Research Article

Some results about ID-path-factor critical graphs

Zhiren Sun ${ }^{1}$, Sizhong Zhou ${ }^{2, *}$
${ }^{1}$ School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
${ }^{2}$ School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China

(Received: 27 August 2023. Received in revised form: 25 October 2023. Accepted: 2 November 2023. Published online: 13 November 2023.)
© 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a graph of order n. A spanning subgraph F of G is said to be a $P_{\geq k}$-factor of G if every component of F is a path with at least k vertices, where $k \geq 2$. In this paper, we introduce the concept of an ID- $P_{\geq k}$-factor critical graph; a graph G is said to be an ID- $P_{\geq k}$-factor critical graph if for any independent set I of $G, G-I$ admits a $P_{\geq k}$-factor. We prove that a graph G of a given order is an ID- $P_{\geq 2}$-factor critical graph if its binding number is at least 2 . We also prove that a graph G of a fixed order is an ID- $P_{\geq 3}$-factor critical graph if its binding number is at least $\frac{9}{4}$. Furthermore, we show that the obtained results are the best possible in some sense.

Keywords: graph; independent set; binding number; $P_{\geq k}$-factor; ID- $P_{\geq k}$-factor critical graph.
2020 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction

In this work, we consider only undirected finite graphs which have no multiple edges and no loops. Let $G=(V(G), E(G))$ be a graph, where $V(G)$ denotes the vertex set of G and $E(G)$ denotes the edge set of G. For every $x \in V(G), d_{G}(x)$ denotes the degree of x in G and $N_{G}(x)$ denotes the neighborhood of x in G. We define $\delta(G)=\min \left\{d_{G}(x): x \in V(G)\right\}$. For any $X \subseteq V(G), G[X]$ denotes the subgraph of G induced by X, and we define $N_{G}(X)=\cup_{x \in X} N_{G}(x)$ and $G-X=G[V(G) \backslash X]$. A set $Y \subseteq V(G)$ is independent if $G[Y]$ has no edges. We denote by $I(G)$ the set of isolated vertices of G and by $i(G)$ the number of isolated vertices of G. We use K_{n} to denote the complete graph of order n, and use $K_{n, m}$ to denote the complete bipartite graph with partite sets A and B, with $|A|=n,|B|=m$, and $A \cup B=V\left(K_{n, m}\right)$. Let G_{1} and G_{2} be two graphs. The graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$ is denoted by $G_{1} \vee G_{2}$.

The binding number of a graph was first introduced by Woodall [15], and is defined as follows:

$$
\operatorname{bind}(G)=\min \left\{\frac{\left|N_{G}(X)\right|}{|X|}: \emptyset \neq X \subseteq V(G), N_{G}(X) \neq V(G)\right\}
$$

Lemma 1.1 (see [15]). Let G be a graph of order n and let β be a positive real. If bind $(G) \geq \beta$, then $\delta(G) \geq n-\frac{n-1}{\beta}$.
A spanning subgraph F of G is said to be a path factor of G if all components of F are paths. We denote by P_{k} the path with k vertices, and write $P_{\geq k}=\left\{P_{i} \mid i \geq k\right\}$, where k is a positive integer. Therefore, a $P_{\geq k}$-factor means a path factor, each component of which is a path with at least k vertices. It is easy to see that a perfect matching is a $P_{\geq 2}$-factor with each component being P_{2}. A graph G is called an ID- $P_{\geq k}$-factor critical graph if for any independent set I of $G, G-I$ admits a $P_{\geq k}$-factor.

Let R be a graph. If $R-u$ has a perfect matching for every vertex u of R, then R is called factor-critical. A graph H is called a sun if $H=K_{1}, H=K_{2}$ or H is the corona of a factor-critical graph R with at least three vertices, i.e., H is obtained from R by adding a new vertex $w=w(u)$ together with a new edge $u w$ for any $u \in V(R)$. A sun with at least six vertices is called a big sun. We denote the number of sun components of a graph G by $\operatorname{sun}(G)$.

Vergnas [10] posed a criterion for a graph having a $P_{\geq 2}$-factor. Matsubara, Matsumura, Tsugaki and Yamashita [9] provided a degree sum condition for the existence of path factors in bipartite graphs. Kelmans [8] obtained some results about path factors in claw-free graphs. Zhang and Zhou [17] gave two necessary and sufficient conditions for graphs to have $P_{\geq k}$-factors containing any given edge e, where $k=2,3$. Zhou, Wu and Xu [29] presented two results on the existence of path factors in graphs with prescribed properties. In [13, 16, 20, 21, 26, 27] several results on the graphs admitting path

[^0]factors were derived. The relationships between binding number and graph factors can be found in [1, 7, 11, 18]. For more results on graph factors, we refer the reader to [2, $6,12,14,19,22-25,28,30]$.

