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Abstract
A family of alternating variant Euler sums of higher order is investigated. A number of different examples concerning the
main theorem are given. A Log-PolyLog integral in terms of special functions is also evaluated.
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1. Introduction, preliminaries, and notations

There are many particular cases describing the representation of alternating variant Euler sums in closed form; for in-
stance, see [3, 4, 10, 11]. The aim of this paper is to collect all these individual results and present them in a unifying
general theorem describing the general nature in terms of parameter values. From this unifying theorem all the particu-
lar published examples follow directly. In this regard we study alternating variant Euler sums of the form
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In this investigation we let N,C, R, Q, and Z denote the sets of positive integers, complex numbers, real numbers, rational
numbers, and integers, respectively. The notation introduced by Flajolet and Salvy [5]
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will be employed in this study. The representation of these Euler sums in terms of special functions has its beginnings
with Euler in 1742 in his communications with Goldbach. Nielsen [7] continued this area of study and it is now known
that S++

p,q can be evaluated in the cases p = 1, p = q, p + q odd, p + q even with the pairs (2, 4) and (4, 2) . There also exists
the reciprocity identity, see [1] or [15].

S++
p,q + S++

q,p = ζ(p)ζ(q) + ζ(p+ q).

The alternating Euler sum S+−p,q can also be expressed in terms of special functions for odd weight p+q, the pairs (1, 3) , (2, 2)

and for q = 1, p ∈ N. The variant Euler sum
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may also be expressed in terms of special functions. In this investigation we explicitly give a closed form representation
of the alternating variant Euler sum (1) in terms of special functions in the case of even weight p + q. The two case
(p, q) = (1, 2) , (2, 1) have been published in the various papers [3, 4]. The evaluation of S+−p,q
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of Euler sums which admit a representation in terms of special functions.

The harmonic numbers Hn are given by

Hn =

n∑
j=1

1

j
= γ + ψ (n+ 1) (n ∈ Z>0) and H0 := 0. (2)
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Here γ is the familiar Euler-Mascheroni constant (see, e.g., [21, Section 1.2]) and ψ (z) denotes the digamma (or psi)
function defined by

ψ (z) :=
d

dz
(log Γ (z)) =

Γ′ (z)

Γ (z)
(C\Z<0) ,

where Γ (z) is the Gamma function (see, e.g., [21, Section 1.1]).
The generalized harmonic numbers H(t)

n (b) of order t are defined by

H(t)
n (b) :=

n∑
j=1

1

(j + b)t
(t ∈ C, b ∈ C \ {−1,−2,−3, · · ·} , n ∈ N) , (3)

and H(t)
n := H

(t)
n (0) are the harmonic numbers of order t. The Riemann Zeta function ζ(z) is defined by
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and the Dirichlet eta function η(z) is given by η(z) =
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1− 21−z

)
ζ(z), where, for z = 0, 1 we have

η(1) = log 2 and η(0) =
1

2
. (5)

The Dirichlet lambda function λ (s) is defined as the term-wise arithmetic mean of the Dirichlet eta function and the
Riemann zeta function:
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η(s) + ζ(s)
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The Bernoulli numbers Bn and the Euler numbers En may be defined via generating functions:
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It is noted that
B2n+1 = 0 (n ∈ N) and E2n+1 = 0 , (n ∈ Z>0) . (9)

The first few of these Bernoulli and Euler numbers are:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, . . .

and
E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, . . . .

The polylogarithm function Lip(z) of order p is defined by
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The dilogarithm function Li2(z) is given by

Li2(z) =
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(11)

The polylogarithm function Lip(z) of order p in (10) can be extended as follows (see, e.g., [21, p. 198], or [6]):

Lis(z) =

∞∑
j=1

zj

js
, (s ∈ C and |z| < 1; <(s) > 1 and |z| = 1) . (12)
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The polygamma function ψ(k)(z) defined by
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(k ∈ N; z ∈ C \ {0,−1,−2,−3, · · ·})

has the recurrence
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The generalized (or Hurwitz) zeta function, ζ(s, z) is defined by

ζ(s, z) =
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m=0

1
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(<(s) > 1, z ∈ C \ {0,−1,−2,−3, · · ·}) . (15)

An important property of the generalized (or Hurwitz) zeta function is:
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The Dirichlet beta function β(z) is defined by
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which admits other representations such as::
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2
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and β(2) is known as Catalan’s constant.
Euler sum representation of the form (1), in terms of special functions such as the Riemann zeta function, the Dirichlet

beta functions and others are important in various applications of mathematics and to the authors knowledge no represen-
tation for the general case (1) exists in the literature.. Other relevant articles on Euler sums include, for example, [2,8,19],
and the excellent monographs [20–22]. The papers [9, 14, 16–18, 23] also explored various other Euler sums. The Euler
sum (1) cannot be evaluated directly using a present CAS software package.

2. The main theorem

The following main theorem is established.

