Research Article The multicolor star-critical Gallai-Ramsey number for a path of order 5

Mark Budden*

Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, North Carolina 28723, USA

(Received: 5 June 2023. Received in revised form: 11 September 2023. Accepted: 18 September 2023. Published online: 17 October 2023.)

© 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

In this paper, the *t*-color star-critical Gallai-Ramsey number for a path of order 5 is determined. It is proved that t + 1 edges are both necessary and sufficient to add between a vertex and a critical coloring for the *t*-color Gallai-Ramsey number for P_5 in order to guarantee the existence of a monochromatic subgraph isomorphic to P_5 . The proof depends on a well-known structural result for Gallai colorings as well as a general lower bound due to Faudree, Gould, Jacobson, and Magnant.

Keywords: Ramsey numbers; Gallai colorings; critical colorings.

2020 Mathematics Subject Classification: 05C55, 05D10.

1. Introduction

Let P_n denote a path of order n. This paper focuses on the evaluation of the *t*-color star-critical Gallai-Ramsey number for P_5 . Before discussing the main results, we must review the relevant background and definitions. Denote the complete graph of order p by K_p and the complete bipartite graph with partite sets having cardinalities m and n by $K_{m,n}$. When m = 1, the resulting complete bipartite graph $K_{1,n}$ is called a *star* and the vertex in the partite set with cardinality 1 is called the *center vertex* for the star.

For $t \ge 2$, define a *t*-coloring of a graph G = (V(G), E(G)) to be a map $f : E(G) \longrightarrow \{1, 2, ..., t\}$. The *t*-color Ramsey number $r^t(G)$ is the least natural number p such that every *t*-coloring of the edges of K_p contains a monochromatic subgraph isomorphic to G. A critical coloring for $r^t(G)$ is a *t*-coloring of $K_{r^t(G)-1}$ that lacks a monochromatic copy of G. In 1967, Gerencsér and Gyárfás [5] proved that

$$r^2(P_n) = n + \left\lfloor \frac{n}{2} \right\rfloor - 1$$
, for all $n \ge 2$,

where P_n is a path of order n.

The star-critical Ramsey number serves as a refinement of the concept of a Ramsey number. In order to define it, let $K_n \sqcup K_{1,k}$ be the graph formed by taking the union of a vertex v with the graph K_n and joining v with edges to exactly k vertices in the K_n $(1 \le k \le n)$. The *star-critical Ramsey number* $r_*^t(G)$ is then defined to be the least k such that every t-coloring of $K_{r^t(G)-1} \sqcup K_{1,k}$ contains a monochromatic copy of G. These numbers were first defined by Hook in her dissertation [7] (see also [8] and Section 2.1 of [1]), where she showed that

$$r_*^2(P_n) = \left\lceil \frac{n}{2} \right\rceil, \text{ for all } n \ge 2.$$

A *t*-coloring *f* of a graph *G* is called a *Gallai t*-coloring of *G* if it does not contain any rainbow triangles (see [3,9]). That is, $|f(xy), f(yz), f(xz)| \leq 2$ for all distinct $x, y, z \in V(G)$. The *t*-color *Gallai-Ramsey number* $gr^t(G)$ is then defined to be the least natural number *p* such that every Gallai *t*-coloring of K_p contains a monochromatic copy of *G*. Note that when t = 2, $r^2(G) = gr^2(G)$. A critical coloring for $gr^t(G)$ is a Gallai *t*-coloring of $K_{gr^t(G)-1}$ that lacks a monochromatic copy of *G*. The star-critical Gallai-Ramsey number $gr^t_*(G)$ is the least *k* such that every Gallai *t*-coloring of $K_{gr^t(G)-1} \sqcup K_{1,k}$ contains a monochromatic copy of *G*. The following structure theorem for Gallai colorings can be found in [6] and is a reinterpretation of a classic result of Gallai [4]. It is the basis of many upper bound results for Gallai-Ramsey numbers.

Theorem 1.1. Every Gallai-colored complete graph can be formed by replacing the vertices of a 2-colored complete graph of order at least two with Gallai-colored complete graphs.