Vergnas [10] proved a necessary and sufficient condition for a graph having a $P_{\geq 2}$-factor.
Theorem 1.1 (see [10]). A graph G has a $P_{\geq 2}$-factor if and only if $i(G-X) \leq 2|X|$ for any $X \subseteq V(G)$.
Kaneko [3] obtained a necessary and sufficient condition for a graph having a $P_{\geq 3}$-factor, which is very useful in the proof of our main theorems; Kano, Katona and Király [5] provided a simpler proof for the mentioned result of Kaneko.

Theorem 1.2 (see [3,5]). A graph G has a $P_{\geq 3}$-factor if and only if sun $(G-X) \leq 2|X|$ for any $X \subseteq V(G)$.
A claw is a graph isomorphic to $K_{1,3}$; namely, the graph with four vertices and three edges having a common end-vertex. A graph is called claw-free if it contains no induced subgraph isomorphic to a claw. Kaneko, Kelmans and Nishimura [4] proved the following result on the existence of a P_{3}-factor in a claw-free graph.

Theorem 1.3 (see [4]). Suppose that G is a 2-connected claw-free graph of order n. If $n \equiv 1$ (mod 3), then $G-\{x\}$ has a P_{3}-factor for some $x \in V(G)$.

Kelmans [8] proved that if we replace 2-connected by 3-connected in Theorem 1.3, then a stronger claim holds.
Theorem 1.4 (see [8]). Suppose that G is a 3-connected claw-free graph of order n. If $n \equiv 1$ (mod 3), then $G-\{x\}$ has a P_{3}-factor for any $x \in V(G)$.

Theorem 1.5 (see [8]). Suppose that G is a 3-connected claw-free graph of order n. If $n \equiv 2(\bmod 3)$, then $G-\{x, y\}$ has a P_{3}-factor for every edge xy in G.

Note that $\{x\}$ is an independent set of G for any $x \in V(G)$. Motivated by Theorems 1.3 and 1.4, we consider the following more general question: For any independent set I of a graph G, does $G-I$ have a path factor? In other words, is a graph G an ID-path factor critical graph?

In this paper, we provide two binding-number conditions for graphs to be ID- $P_{\geq k}$-factors critical graphs when $k=2,3$; the results about these conditions are proved in Sections 2 and 3, respectively. Our main results imply that the answer to the above question is positive.

2. Binding numbers and ID- $P_{\geq 2}$-factor critical graphs

Theorem 2.1. A graph G of order n is an $I D-P_{\geq 2}$-factor critical graph if its binding number bind $(G) \geq 2$.
Remark 2.1. We show that the binding number condition $\operatorname{bind}(G) \geq 2=\frac{4}{2}$ in Theorem 2.1 cannot be replaced by $\operatorname{bind}(G) \geq$ $\frac{4}{3}$. In order to demonstrate this, we construct a graph $G=\left(3 K_{1} \vee K_{1}\right) \vee 3 K_{1}$. It is obvious that $\operatorname{bind}(G)=\frac{4}{3}$. Set $I=V\left(3 K_{1}\right)$ and $H=G-I=3 K_{1} \vee K_{1}$. Let $X=V\left(K_{1}\right)$. Thus, we obtain

$$
i(H-X)=i\left(3 K_{1}\right)=3>2=2|X|
$$

In light of Theorem 1.1, $H=G-I$ has no $P_{\geq 2}$-factor. Hence, G is not an ID- $P_{\geq 2}$-factor critical graph.
Proof of Theorem 2.1. For an independent set I of G, take $H=G-I$. Suppose that the result is not true. Then by Theorem 1.1, there exists a vertex subset X of H satisfying

$$
\begin{equation*}
i(H-X)>2|X| \tag{1}
\end{equation*}
$$

It follows from (1) that $i(H-X) \geq 1$, which implies $N_{G}(V(G) \backslash(I \cup X))=N_{G}(V(H) \backslash X) \neq V(G)$. Combining this with the definition of $\operatorname{bind}(G)$ and the hypothesis of Theorem 2.1, we have

$$
2 \leq \operatorname{bind}(G) \leq \frac{\left|N_{G}(V(G) \backslash(I \cup X))\right|}{|V(G) \backslash(I \cup X)|} \leq \frac{|V(G)|-i(G-I-X)}{|V(G)|-|I|-|X|}=\frac{n-i(H-X)}{n-|I|-|X|},
$$

that is,

$$
\begin{equation*}
i(H-X) \leq 2|I|+2|X|-n \tag{2}
\end{equation*}
$$

In order to complete the proof of Theorem 2.1, we first prove the following claim.
Claim 2.1. $|I| \leq \frac{n-1}{2}$.

