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Abstract

In this paper, the t-color star-critical Gallai-Ramsey number for a path of order 5 is determined. It is proved that t+1 edges
are both necessary and sufficient to add between a vertex and a critical coloring for the t-color Gallai-Ramsey number for
P5 in order to guarantee the existence of a monochromatic subgraph isomorphic to P5. The proof depends on a well-known
structural result for Gallai colorings as well as a general lower bound due to Faudree, Gould, Jacobson, and Magnant.
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1. Introduction

Let Pn denote a path of order n. This paper focuses on the evaluation of the t-color star-critical Gallai-Ramsey number
for P5. Before discussing the main results, we must review the relevant background and definitions. Denote the complete
graph of order p by Kp and the complete bipartite graph with partite sets having cardinalities m and n by Km,n. When
m = 1, the resulting complete bipartite graph K1,n is called a star and the vertex in the partite set with cardinality 1 is
called the center vertex for the star.

For t ≥ 2, define a t-coloring of a graph G = (V (G), E(G)) to be a map f : E(G) −→ {1, 2, . . . , t}. The t-color Ramsey
number rt(G) is the least natural number p such that every t-coloring of the edges ofKp contains a monochromatic subgraph
isomorphic to G. A critical coloring for rt(G) is a t-coloring of Krt(G)−1 that lacks a monochromatic copy of G. In 1967,
Gerencsér and Gyárfás [5] proved that

r2(Pn) = n+
⌊n
2

⌋
− 1, for all n ≥ 2,

where Pn is a path of order n.
The star-critical Ramsey number serves as a refinement of the concept of a Ramsey number. In order to define it, let

Kn t K1,k be the graph formed by taking the union of a vertex v with the graph Kn and joining v with edges to exactly
k vertices in the Kn (1 ≤ k ≤ n). The star-critical Ramsey number rt∗(G) is then defined to be the least k such that
every t-coloring of Krt(G)−1 tK1,k contains a monochromatic copy of G. These numbers were first defined by Hook in her
dissertation [7] (see also [8] and Section 2.1 of [1]), where she showed that

r2∗(Pn) =
⌈n
2

⌉
, for all n ≥ 2.

A t-coloring f of a graph G is called a Gallai t-coloring of G if it does not contain any rainbow triangles (see [3,9]). That
is, |f(xy), f(yz), f(xz)| ≤ 2 for all distinct x, y, z ∈ V (G). The t-color Gallai-Ramsey number grt(G) is then defined to be the
least natural number p such that every Gallai t-coloring of Kp contains a monochromatic copy of G. Note that when t = 2,
r2(G) = gr2(G). A critical coloring for grt(G) is a Gallai t-coloring of Kgrt(G)−1 that lacks a monochromatic copy of G. The
star-critical Gallai-Ramsey number grt∗(G) is the least k such that every Gallai t-coloring of Kgrt(G)−1 t K1,k contains a
monochromatic copy of G. The following structure theorem for Gallai colorings can be found in [6] and is a reinterpretation
of a classic result of Gallai [4]. It is the basis of many upper bound results for Gallai-Ramsey numbers.

Theorem 1.1. Every Gallai-colored complete graph can be formed by replacing the vertices of a 2-colored complete graph
of order at least two with Gallai-colored complete graphs.
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In such a coloring, the 2-colored complete graph is called the base graph while the Gallai-colored complete graphs that
replace the vertices in the base graph are called blocks. The partition of the vertex set of the full Gallai-colored complete
graph into subsets that correspond with the blocks is referred to as a Gallai partition.

In [2], Faudree, Gould, Jacobson, and Magnant showed that for all t ≥ 3,

grt(P4) = t+ 3 and grt(P5) = t+ 4.

The lower bounds for both of these Gallai-Ramsey numbers came from a general construction which implies that if G is a
connected graph of order n, then

grt(G) ≥ n+ (c(G)− 1)(t− 1). (1)

Here, c(G) is the edge cover number, defined to be the minimum cardinality of a subset C ⊆ V (G) such that every edge
in E(G) is incident with some element in C. In 2022, Su and Liu [10] determined the t-color star-critical Gallai-Ramsey
number for P4:

grt∗(P4) = t, for all t ≥ 3.

The focus of this paper is the evaluation
grt∗(P5) = t+ 1.

2. Main results

Before considering the evaluation of grt∗(P5), we prove an important property of the the critical colorings of grt(P5). The
following lemma depends heavily on Theorem 1.1.

Lemma 2.1. If t ≥ 2, then every critical coloring for grt(P5) contains a vertex that is incident with edges that are all in the
same color class.

