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Abstract

The class of permutations avoiding the complement of an arbitrary regular permutation group is described.
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1. Introduction

We approach permutations from two different points of view: the algebraic one of permutation groups and the combinato-
rial one of permutation patterns. These two concepts are well established and thoroughly studied, but they may not seem
to have much in common at first sight. An interesting connection was, however, reported and investigated by Pöschel and
the current author in [7]: for any subgroup G of the symmetric group Sn, the class Av(Sn \ G) of permutations avoiding
the complement of G in Sn is comprised of levels that are permutation groups.

An interplay between permutation groups and permutation patterns was studied earlier by Atkinson and Beals in their
papers [1, 2] on group classes, that is, permutation classes in which every level is a permutation group. More precisely,
they showed that the level sequence of any group class eventually coincides with one of only a handful of possible “stable”
families of groups. Moreover, they completely and explicitly described those group classes in which every level is a transitive
group.

In [6], the current author refined and strengthened Atkinson and Beals’s results on group glasses, on the one hand, by
examining more carefully the local behaviour of the level sequence of Av(Sn \ G), for an arbitrary group G ≤ Sn, and, on
the other hand, by determining how fast this level sequence converges to one of the stable families of groups predicted by
Atkinson and Beals. An exact description of the level sequence was discovered for nearly all permutation groups. However,
for intransitive or imprimitive groups, only upper and lower bounds were found.

In this paper, we further sharpen the results of Atkinson and Beals [1, 2] and the current author [6] for a particular
subfamily of transitive groups. Namely, we will find an exact description of the level sequence of Av(S` \ G) when G is a
regular group. Not only does this result improve the earlier work, but also the proof is quite simple and elegant.

2. Preliminaries

We assume that the reader is familiar with basic concepts and terminology related to permutations, permutation groups,
and permutation patterns. For general background on these topics, we refer the reader, e.g., to the books by Bóna [3],
Dixon and Mortimer [4], and Kitaev [5]. In this section, we will briefly introduce the necessary notions and notation, and
we will quote a few lemmas that we need. Proofs and further details are provided in the papers [6, 7], upon which the
current paper builds.

We denote the set of nonnegative integers and the set of positive integers by N and N+, respectively. For any `, n ∈ N+,
let [n] be the set {1, . . . , n}, and let

(
[n]
`

)
be the set of all `-element subsets of [n].

For any n ∈ N+, the set Sn of all permutations of [n], endowed with the operation of composition, constitutes the
symmetric group (of degree n). Its subgroups are called permutation groups (of degree n). The subgroup of Sn generated by
a subset S ⊆ Sn is denoted by 〈S〉. We write G ≤ H to express that G is a subgroup of H. Permutations π ∈ Sn will often
be written as strings π1π2 . . . πn, where πi = π(i) for all i ∈ [n]. The usual cycle notation will also be used. We compose
permutations, like all mappings, from right to left, i.e., for π, τ ∈ Sn, (π ◦ τ)(i) = π(τ(i)) for all i ∈ [n].
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For any string a = a1a2 . . . an and an index set I = {i1, i2, . . . , i`} ⊆ [n] with i1 < i2 < · · · < i`, we denote the scattered
substring ai1ai2 . . . ai` of a by a[I]. For any string u = u1u2 . . . u` of distinct integers, the reduced form of u, denoted by
red(u), is the permutation of [`] obtained from the string u by replacing its i-th smallest entry with i, for every i ∈ [`]. For
π = π1π2 . . . πn ∈ Sn and I ⊆ [n], write πI := red(π[I]).

Example 2.1. Let π = 642351 and I = {1, 3, 4}. Then π[I] = 623 and πI = red(π[i]) = 312.