^{*}E-mail address: mrbudden@email.wcu.edu

In such a coloring, the 2-colored complete graph is called the *base graph* while the Gallai-colored complete graphs that replace the vertices in the base graph are called *blocks*. The partition of the vertex set of the full Gallai-colored complete graph into subsets that correspond with the blocks is referred to as a *Gallai partition*.

In [2], Faudree, Gould, Jacobson, and Magnant showed that for all $t \ge 3$,

$$gr^t(P_4) = t + 3$$
 and $gr^t(P_5) = t + 4$.

The lower bounds for both of these Gallai-Ramsey numbers came from a general construction which implies that if G is a connected graph of order n, then

$$gr^t(G) \ge n + (c(G) - 1)(t - 1).$$
 (1)

Here, c(G) is the *edge cover number*, defined to be the minimum cardinality of a subset $C \subseteq V(G)$ such that every edge in E(G) is incident with some element in C. In 2022, Su and Liu [10] determined the *t*-color star-critical Gallai-Ramsey number for P_4 :

$$gr_*^t(P_4) = t$$
, for all $t \ge 3$

The focus of this paper is the evaluation

$$gr_*^t(P_5) = t + 1.$$

2. Main results

Before considering the evaluation of $gr_*^t(P_5)$, we prove an important property of the the critical colorings of $gr^t(P_5)$. The following lemma depends heavily on Theorem 1.1.

Lemma 2.1. If $t \ge 2$, then every critical coloring for $gr^t(P_5)$ contains a vertex that is incident with edges that are all in the same color class.

Proof. When t = 2, this lemma follows from the critical colorings of $r(P_5, P_5)$ described in Proposition 2.6 of [8], all of which contain a vertex incident with edges that are all in the same color class (also, see Theorem 2.1 of [1]). For $t \ge 3$, consider a Gallai *t*-coloring of K_{t+3} that lacks a monochromatic P_5 . By Theorem 1.1, this complete graph can be formed by replacing the vertices of a 2-colored complete graph of order at least two with Gallai-colored complete graphs. Let \mathcal{B} be a base graph of minimum order $q \ge 2$ among all possible Gallai partitions and denote the vertex sets that correspond with the vertices in \mathcal{B} by X_1, X_2, \ldots, X_q . The Ramsey number $r^2(P_5) = 6$ (see [5]) implies that $q \le 5$. Also, Lemma 3.1 of [9] implies that $q \ne 3$ since q is chosen to be minimal and the case of q = 3 can be reduced to the case in which q = 2. The values q = 2, 4, 5 must be considered separately.

<u>Case 1.</u> Assume that q = 2. By the pigeonhole principle, either $|X_1| \ge 3$ or $|X_2| \ge 3$ since $t + 3 \ge 6$. If both blocks have order at least two, then without loss of generality, assume that $x_1, y_1, z_1 \in X_1$ and $x_2, y_2 \in X_2$. Then $x_1x_2y_1y_2z_1$ is a monochromatic P_5 , contradicting the assumption that we are considering a critical coloring. It follows that one block has only a single vertex and that vertex is incident with edges that are all in the same color class.

<u>Case 2.</u> Assume that q = 4. If some block, say X_1 , satisfies $|X_1| \ge 3$, then suppose that $x_1, y_1, z_1 \in X_1$ and $x_i \in X_i$ for each i such that $2 \le i \le 4$. By the pigeonhole principle, at least two of X_2, X_3, X_4 must join to X_1 via edges of the same color. Without loss of generality, suppose that X_2 and X_3 both join to X_1 via red edges (see Figure 1). Then $x_1x_2y_1x_3z_1$ is a red P_5 , contradicting the assumption that we are considering a critical coloring.