Proof. When t = 2, this lemma follows from the critical colorings of r(P5, P5) described in Proposition 2.6 of [8], all of which
contain a vertex incident with edges that are all in the same color class (also, see Theorem 2.1 of [1]). For t ≥ 3, consider a
Gallai t-coloring of Kt+3 that lacks a monochromatic P5. By Theorem 1.1, this complete graph can be formed by replacing
the vertices of a 2-colored complete graph of order at least two with Gallai-colored complete graphs. Let B be a base graph
of minimum order q ≥ 2 among all possible Gallai partitions and denote the vertex sets that correspond with the vertices
in B by X1, X2, . . . , Xq. The Ramsey number r2(P5) = 6 (see [5]) implies that q ≤ 5. Also, Lemma 3.1 of [9] implies that
q 6= 3 since q is chosen to be minimal and the case of q = 3 can be reduced to the case in which q = 2. The values q = 2, 4, 5

must be considered separately.
Case 1. Assume that q = 2. By the pigeonhole principle, either |X1| ≥ 3 or |X2| ≥ 3 since t + 3 ≥ 6. If both blocks

have order at least two, then without loss of generality, assume that x1, y1, z1 ∈ X1 and x2, y2 ∈ X2. Then x1x2y1y2z1 is a
monochromatic P5, contradicting the assumption that we are considering a critical coloring. It follows that one block has
only a single vertex and that vertex is incident with edges that are all in the same color class.

Case 2. Assume that q = 4. If some block, say X1, satisfies |X1| ≥ 3, then suppose that x1, y1, z1 ∈ X1 and xi ∈ Xi for
each i such that 2 ≤ i ≤ 4. By the pigeonhole principle, at least two of X2, X3, X4 must join to X1 via edges of the same
color. Without loss of generality, suppose that X2 and X3 both join to X1 via red edges (see Figure 1). Then x1x2y1x3z1 is
a red P5, contradicting the assumption that we are considering a critical coloring.

If no Xi contains at least three vertices, then at least two Xi must contain exactly two vertices and t ≤ 5. Assume that
|X1| = |X2| = 2, x1, y1 ∈ X1, x2, y2 ∈ X2, x3 ∈ X3, x4 ∈ X4, and all edges joining X1 and X2 are red. If either of X3 or X4 join
to X1 or X2 via red edges, say X1 and X3 are joined by red edges, then x2x1y2y1x3 is a red P5, again giving a contradiction
(see the first image in Figure 2). So, assume that X3 and X4 join to X1 and X2 via blue edges (see the second image in
Figure 2. Then x1x3y1x4x2 is a blue P5, giving a contradiction. Thus, it follows that no such critical coloring exists with
q = 4.

Case 3. Assume that q = 5. Since t + 3 ≥ 6, the pigeonhole principle implies that some Xi contains more than one
vertex. Assume that |X1| ≥ 2 and let x1, y1 ∈ X1. For each i such that 2 ≤ i ≤ t, select a single vertex in Xi and denote it by
xi. Suppose that at least three of X2, X3, X4, X5 join to X1 via the same color edge. Without loss of generality, assume that
X2, X3, X4 all join to X1 via red edges (see the first image in Figure 3). Then x2x1x3y1x4 is a red P5, which is a contradiction.

If at most two of X2, X3, X4, X5 join to X1 via the same color edges, then exactly two of them will join in each color.
Without loss of generality, assume that X2 and X3 join to X1 via red edges and X4 and X5 join to X1 via blue edges (see
the second image in Figure 3). If x2x5 is red then, x5x2x1x3y1 forms a red P5. If x2x5 is blue, then x2x5x1x4y1 is a blue P5.
In all cases, there is a monochromatic P5, so no such critical coloring exists with q = 5.
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Figure 1: The case where q = 4 and some block has order at least 3.
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Figure 2: Two cases where q = 4 and all blocks have cardinality at most 2.
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Figure 3: Two cases where q = 5.

Overall, we have shown that every critical coloring for grt(P5) has a Gallai partition containing two blocks, one of which
consists of a single vertex. This vertex is incident with edges in only one color class.

Theorem 2.1. For all t ≥ 2, grt∗(P5) = t+ 1.

Proof. To show that t + 1 is a lower bound for grt∗(P5), start with the construction that led to the lower bound given by
Inequality (1). Specifically, begin with a copy of K4 in color 1, which we denote by G1. Then for each i such that 1 ≤ i ≤ t−1,
recursively form Gi+1 by introducing vertex xi and joining xi to all of the vertices in Gi using edges in color i+1. The result
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is that Gt is a Gallai t-colored complete graph of order t+ 3 that avoids a monochromatic P5, producing a critical coloring
for grt(P5). Next, introduce a vertex v and join v to xi using color i + 1. Also, join v to a single vertex in the original K4

using color 2 (see Figure 4). The result is a Gallai t-coloring of Kt+3 tK1,t that avoids a monochromatic P5. It follows that
grt∗(P5) ≥ t+ 1.

x1

x

x

t-1

2

...

v

Figure 4: A Gallai t-coloring of Kt+3 tK1,t that avoids a monochromatic P5, from which it follows that grt∗(P5) ≥ t+ 1.

