ∈ V (G). Motivated by Theorems 1.3 and 1.4, we consider the following
more general question: For any independent set I of a graph G, does G− I have a path factor? In other words, is a graph
G an ID-path factor critical graph?

In this paper, we provide two binding-number conditions for graphs to be ID-P≥k-factors critical graphs when k = 2, 3;
the results about these conditions are proved in Sections 2 and 3, respectively. Our main results imply that the answer to
the above question is positive.

2. Binding numbers and ID-P≥2-factor critical graphs

Theorem 2.1. A graph G of order n is an ID-P≥2-factor critical graph if its binding number bind(G) ≥ 2.

Remark 2.1. We show that the binding number condition bind(G) ≥ 2 = 4
2 in Theorem 2.1 cannot be replaced by bind(G) ≥

4
3 . In order to demonstrate this, we construct a graph G = (3K1∨K1)∨3K1. It is obvious that bind(G) = 4

3 . Set I = V (3K1)

and H = G− I = 3K1 ∨K1. Let X = V (K1). Thus, we obtain

i(H −X) = i(3K1) = 3 > 2 = 2|X|.

In light of Theorem 1.1, H = G− I has no P≥2-factor. Hence, G is not an ID-P≥2-factor critical graph.

Proof of Theorem 2.1. For an independent set I of G, take H = G − I. Suppose that the result is not true. Then by
Theorem 1.1, there exists a vertex subset X of H satisfying

i(H −X) > 2|X|. (1)

It follows from (1) that i(H −X) ≥ 1, which implies NG(V (G) \ (I ∪X)) = NG(V (H) \X) 6= V (G). Combining this with the
definition of bind(G) and the hypothesis of Theorem 2.1, we have

2 ≤ bind(G) ≤ |NG(V (G) \ (I ∪X))|
|V (G) \ (I ∪X)|

≤ |V (G)| − i(G− I −X)

|V (G)| − |I| − |X|
=
n− i(H −X)

n− |I| − |X|
,

that is,
i(H −X) ≤ 2|I|+ 2|X| − n. (2)

In order to complete the proof of Theorem 2.1, we first prove the following claim.

Claim 2.1. |I| ≤ n−1
2 .
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Proof of Claim 2.1. Since I is an independent set of G and dG(x) ≥ δ(G) for every x ∈ I, we have

n ≥ dG(x) + |I| ≥ δ(G) + |I|. (3)

In terms of (3) and Lemma 1.1, we get
n ≥ δ(G) + |I| ≥ n− n− 1

2
+ |I|,

which implies
|I| ≤ n− 1

2
.

Thus, Claim 2.1 is verified. �

It follows from (2) and Claim 2.1 that

i(H −X) ≤ 2|I|+ 2|X| − n ≤ n− 1 + 2|X| − n = 2|X| − 1,

which contradicts (1). Therefore, Theorem 2.1 is verified.

3. Binding numbers and ID-P≥3-factor critical graphs

Theorem 3.1. A graph G of order n is an ID-P≥3-factor critical graph if its binding number bind(G) ≥ 9
4 .

Remark 3.1. We show that the condition bind(G) ≥ 9
4 in Theorem 3.1 cannot be replaced by bind(G) ≥ 9

5 . In order to
demonstrate this, we construct a graph G = (3K1 ∨ K1) ∨ 3K2. It is easy to see that bind(G) = 9

5 . Let I = V (3K1) and
H = G− I. For X = V (K1), we have

sun(H −X) = sun(3K2) = 3 > 2 = 2|X|.

In terms of Theorem 1.2, H = G− I has no P≥3-factor. Therefore, G is not an ID-P≥3-factor critical graph.

Proof of Theorem 3.1. For an independent set I of G, set H = G − I . Assume that the result is not true. Then by
Theorem 1.2, there exists a vertex subset X of H such that

sun(H −X) > 2|X|. (4)

In order to complete the proof of Theorem 3.1, we first prove the following claim.

Claim 3.1. |I| ≤ 4
9 (n− 1).