Theorem 2.1. Let p ∈ Z>0, t ∈ N ≥2 with p+ t an odd integer. Then the following formula holds:
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where H(t)
n are harmonic numbers of order t, Ep are the Euler numbers, β (·) are the Dirichlet Beta functions, λ (·) are the

Dirichlet lambda functions and η (·) are the Dirichlet eta functions.

Proof. Let |a| < 1 and consider

X (a, t) =

∞∫
0
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dx =

π/2∫
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tana (θ) Lit(− tan2 (θ)) dθ, (20)
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using the properties of the polylog function, and can be easily confirmed on “Mathematica”, we find
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,
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)
is the Hurwitz zeta function. We now differentiate p times, with respect to a both sides of the resultant

identity, which is permissible since the integrand is uniformly convergent on |a| < 1. Finally take the limit as a approaches
zero, so that we obtain
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Putting
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It is known that (see [10])
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From (21), we may evaluate, using the well known relation

sec (z) =

∞∑
j=0

(−1)
j
E2jz

2j

(2j)!
,

lim
a−>0

dp

dap

(
sec
(aπ

2

)
ζ (t)

)
=
(π

2

)p
|Ep| ζ (t) .

Utilizing the definition (15), we have
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Combining these results together delivers the result (19) and the proof is finished. The integral (20) is obtained by the
substitution x = tan (θ) .We note that the special case of t = 1 is listed in the following corollaries.

A number of corollaries follow from Theorem 2.1 and we express them in the following results.

Corollary 2.1. Let p+ 1 = t, t ∈ N ≥2. Then the following formula holds:
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Proof. Follows directly from Theorem 2.1.

Corollary 2.2. Let p = 0, and put t = 2t− 1, t ∈ N. Then the following formula holds:
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Proof. Follows directly from Theorem 2.1, and for the case t = 1
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where G is the Catalan constant.

Corollary 2.3. Let t = 1 and replace p by 2p, p ∈ N. Then the following formula holds:
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here Bj are the Bernoulli numbers, Ej are the Euler numbers and λ (j) are the Dirichlet Lambda functions and are defined
in the introduction. (This result first appeared in [11].)

Proof. Follows directly from Theorem 2.1 and we have used the famous Euler identity
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Some particular instances of the above identities are demonstrated in the following example.

Example 2.1. From Theorem 2.1, with t = 3, p = 4 we have that
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The following identity was given in [12]
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The following lemma was given in [13].

Lemma 2.1. Let a ∈ C\ {0,−1,−2,−3, · · ·} , p, t ∈ N, t ≥ 2 with p+ t of odd weight, then
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Now matching (23) with (19) we find the remarkable integral identity
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The case (p, t) = (1, 1) has been given in [4].

3. Concluding remarks

We have analyzed the Euler sum (1), in the case of even weight, and have expressed it in terms of special functions adding
to the set of known Euler sum representation. It may be possible to represent the Euler sum (1) in closed form for odd
weight other than weight three, but to the authors knowledge no result of this type exits in the published literature. A
remarkable identity for a Log-Polylog integral has also been highlighted.

References
[1] H. Alzer, J. Choi, Four parametric linear Euler sums, J. Math. Anal. Appl. 484 (2020) #123661.
[2] D. Borwein, J. M. Borwein, R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995) 277–294.
[3] J. M. Campbell, P. Levrie, A. S. Nimbran, A natural companion to Catalan’s constant, J. Class. Anal. 18 (2021) 117–135.
[4] M. Cantarini, J, D’Aurizio, On the interplay between hypergeometric series, Fourier-Legendre expansions and Euler sums, Boll. Unione Mat. Ital. 12 (2019) 623–656.
[5] P. Flajolet, B. Salvy, Euler sums and contour integral representations, Exp. Math. 7 (1998) 15–35.
[6] R. Lewin, Polylogarithms and Associated Functions, North Holland, London, 1981.
[7] N. Nielsen, Die Gammafunktion, Chelsea, New York, 1965.
[8] A. Sofo, General order Euler sums with multiple argument, J. Number Theory 189 (2018) 255–271.
[9] A. Sofo, General order Euler sums with rational argument, Integral Transforms Spec. Funct. 30 (2019) 978–991.

[10] A. Sofo, Alternating Euler sums and BBP-Type series, J. Class. Anal. 18 (2021) 157–172.
[11] A. Sofo, Log-hyperbolic tangent integrals and Euler sums, Adv. Stud. Euro-Tbil. Math. J. 15 (2022) 13–27.
[12] A. Sofo, Evaluating log-tangent integrals via Euler sums, Math. Model. Anal. 27 (2022) 1–18.
[13] A. Sofo, J. Choi, Series involving polygamma functions and certain variant Euler harmonic sums, Submitted.
[14] A. Sofo, N. Batir, Parameterized families of polylog integrals, Constuctive Math. Anal. 4 (2021) 400–419.
[15] A. Sofo, J. Choi, Extension of the four Euler sums being linear with parameters and series involving the zeta functions, J. Math. Anal. Appl. 515 (2022) #126370.

20



A. Sofo / Discrete Math. Lett. 12 (2023) 15–21 21
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