To prove the reverse inequality, we will proceed by using induction on t ≥ 2, with r2∗(P5) ≤ 3 (see [7] and [8]) serving
as the base case. Assume that grt−1

∗ (P5) ≤ t and consider a Gallai t-coloring of Kt+3 tK1,t+1, where v denotes the center
vertex of the missing star. Deleting vertex v results in a Gallai t-coloring of Kt+3. If a monochromatic copy of P5 is to be
avoided, then by Lemma 2.1, some vertex must be incident with edges in only one color. Label this vertex x, the other
vertices y1, y2, . . . , yt+2, and without loss of generality, assume that xyi receives color 1, for all 1 ≤ i ≤ t + 2. We identify
color 1 with the color red and consider the following cases.

Case 1. Suppose that at least two edges in the subgraph induced by {y1, y2, . . . , yt+2} are red. Regardless of whether or
not two red edges are adjacent, there exists a red P5. For example, if y1y2 and y2y3 are red, then y1y2y3xy4 is a red P5 and
if y1y2 and y3y4 are red, then y1y2xy3y4 is a red P5.

Case 2. Suppose that exactly one edge in the subgraph induced by {y1, y2, . . . , yt+2} is red and suppose it is edge y1y2.
For each i such that 3 ≤ i ≤ t+ 2, the edges y1yi and y2yi must receive the same color since rainbow triangles are avoided.
At most, t − 1 colors are used on the edges joining {y1, y2} to {y3, y4, . . . , yt+2}. By the pigeonhole principle, there exists
distinct numbers i, j ∈ {3, 4, . . . , t + 2} such that all edges joining {yi, yj} to {y1, y2} are the same color. We now complete
this case by considering serval subcases.

Subcase 2.1. If for any three distinct numbers i, j, k ∈ {3, 4, . . . , t + 2}, the edges joining {y1, y2} to {yi, yj , yk} are the
same color, then yiy1yjy2yk is a monochromatic P5.

Subcase 2.2. If distinct yi, yj , yk, y` are such that {yi, yj} joins to {y1, y2} via one color (say, blue) and {yk, y`} joins to
{y1, y2} via another color (say, green), then consider edge yiyk. In order for a rainbow triangle to be avoided, yiyk is either
blue or green. If it is blue, then ykyiy1yjy2 is a blue P5. If it is green, then yiyky1y`y2 is a green P5.

Subcase 2.3. Without loss of generality, assume that {y3, y4} joins to {y1, y2} via edges in color 2 (which we identify with
blue), and yk joins to {y1, y2} via color k − 2, for each 5 ≤ k ≤ t + 2. If any yk joins to {y3, y4} via a blue edge, then a blue
P5 is formed. For example, if y3yk is blue, then yky3y1y4y2 is a blue P5. In order for a rainbow triangle to be avoided, yk
must the join to {y3, y4} via edges in color k− 2. Since vertex v joins to at least t of the vertices in {y1, y2, . . . , yt+2}, it must
join to at least two of the vertices in {y1, y2, y3, , y4}. If any such edge is red, then a red P5 is formed. For example, if vy1 is
red, then vy1y2xy3 is a red P5, and if vy3 is red, then y1y2xy3v is a red P5. Likewise, if any edge joining v to {y1, y2, y3, y4}
is blue, then a blue P5 is formed. If v joins to any of the pairs {y1, y2}, {y1, y3}, {y1, y4}, {y2, y3}, or {y2, y4}, then the two
edge must be the same color (and not red or blue) and a monochromatic P5 is formed. For example, if vy1 and vy3 are both
given color k, where 3 ≤ k ≤ t, then y3vy1yk+2y2 is a P5 in color k. The only case that remains is if v only joins to {y3, y4}.
If the two edges receive the same color (say, color k, with 3 ≤ k ≤ t, then y3vy4yk+2y1 is a P5 in color k. If edges vy3 and vy4

receive different colors, say colors i and j, respectively, then edge y3y4 receives one of colors i or j. If y3y4 is given color i,
then y4y3vyi+2y1 is a monochromatic P5 and if y3y4 is given color j, then y3y4vyj+2y1 is a monochromatic P5.