A permutation τ ∈ S` is a pattern of a permutation π ∈ Sn, or π involves τ , denoted τ ≤ π, if τ = πI for some I ⊆ [n]. The
permutation π avoids τ if τ � π. The pattern involvement relation ≤ is a partial order on the set P :=

⋃
n≥1 Sn of all finite

permutations. Downward closed subsets of (P,≤) are called permutation classes. Permutation classes can be specified
with the help of forbidden patterns; for a set S ⊆ P, the set of all permutations avoiding every member of S is denoted by
AvS. For C ⊆ P and n ∈ N+, the set C(n) := C ∩ Sn is called the n-th level of C.

Fact 2.1 ([7, Lemma 2.8(iii)]). Assume that ` ≤ m ≤ n. If σ ∈ S`, τ ∈ Sn and σ ≤ τ , then there exists π ∈ Sm such that
σ ≤ π ≤ τ .

Let `, n ∈ N+ with ` ≤ n. For τ ∈ Sn, we denote by Pat(`) τ the set of all `-patterns of τ , i.e., Pat(`) τ := {π ∈ S` : π ≤ τ}.
We say that a permutation τ ∈ Sn is compatible with a set S ⊆ S` of `-permutations if Pat(`) τ ⊆ S, or, equivalently, if
τ ∈ Av(S` \ S). For S ⊆ S`, T ⊆ Sn, we write

Comp(n) S := {τ ∈ Sn | Pat(`) τ ⊆ S},

Pat(`) T :=
⋃
τ∈T

Pat(`) τ.

Note that Comp(n) S = Av(S` \ S) ∩ Sn. As observed in [7, Section 3], the operators Comp(n) and Pat(`) are precisely the
upper and lower adjoints of the monotone Galois connection (residuation) between the power sets P(S`) and P(Sn) induced
by the pattern avoidance relation �.

The operator Comp(n) has the following remarkable property, which establishes the connection between permutation
groups and permutation patterns that was mentioned in the introduction.

Proposition 2.2 ([7, Proposition 3.1]). If G is a subgroup of S`, then Comp(n)G is a subgroup of Sn.

Using the standard terminology of the theory of permutation patterns, Proposition 2.2 can be rephrased as follows: for
any permutation group G of rank `, the class Av(S` \G) of all permutations avoiding S` \G, the complement of G in S`, is
comprised of levels that are permutation groups.

The operators Comp(n) and Pat(`) satisfy the following “transitive property”.

Lemma 2.1 ([6, Lemma 2.9]). Assume that ` ≤ m ≤ n. Then for all subsets S ⊆ S`, T ⊆ Sn,

Comp(n) Comp(m) S = Comp(n) S,

Pat(`) Pat(m) T = Pat(`) T.

The following permutations will be used many times in what follows:

• the identity permutation ιn := 12 . . . n,

• the descending permutation δn := n(n− 1) . . . 1,

• the natural cycle ζn := 23 . . . n1 = (1 2 · · · n).

The subgroup 〈ζn〉 of Sn generated by the natural cycle ζn is called the natural cyclic group of degree n and is denoted
by Zn. The subgroup 〈ζn, δn〉 is called the natural dihedral group of degree n and is denoted by Dn. The alternating group
of degree n is denoted by An.

Fact 2.3. Recall that the reverse of a permutation π ∈ Sn is πr = π ◦ δn, and the complement of π is πc = δn ◦ π. The
combination of the two is the reverse-complement of π, i.e., πrc = δn ◦ π ◦ δn. It is well known that pattern involvement is
preserved under inverses, reverses, and complements, and hence also under reverse-complements, i.e.,

τ ≤ π ⇐⇒ τ−1 ≤ π−1, τ ≤ π ⇐⇒ τ r ≤ πr, τ ≤ π ⇐⇒ τ c ≤ πc, τ ≤ π ⇐⇒ τ rc ≤ πrc.

Lemma 2.2 ([6, Lemma 4.3]). Let n,m ∈ N+ with n ≤ m. Let G ≤ Sn. Then δm ∈ Comp(m)G if and only if δn ∈ G.
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Lemma 2.3 ([6, Lemma 4.5]). Let G ≤ Sn. Then the following statements hold.

(i) The following statements are equivalent.

(a) Zn ≤ G.