If no X_i contains at least three vertices, then at least two X_i must contain exactly two vertices and $t \le 5$. Assume that $|X_1| = |X_2| = 2$, $x_1, y_1 \in X_1$, $x_2, y_2 \in X_2$, $x_3 \in X_3$, $x_4 \in X_4$, and all edges joining X_1 and X_2 are red. If either of X_3 or X_4 join to X_1 or X_2 via red edges, say X_1 and X_3 are joined by red edges, then $x^2x_1y_2y_1x_3$ is a red P_5 , again giving a contradiction (see the first image in Figure 2). So, assume that X_3 and X_4 join to X_1 and X_2 via blue edges (see the second image in Figure 2. Then $x_1x_3y_1x_4x_2$ is a blue P_5 , giving a contradiction. Thus, it follows that no such critical coloring exists with q = 4.

<u>Case 3.</u> Assume that q = 5. Since $t + 3 \ge 6$, the pigeonhole principle implies that some X_i contains more than one vertex. Assume that $|X_1| \ge 2$ and let $x_1, y_1 \in X_1$. For each i such that $2 \le i \le t$, select a single vertex in X_i and denote it by x_i . Suppose that at least three of X_2, X_3, X_4, X_5 join to X_1 via the same color edge. Without loss of generality, assume that X_2, X_3, X_4 all join to X_1 via red edges (see the first image in Figure 3). Then $x_2x_1x_3y_1x_4$ is a red P_5 , which is a contradiction.

If at most two of X_2, X_3, X_4, X_5 join to X_1 via the same color edges, then exactly two of them will join in each color. Without loss of generality, assume that X_2 and X_3 join to X_1 via red edges and X_4 and X_5 join to X_1 via blue edges (see the second image in Figure 3). If x_2x_5 is red then, $x_5x_2x_1x_3y_1$ forms a red P_5 . If x_2x_5 is blue, then $x_2x_5x_1x_4y_1$ is a blue P_5 . In all cases, there is a monochromatic P_5 , so no such critical coloring exists with q = 5.

Figure 1: The case where q = 4 and some block has order at least 3.

Figure 2: Two cases where q = 4 and all blocks have cardinality at most 2.

Figure 3: Two cases where q = 5.

Overall, we have shown that every critical coloring for $gr^t(P_5)$ has a Gallai partition containing two blocks, one of which consists of a single vertex. This vertex is incident with edges in only one color class.

Theorem 2.1. For all $t \ge 2$, $gr_*^t(P_5) = t + 1$.

Proof. To show that t + 1 is a lower bound for $gr_*^t(P_5)$, start with the construction that led to the lower bound given by Inequality (1). Specifically, begin with a copy of K_4 in color 1, which we denote by G_1 . Then for each *i* such that $1 \le i \le t-1$, recursively form G_{i+1} by introducing vertex x_i and joining x_i to all of the vertices in G_i using edges in color i+1. The result

is that G_t is a Gallai *t*-colored complete graph of order t + 3 that avoids a monochromatic P_5 , producing a critical coloring for $gr^t(P_5)$. Next, introduce a vertex v and join v to x_i using color i + 1. Also, join v to a single vertex in the original K_4 using color 2 (see Figure 4). The result is a Gallai *t*-coloring of $K_{t+3} \sqcup K_{1,t}$ that avoids a monochromatic P_5 . It follows that $gr_*^t(P_5) \ge t + 1$.

Figure 4: A Gallai *t*-coloring of $K_{t+3} \sqcup K_{1,t}$ that avoids a monochromatic P_5 , from which it follows that $gr_*^t(P_5) \ge t+1$.

To prove the reverse inequality, we will proceed by using induction on $t \ge 2$, with $r_*^2(P_5) \le 3$ (see [7] and [8]) serving as the base case. Assume that $gr_*^{t-1}(P_5) \le t$ and consider a Gallai *t*-coloring of $K_{t+3} \sqcup K_{1,t+1}$, where *v* denotes the center vertex of the missing star. Deleting vertex *v* results in a Gallai *t*-coloring of K_{t+3} . If a monochromatic copy of P_5 is to be avoided, then by Lemma 2.1, some vertex must be incident with edges in only one color. Label this vertex *x*, the other vertices $y_1, y_2, \ldots, y_{t+2}$, and without loss of generality, assume that xy_i receives color 1, for all $1 \le i \le t+2$. We identify color 1 with the color red and consider the following cases.