Proof of Claim 3.1. Since dG(x) ≥ δ(G) for every x ∈ I, where I is an independent set of G, we conclude

n ≥ dG(x) + |I| ≥ δ(G) + |I|. (5)

According to (5) and Lemma 1.1, we have

|I| ≤ n− δ(G) ≤ n− (n− 4

9
(n− 1)) =

4

9
(n− 1).

This completes the proof of Claim 3.1. �

Assume that there exist “a” isolated vertices, bK2’s and c big sun components H1, H2, · · · , Hc, where |V (Hi)| ≥ 6 for
1 ≤ i ≤ c, in H −X. Obviously, we obtain

sun(H −X) = a+ b+ c. (6)

Using (4) and (6), we get
a+ b+ c = sun(H −X) ≥ 2|X|+ 1 ≥ 1. (7)

In the following, we consider two cases depending on whether a = 0 or not.

Case 1. a ≥ 1.
It is obvious that i(G − (I ∪X)) = i(H −X) = a ≥ 1. By the definition of bind(G) and the hypothesis of Theorem 3.1, we
have

9

4
≤ bind(G) ≤ |NG(V (G) \ (I ∪X))|

|V (G) \ (I ∪X)|
≤ n− a
n− |I| − |X|

,

that is,
0 ≥ 5

4
n− 9

4
|I| − 9

4
|X|+ a. (8)
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Note that n ≥ |I|+ |X|+ a+ 2b+ 6c. In view of (4), (7), (8) and Claim 3.1, we obtain

0 ≥ 5

4
n− 9

4
|I| − 9

4
|X|+ a

=
5

4
n− 9

5
|I| − 9

20
|I| − 9

4
|X|+ a

≥ 5

4
n− 9

5
· 4
9
(n− 1)− 9

20
|I| − 9

4
|X|+ a

=
9

20
n− 9

20
|I| − 9

4
|X|+ a+

4

5

≥ 9

20
(|I|+ |X|+ a+ 2b+ 6c)− 9

20
|I| − 9

4
|X|+ a+

4

5

=
9

20
(a+ 2b+ 6c)− 9

5
|X|+ a+

4

5

>
9

20
(2a+ 2b+ 2c)− 9

5
|X|+ 4

5

>
9

20
(2sun(H −X))− 9

5
· sun(H −X)

2
+

4

5

=
4

5
,

which is a contradiction.

Case 2. a = 0.
By (7), we get b + c ≥ 1. Hence, there exist two vertices x, y of H ′ = bK2 ∪ H1 ∪ H2 ∪ · · · ∪ Hc such that dH′(x) = 1 and
xy ∈ E(H ′). Thus, we have

i(G− (I ∪X ∪ {y})) = i(H − (X ∪ {y})) = 1.

Combining this with the definition of bind(G) and the hypothesis of Theorem 3.1, we obtain

9

4
≤ bind(G) ≤ |NG(V (G) \ (I ∪X ∪ {y}))|

|V (G) \ (I ∪X ∪ {y})|
≤ n− 1

n− |I| − |X| − 1
,

which implies
0 ≥ 5

4
n− 9

4
|I| − 9

4
|X| − 5

4
. (9)

Note that a = 0, and so n ≥ |I|+ |X|+ 2b+ 6c. It follows from (7), (9) and Claim 3.1 that

0 ≥ 5

4
n− 9

4
|I| − 9

4
|X| − 5

4

=
5

4
n− 9

5
|I| − 9

20
|I| − 9

4
|X| − 5

4

≥ 5

4
n− 9

5
· 4
9
(n− 1)− 9

20
|I| − 9

4
|X| − 5

4

=
9

20
n− 9

20
|I| − 9

4
|X| − 9

20

≥ 9

20
(|I|+ |X|+ 2b+ 6c)− 9

20
|I| − 9

4
|X| − 9

20

=
9

10
(b+ 3c)− 9

5
|X| − 9

20

≥ 9

10
(b+ c)− 9

5
|X| − 9

20

≥ 9

10
sun(H −X)− 9

5
· sun(H −X)− 1

2
− 9

20

=
9

20
,

which is a contradiction. Thus, Theorem 3.1 holds.
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