(b) Zn+1 ≤ Comp(n+1)G.

(c) Comp(n+1)G contains a permutation π ∈ Zn+1 \ {ιn+1}.

(ii) The following statements are equivalent.

(a) Dn ≤ G.

(b) Dn+1 ≤ Comp(n+1)G.

(c) Comp(n+1)G contains a permutation π ∈ Dn+1 \ (Zn+1 ∪ {δn+1}).

Lemma 2.4 ([6, Theorem 4.6]). The following statements hold for all n ∈ N+.

(i) Comp(n+1) Sn = Sn+1.

(ii) If n ≥ 2, then Comp(n+1) {ιn} = {ιn+1}.

(iii) If n ≥ 3, then Comp(n+1) 〈δn〉 = 〈δn+1〉.

Lemma 2.5 ([6, Theorem 6.3]). LetG ≤ Sn, and assume thatG contains the natural cycle ζn. Then the following statements
hold.

(i) If Dn ≤ G and G /∈ {Sn, An}, then Comp(n+1)G = Dn+1.

(ii) If Dn � G, then Comp(n+1)G = Zn+1.

Finally, we would like to recall some terminology pertaining to the kinds of permutation groups that are central to our
discussion. For a permutation groupG ≤ Sn and an element i ∈ [n], theG-orbit containing i is the set {π(i) | π ∈ G}. TheG-
orbits partition [n]. A permutation groupG is transitive if it has only oneG-orbit; otherwise it is intransitive. A permutation
group G ≤ Sn preserves a partition Π of [n] if for every π ∈ G and for every block B of Π, the set π(B) := {π(b) | b ∈ B}
is again a block of Π. A transitive subgroup of Sn is primitive if it preserves no nontrivial partition of [n]; otherwise it is
imprimitive. A permutation group G ≤ Sn is regular if it is transitive and for every pair i, j ∈ [n], there exists exactly one
π ∈ G such that π(i) = j. It is immediate from the definition that a regular permutation group of degree n has exactly n
elements.

Example 2.2.

(1) For every n ∈ N+, the natural cyclic group Zn is regular and primitive.

(2) The permutation group {1234, 2143, 3412, 4321} is regular and imprimitive, as it preserves the partition {{1, 2}, {3, 4}}.
(This group is a representation of the Klein four-group.)

3. Permutations compatible with a regular group

The main question studied in [6] is the following: given a permutation group G of rank n, describe the sequence

G, Comp(n+1)G, Comp(n+2)G, . . . , (1)

i.e., the level sequence of the class of all permutations avoiding Sn \ G. By Proposition 2.2, the levels are permutation
groups. An exact description of the sequence (1) was discovered for nearly all permutation groups. However, for intransitive
or imprimitive groups, only upper and lower bounds were found. We are now going to sharpen the results of [6] for a
particular subfamily of transitive groups (which includes both primitive and imprimitive groups), namely regular groups,
and to find an exact description of the sequence (1) of compatible permutation groups in this case.

We start with an auxiliary result that provides insight on the pointwise distinctness of the patterns of a permutation
– clearly a necessary condition for a permutation to be compatible with a regular group. In order to simplify notation, for
any π ∈ Sn and i ∈ [n], we write π�i := π[n]\{i}.

Lemma 3.1. Assume that 3 ≤ ` < n. Let π ∈ Sn. Then π has distinct `-patterns τ, τ ′ ∈ Pat(`) π such that τ(i) = τ ′(i) for
some i ∈ [`] if and only if π /∈ Dn.
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Proof. It is easy to verify that if π ∈ Dn, then any two distinct `-patterns of π are also pointwise distinct. Assume now
that π ∈ Sn \ Dn. We are going to show that there exist two distinct `-patterns of π that coincide at some point. Since
Dn = Comp(n)D4, the permutation π has a 4-pattern τ that is not in D4. By Fact 2.1, there exists a σ ∈ S`+1 such that
τ ≤ σ ≤ π. Let I ∈

(
[`]
4

)
be such that τ = σI , i.e., I = {i1, i2, i3, i4}, i1 < i2 < i3 < i4 and red(σi1σi2σi3σi4) = τ .