Proof of Claim 2.1. Since I is an independent set of G and $d_{G}(x) \geq \delta(G)$ for every $x \in I$, we have

$$
\begin{equation*}
n \geq d_{G}(x)+|I| \geq \delta(G)+|I| . \tag{3}
\end{equation*}
$$

In terms of (3) and Lemma 1.1, we get

$$
n \geq \delta(G)+|I| \geq n-\frac{n-1}{2}+|I|
$$

which implies

$$
|I| \leq \frac{n-1}{2}
$$

Thus, Claim 2.1 is verified.
It follows from (2) and Claim 2.1 that

$$
i(H-X) \leq 2|I|+2|X|-n \leq n-1+2|X|-n=2|X|-1,
$$

which contradicts (1). Therefore, Theorem 2.1 is verified.

3. Binding numbers and ID- $P_{\geq 3}$-factor critical graphs

Theorem 3.1. A graph G of order n is an $I D-P_{\geq 3}$-factor critical graph if its binding number $\operatorname{bind}(G) \geq \frac{9}{4}$.
Remark 3.1. We show that the condition $\operatorname{bind}(G) \geq \frac{9}{4}$ in Theorem 3.1 cannot be replaced by $\operatorname{bind}(G) \geq \frac{9}{5}$. In order to demonstrate this, we construct a graph $G=\left(3 K_{1} \vee K_{1}\right) \vee 3 K_{2}$. It is easy to see that $\operatorname{bind}(G)=\frac{9}{5}$. Let $I=V\left(3 K_{1}\right)$ and $H=G-I$. For $X=V\left(K_{1}\right)$, we have

$$
\operatorname{sun}(H-X)=\operatorname{sun}\left(3 K_{2}\right)=3>2=2|X| .
$$

In terms of Theorem 1.2, $H=G-I$ has no $P_{\geq 3}$-factor. Therefore, G is not an ID- $P_{\geq 3}$-factor critical graph.
Proof of Theorem 3.1. For an independent set I of G, set $H=G-I$. Assume that the result is not true. Then by Theorem 1.2, there exists a vertex subset X of H such that

$$
\begin{equation*}
\operatorname{sun}(H-X)>2|X| . \tag{4}
\end{equation*}
$$

In order to complete the proof of Theorem 3.1, we first prove the following claim.
Claim 3.1. $|I| \leq \frac{4}{9}(n-1)$.
Proof of Claim 3.1. Since $d_{G}(x) \geq \delta(G)$ for every $x \in I$, where I is an independent set of G, we conclude

$$
\begin{equation*}
n \geq d_{G}(x)+|I| \geq \delta(G)+|I| \tag{5}
\end{equation*}
$$

According to (5) and Lemma 1.1, we have

$$
|I| \leq n-\delta(G) \leq n-\left(n-\frac{4}{9}(n-1)\right)=\frac{4}{9}(n-1)
$$

This completes the proof of Claim 3.1.
Assume that there exist " a " isolated vertices, $b K_{2}$'s and c big sun components $H_{1}, H_{2}, \cdots, H_{c}$, where $\left|V\left(H_{i}\right)\right| \geq 6$ for $1 \leq i \leq c$, in $H-X$. Obviously, we obtain

$$
\begin{equation*}
\operatorname{sun}(H-X)=a+b+c \tag{6}
\end{equation*}
$$

Using (4) and (6), we get

$$
\begin{equation*}
a+b+c=\operatorname{sun}(H-X) \geq 2|X|+1 \geq 1 \tag{7}
\end{equation*}
$$

In the following, we consider two cases depending on whether $a=0$ or not.
Case 1. $a \geq 1$.
It is obvious that $i(G-(I \cup X))=i(H-X)=a \geq 1$. By the definition of $\operatorname{bind}(G)$ and the hypothesis of Theorem 3.1, we have

$$
\frac{9}{4} \leq \operatorname{bind}(G) \leq \frac{\left|N_{G}(V(G) \backslash(I \cup X))\right|}{|V(G) \backslash(I \cup X)|} \leq \frac{n-a}{n-|I|-|X|},
$$

that is,

$$
\begin{equation*}
0 \geq \frac{5}{4} n-\frac{9}{4}|I|-\frac{9}{4}|X|+a . \tag{8}
\end{equation*}
$$