<u>Case 1.</u> Suppose that at least two edges in the subgraph induced by $\{y_1, y_2, \ldots, y_{t+2}\}$ are red. Regardless of whether or not two red edges are adjacent, there exists a red P_5 . For example, if y_1y_2 and y_2y_3 are red, then $y_1y_2y_3xy_4$ is a red P_5 and if y_1y_2 and y_3y_4 are red, then $y_1y_2xy_3y_4$ is a red P_5 .

<u>Case 2.</u> Suppose that exactly one edge in the subgraph induced by $\{y_1, y_2, \ldots, y_{t+2}\}$ is red and suppose it is edge y_1y_2 . For each *i* such that $3 \le i \le t+2$, the edges y_1y_i and y_2y_i must receive the same color since rainbow triangles are avoided. At most, t-1 colors are used on the edges joining $\{y_1, y_2\}$ to $\{y_3, y_4, \ldots, y_{t+2}\}$. By the pigeonhole principle, there exists distinct numbers $i, j \in \{3, 4, \ldots, t+2\}$ such that all edges joining $\{y_i, y_j\}$ to $\{y_1, y_2\}$ are the same color. We now complete this case by considering serval subcases.

<u>Subcase 2.1.</u> If for any three distinct numbers $i, j, k \in \{3, 4, ..., t+2\}$, the edges joining $\{y_1, y_2\}$ to $\{y_i, y_j, y_k\}$ are the same color, then $y_i y_1 y_j y_2 y_k$ is a monochromatic P_5 .

Subcase 2.2. If distinct y_i, y_j, y_k, y_ℓ are such that $\{y_i, y_j\}$ joins to $\{y_1, y_2\}$ via one color (say, blue) and $\{y_k, y_\ell\}$ joins to $\{y_1, y_2\}$ via another color (say, green), then consider edge $y_i y_k$. In order for a rainbow triangle to be avoided, $y_i y_k$ is either blue or green. If it is blue, then $y_k y_i y_1 y_j y_2$ is a blue P_5 . If it is green, then $y_i y_k y_1 y_\ell y_2$ is a green P_5 .

Subcase 2.3. Without loss of generality, assume that $\{y_3, y_4\}$ joins to $\{y_1, y_2\}$ via edges in color 2 (which we identify with blue), and y_k joins to $\{y_1, y_2\}$ via color k - 2, for each $5 \le k \le t + 2$. If any y_k joins to $\{y_3, y_4\}$ via a blue edge, then a blue P_5 is formed. For example, if y_3y_k is blue, then $y_ky_3y_1y_4y_2$ is a blue P_5 . In order for a rainbow triangle to be avoided, y_k must the join to $\{y_3, y_4\}$ via edges in color k - 2. Since vertex v joins to at least t of the vertices in $\{y_1, y_2, \ldots, y_{t+2}\}$, it must join to at least two of the vertices in $\{y_1, y_2, y_3, y_4\}$. If any such edge is red, then a red P_5 is formed. For example, if vy_1 is red, then $vy_1y_2xy_3$ is a red P_5 , and if vy_3 is red, then $y_1y_2xy_3v$ is a red P_5 . Likewise, if any edge joining v to $\{y_1, y_2, y_3, y_4\}$ is blue, then a blue P_5 is formed. If v joins to any of the pairs $\{y_1, y_2\}, \{y_1, y_3\}, \{y_1, y_4\}, \{y_2, y_3\}, or \{y_2, y_4\}$, then the two edge must be the same color (and not red or blue) and a monochromatic P_5 is formed. For example, if vy_1 and vy_3 are both given color k, where $3 \le k \le t$, then $y_3vy_1y_{k+2}y_2$ is a P_5 in color k. The only case that remains is if v only joins to $\{y_3, y_4\}$. If the two edges receive the same color (say, color k, with $3 \le k \le t$, then $y_3vy_4y_{k+2}y_1$ is a P_5 in color k. If edges vy_3 and vy_4 receive different colors, say colors i and j, respectively, then edge y_3y_4 receives one of colors i or j. If y_3y_4 is given color i, then $y_4y_3vy_{i+2}y_1$ is a monochromatic P_5 .