Case 3. Suppose that the subgraph induced by {y1, y2, . . . , yt+2} does not contain any red edges and note that v joins to
at least t vertices in this set. If v joins to {y1, y2, . . . , yt+2} via t edges in colors 2, 3, . . . , t, then they form a (t − 1)-colored
Kt+2 tK1,t, which contains a monochromatic P5 by the inductive hypothesis. So, assume that v joins to {y1, y2, . . . , yt+2}
using at least one red edge. If two such edges are red, say vy1 and vy2, then y1vy2xy3 is a red P5. So, only one such red edge
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exists. Without loss of generality, assume that vy1 is red. Without loss of generality, assume that v also joins to vertices
y2, y3, . . . , yt, using only colors 2, 3, . . . , t. In order for a rainbow triangle to be avoided, for each k such that 2 ≤ k ≤ t, the
edges vyk and y1yk receive the same color.

Subcase 3.1. If for any three distinct numbers i, j, k ∈ {2, 3, . . . , t}, the edges joining {v, y1} to {y2, y3, . . . , yt} receive the
same color, then a monochromatic P5 is formed. For example, if the edges joining {v, y1} to {y2, y3, y4} are all blue, then
y2y1y3vy4 is a blue P5.

Subcase 3.2. If distinct yi, yj , yk, y`, where i, j, k, ` ∈ {2, 3, . . . , t}, are such that {yi, yj} joins to {v, y1} via one color (say,
blue) and {yk, y`} joins to {v, y1} via another color (say, green), then consider edge yiyk, which must be either blue or green.
If yiyk is blue, then ykyiy1yjv is a blue P5. If yiyk is green, then yiyky1y`v is a green P5.

Subcase 3.3. Without loss of generality, assume that the edges joining {v, y1} to {y2, y3} are given color 2 (blue) and for
4 ≤ k ≤ t, the edges joining yk to {v, y1} receive color k − 1. If any edge joining yk to {v, y1, y2, y3} is blue, then a blue P5 is
formed. In order to avoid rainbow triangles, the edges joining yk to {y2, y3} must all receive color k − 1. Note that if any
edge joining {yt+1, yt+2} to {y1, y2, y3} is blue, then a blue P5 is formed. It follows that all edges joining yt+1 to {y1, y2, y3}
must be a color other than blue and they must all be the same color. If they receive color k− 1, then y3yt+1y1yky2 is a P5 in
color k − 1. Thus, all edges joining yt+1 to {y1, y2, y3} must receive color t. The same argument can be made for the edges
joining yt+2 to {y1, y2, y3}, and it follows that y1yt+1y2yt+2y3 is a P5 in color t.

Subcase 3.4. Without loss of generality, assume that for each k such that 2 ≤ k ≤ t, the edges joining {v, y1} to yk receive
color k. Then the edge y1yt+1 must have a color the same as some other edge y1yk. The same argument applies to the edge
y1yt+2. If for i 6= j, edge y1yt+1 receives color i and y1yt+2 receives color j, then consider edge yt+1yt+2, which must also be
one of the colors i or j. If it has color i, then yt+2yt+1y1yiv is a P5 in color i. If it has color j, then yt+1yt+2y1yjv is a P5 in
color j. So, assume that y1yt+1 and y1yt+2 both receive color k. If for any ` ∈ {2, 3, . . . , k − 1, k + 1 . . . , t}, the edge y`yt+1

has color k, then y`yt+1y1ykv is a P5 in color k. The same is true for the edges y`yt+2. In order for rainbow triangles to
be avoided, the edges y`yt+1 and y`yt+2 must receive color `, for all ` ∈ {2, 3, . . . , k − 1, k + 1 . . . , t}. Now, if edge yt+1yt+2

is given color k, then yt+1yt+2y1ykv is a P5 in color k. So, assume that yt+1yt+2 receives color m, where m 6= 1, k. Finally,
consider the edges joining yk to {yt+1, yt+2}. If either such edge has color k, say yktt+1, then vykyt+1y1yt+2 is a P5 in color
k. If either such edge has color m, say ykyt+1, then vymyt+2yt+1yk is a P5 in color m. So, both edges ykyt+1 and ykyt+2 must
both receive the same color n, for some n 6= 1, k,m, and vynyt+1ykyt+2 is a P5 in color n.

In all cases, it has been shown that a Gallai t-coloring of Kt+3 t K1,t+1 contains a monochromatic P5. It follows that
grt∗(P5) ≤ t+ 1.

While it has not been explicitly discussed here, the cases in the proof of the upper bound for grt∗(P5) in Theorem 2.1 may
assist in the complete classification of the critical colorings for grt(P5). It is also worth considering that there may be other
ways in which one can prove Theorem 2.1 than the proof given here. In particular, in the proof that grt(P5) = t + 3 given
in [2], the authors made use of the fact that every Gallai coloring of a complete graph contains a monochromatic spanning
broom (consisting of a path x1x2 · · ·xn along with a star with center vertex xn). This result appeared in [6] and may serve
as an alternate tool in a revised proof of the upper bound in Theorem 2.1.
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