Note that $n \geq|I|+|X|+a+2 b+6 c$. In view of (4), (7), (8) and Claim 3.1, we obtain

$$
\begin{aligned}
0 & \geq \frac{5}{4} n-\frac{9}{4}|I|-\frac{9}{4}|X|+a \\
& =\frac{5}{4} n-\frac{9}{5}|I|-\frac{9}{20}|I|-\frac{9}{4}|X|+a \\
& \geq \frac{5}{4} n-\frac{9}{5} \cdot \frac{4}{9}(n-1)-\frac{9}{20}|I|-\frac{9}{4}|X|+a \\
& =\frac{9}{20} n-\frac{9}{20}|I|-\frac{9}{4}|X|+a+\frac{4}{5} \\
& \geq \frac{9}{20}(|I|+|X|+a+2 b+6 c)-\frac{9}{20}|I|-\frac{9}{4}|X|+a+\frac{4}{5} \\
& =\frac{9}{20}(a+2 b+6 c)-\frac{9}{5}|X|+a+\frac{4}{5} \\
& >\frac{9}{20}(2 a+2 b+2 c)-\frac{9}{5}|X|+\frac{4}{5} \\
& >\frac{9}{20}(2 \operatorname{sun}(H-X))-\frac{9}{5} \cdot \frac{\operatorname{sun}(H-X)}{2}+\frac{4}{5} \\
& =\frac{4}{5}
\end{aligned}
$$

which is a contradiction.
Case 2. $a=0$.
By (7), we get $b+c \geq 1$. Hence, there exist two vertices x, y of $H^{\prime}=b K_{2} \cup H_{1} \cup H_{2} \cup \cdots \cup H_{c}$ such that $d_{H^{\prime}}(x)=1$ and $x y \in E\left(H^{\prime}\right)$. Thus, we have

$$
i(G-(I \cup X \cup\{y\}))=i(H-(X \cup\{y\}))=1
$$

Combining this with the definition of $\operatorname{bind}(G)$ and the hypothesis of Theorem 3.1, we obtain

$$
\frac{9}{4} \leq \operatorname{bind}(G) \leq \frac{\left|N_{G}(V(G) \backslash(I \cup X \cup\{y\}))\right|}{|V(G) \backslash(I \cup X \cup\{y\})|} \leq \frac{n-1}{n-|I|-|X|-1},
$$

which implies

$$
\begin{equation*}
0 \geq \frac{5}{4} n-\frac{9}{4}|I|-\frac{9}{4}|X|-\frac{5}{4} . \tag{9}
\end{equation*}
$$

Note that $a=0$, and so $n \geq|I|+|X|+2 b+6 c$. It follows from (7), (9) and Claim 3.1 that

$$
\begin{aligned}
0 & \geq \frac{5}{4} n-\frac{9}{4}|I|-\frac{9}{4}|X|-\frac{5}{4} \\
& =\frac{5}{4} n-\frac{9}{5}|I|-\frac{9}{20}|I|-\frac{9}{4}|X|-\frac{5}{4} \\
& \geq \frac{5}{4} n-\frac{9}{5} \cdot \frac{4}{9}(n-1)-\frac{9}{20}|I|-\frac{9}{4}|X|-\frac{5}{4} \\
& =\frac{9}{20} n-\frac{9}{20}|I|-\frac{9}{4}|X|-\frac{9}{20} \\
& \geq \frac{9}{20}(|I|+|X|+2 b+6 c)-\frac{9}{20}|I|-\frac{9}{4}|X|-\frac{9}{20} \\
& =\frac{9}{10}(b+3 c)-\frac{9}{5}|X|-\frac{9}{20} \\
& \geq \frac{9}{10}(b+c)-\frac{9}{5}|X|-\frac{9}{20} \\
& \geq \frac{9}{10} \operatorname{sun}(H-X)-\frac{9}{5} \cdot \frac{\operatorname{sun}(H-X)-1}{2}-\frac{9}{20} \\
& =\frac{9}{20}
\end{aligned}
$$

which is a contradiction. Thus, Theorem 3.1 holds.