We need to consider different cases for τ . Since pattern involvement is preserved by taking inverses, reverses, and
complements (see Fact 2.3) and since two permutations coincide at some point if and only if their inverses (reverses,
complements) do, it is enough to prove the claim for just one representative of each set of the form

{µ, µr, µc, µrc, µ−1, (µ−1)r, (µ−1)c, (µ−1)rc},

where µ ∈ S4 \D4. These sets are

{1243, 2134, 3421, 4312}, {1324, 4231}, {1342, 1423, 2314, 2431, 3124, 3241, 4132, 4213}, {2413, 3142}.

If τ ∈ {1243, 1342}, then σ�i2(i1) = σ(i1) = σ�i4(i1) but σ�i2(i3 − 1) = σ(i3) − 1 = σ�i4(i3), so σ�i2 and σ�i4 are distinct
`-patterns of π that coincide at i1.

If τ ∈ {1324, 2413}, then σ�i2(i1) = σ(i1) = σ�i4(i1) but σ�i2(i3 − 1) = σ(i3) = σ�i4(i3), so σ�i2 and σ�i4 are distinct
`-patterns of π that coincide at i1.

This completes the proof, because the cases considered above exhaust all possibilities.

Lemma 3.2. Assume that G ≤ Sn is regular and G 6= Zn. Then Comp(n+1)G ≤ 〈δn+1〉.

Proof. Let π ∈ Comp(n+1)G. If π /∈ Dn+1, then, by Lemma 3.1, π has two distinct n-patterns that coincide at some point.
But this is not possible since G is assumed to be regular.

If π ∈ Dn+1 \ (Zn+1 ∪ {δn+1}), then Dn ≤ G by Lemma 2.3. But then |G| ≥ |Dn| = 2n; hence G is not regular, so this
case is not possible. If π ∈ Zn+1 \ {ιn+1}, then Zn ≤ G by Lemma 2.3. But the only regular overgroup of Zn is Zn, and we
are assuming that G 6= Zn, so this case is not possible either.

The only remaining possibility is that π ∈ {ιn+1, δn+1} = 〈δn+1〉.

We are now ready to state and prove our main result about the sequence (1) for an arbitrary regular group G.

Theorem 3.1. Assume that n ∈ N+ and G ≤ Sn is regular.

(i) If 1 ≤ n ≤ 2, then Comp(m)G = Sm for every m > n.

(ii) If n ≥ 3 and G = Zn, then Comp(m)G = Zm for every m > n.

(iii) If n ≥ 3 and G 6= Zn and δn /∈ G, then Comp(m)G = {ιm} for every m > n.

(iv) If n ≥ 3 and δn ∈ G, then Comp(m)G = 〈δn〉 for every m > n.

Proof. (i) For 1 ≤ n ≤ 2, the full symmetric group Sn is the only regular group of rank n, and it holds that Comp(m) Sn = Sm

for all n,m ∈ N+, n ≤ m by Lemma 2.4.
(ii) It follows immediately from Lemma 2.5 that Comp(n+1) Zn = Zn+1. Hence, by Lemma 2.1, Comp(m) Zn = Zm for

every m > n.
(iii) & (iv) By Lemma 3.2, it holds that Comp(n+1)G ≤ 〈δn+1〉. This, together with Lemma 2.2, implies that

Comp(n+1)G =

{ιn+1} if δn /∈ G,

〈δn+1〉 if δn ∈ G.

The statements now follow by Lemmas 2.1 and 2.4.

The families (Sn)n∈N+
, (Zn)n∈N+

, ({ιn})n∈N+
, and (〈δn〉)n∈N+

of symmetric groups, natural cyclic groups, trivial groups,
and groups generated by the descending permutation, respectively, are stable (see [1, 2]). Theorem 3.1 reveals that the
level sequence of any regular group converges to a stable family of groups in at most one step.
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