Acknowledgment

The authors would like to express their gratitude to the anonymous reviewers for their helpful comments and valuable suggestions, which improved the quality of this paper.

References

[1] W. Gao, W. Wang, Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings, Int. J. Intel. Syst. 36 (2021) $1133-1158$.
[2] W. Gao, W. Wang, J. Guirao, The extension degree conditions for fractional factor, Acta Math. Sin. (Engl. Ser.) 36 (2020) 305-317.
[3] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory Ser. B $\mathbf{8 8}$ (2003) 195-218.
[4] A. Kaneko, A. Kelmans, T. Nishimura, On packing 3-vertex paths in a graph, J. Graph Theory 36 (2001) 175-197.
[5] M. Kano, G. Katona, Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004) 129-135.
[6] M. Kano, A. Saito, Star-factors with large component, Discrete Math. 312 (2012) 2005-2008.
[7] M. Kano, N. Tokushige, Binding numbers and f-factors of graphs, J. Combin. Theory Ser. B $\mathbf{5 4}$ (1992) 213-221.
[8] A. Kelmans, Packing 3-vertex paths in claw-free graphs and related topics, Discrete Appl. Math. 159 (2011) 112-127.
[9] R. Matsubara, H. Matsumura, M. Tsugaki, T. Yamashita, Degree sum conditions for path-factors with specified end vertices in bipartite graphs, Discrete Math. 340 (2017) 87-95.
[10] M. L. Vergnas, An extension of Tutte's 1-factor theorem, Discrete Math. 23 (1978) 241-255.
[11] S. Wang, W. Zhang, Research on fractional critical covered graphs, Probl. Inf. Transm. 56 (2020) 270-277.
[12] S. Wang, W. Zhang, On k-orthogonal factorizations in networks, RAIRO Oper. Res. 55 (2021) 969-977.
[13] S. Wang, W. Zhang, Isolated toughness for path factors in networks, RAIRO Oper. Res. 56 (2022) 2613-2619.
[14] S. Wang, W. Zhang, Degree conditions for the existence of a $\left\{P_{2}, P_{5}\right\}$-factor in a graph, RAIRO Oper. Res. 57 (2023) 2231-2237.
[15] D. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory Ser. B 15 (1973) 225-255.
[16] J. Wu, Path-factor critical covered graphs and path-factor uniform graphs, RAIRO Oper. Res. 56 (2022) 4317-4325.
[17] H. Zhang, S. Zhou, Characterizations for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor covered graphs, Discrete Math. 309 (2009) 2067-2076.
[18] S. Zhou, A note of generalization of fractional ID-factor-critical graphs, Fund. Inform. 187 (2022) 61-69.
[19] S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs, Discrete Appl. Math. 323 (2022) 343-348.
[20] S. Zhou, Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Theory 43 (2023) 233-244.
[21] S. Zhou, Degree conditions and path factors with inclusion or exclusion properties, Bull. Math. Soc. Sci. Math. Roumanie $\mathbf{6 6}$ (2023) 3-14.
[22] S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs, Discrete Appl. Math., DOI: 10.1016/j.dam.2022.07.020, In press.
[23] S. Zhou, H. Liu, Characterizing an odd [1, b]-factor on the distance signless Laplacian spectral radius, RAIRO Oper. Res. 57 (2023) $1343-1351$.
[24] S. Zhou, H. Liu, Two sufficient conditions for odd [1, b]-factors in graphs, Linear Algebra Appl. 661 (2023) 149-162.
[25] S. Zhou, H. Liu, Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs, Discrete Appl. Math. 319 (2022) 511-516.
[26] S. Zhou, Z. Sun, H. Liu, Some sufficient conditions for path-factor uniform graphs, Aequationes Math. 97 (2023) 489-500.
[27] S. Zhou, J. Wu, Q. Bian, On path-factor critical deleted (or covered) graphs, Aequationes Math. 96 (2022) 795-802.
[28] S. Zhou, J. Wu, H. Liu, Independence number and connectivity for fractional (a, b, k)-critical covered graphs, RAIRO Oper. Res. 56 (2022) $2535-2542$.
[29] S. Zhou, J. Wu, Y. Xu, Toughness, isolated toughness and path factors in graphs, Bull. Aust. Math. Soc. 106 (2022) 195-202.
[30] S. Zhou, Y. Zhang, Sufficient conditions for graphs to have strong parity factors, RAIRO Oper. Res. 57 (2023) 2465-2471.

[^0]: *Corresponding author (zsz_cumt@163.com).