<u>Case 3.</u> Suppose that the subgraph induced by $\{y_1, y_2, \ldots, y_{t+2}\}$ does not contain any red edges and note that v joins to at least t vertices in this set. If v joins to $\{y_1, y_2, \ldots, y_{t+2}\}$ via t edges in colors $2, 3, \ldots, t$, then they form a (t-1)-colored $K_{t+2} \sqcup K_{1,t}$, which contains a monochromatic P_5 by the inductive hypothesis. So, assume that v joins to $\{y_1, y_2, \ldots, y_{t+2}\}$ using at least one red edge. If two such edges are red, say vy_1 and vy_2 , then $y_1vy_2xy_3$ is a red P_5 . So, only one such red edge

exists. Without loss of generality, assume that vy_1 is red. Without loss of generality, assume that v also joins to vertices y_2, y_3, \ldots, y_t , using only colors $2, 3, \ldots, t$. In order for a rainbow triangle to be avoided, for each k such that $2 \le k \le t$, the edges vy_k and y_1y_k receive the same color.

<u>Subcase 3.1.</u> If for any three distinct numbers $i, j, k \in \{2, 3, ..., t\}$, the edges joining $\{v, y_1\}$ to $\{y_2, y_3, ..., y_t\}$ receive the same color, then a monochromatic P_5 is formed. For example, if the edges joining $\{v, y_1\}$ to $\{y_2, y_3, y_4\}$ are all blue, then $y_2y_1y_3vy_4$ is a blue P_5 .

Subcase 3.2. If distinct y_i, y_j, y_k, y_ℓ , where $i, j, k, \ell \in \{2, 3, ..., t\}$, are such that $\{y_i, y_j\}$ joins to $\{v, y_1\}$ via one color (say, blue) and $\{y_k, y_\ell\}$ joins to $\{v, y_1\}$ via another color (say, green), then consider edge $y_i y_k$, which must be either blue or green. If $y_i y_k$ is blue, then $y_k y_i y_1 y_j v$ is a blue P_5 . If $y_i y_k$ is green, then $y_i y_k y_1 y_\ell v$ is a green P_5 .

Subcase 3.3. Without loss of generality, assume that the edges joining $\{v, y_1\}$ to $\{y_2, y_3\}$ are given color 2 (blue) and for $4 \le k \le t$, the edges joining y_k to $\{v, y_1\}$ receive color k - 1. If any edge joining y_k to $\{v, y_1, y_2, y_3\}$ is blue, then a blue P_5 is formed. In order to avoid rainbow triangles, the edges joining y_k to $\{y_2, y_3\}$ must all receive color k - 1. Note that if any edge joining $\{y_{t+1}, y_{t+2}\}$ to $\{y_1, y_2, y_3\}$ is blue, then a blue P_5 is formed. It follows that all edges joining y_{t+1} to $\{y_1, y_2, y_3\}$ must be a color other than blue and they must all be the same color. If they receive color k - 1, then $y_3y_{t+1}y_1y_ky_2$ is a P_5 in color k - 1. Thus, all edges joining y_{t+1} to $\{y_1, y_2, y_3\}$ must receive color t. The same argument can be made for the edges joining y_{t+2} to $\{y_1, y_2, y_3\}$, and it follows that $y_1y_{t+1}y_2y_{t+2}y_3$ is a P_5 in color t.

Subcase 3.4. Without loss of generality, assume that for each k such that $2 \le k \le t$, the edges joining $\{v, y_1\}$ to y_k receive color k. Then the edge y_1y_{t+1} must have a color the same as some other edge y_1y_k . The same argument applies to the edge y_1y_{t+2} . If for $i \ne j$, edge y_1y_{t+1} receives color i and y_1y_{t+2} receives color j, then consider edge $y_{t+1}y_{t+2}$, which must also be one of the colors i or j. If it has color i, then $y_{t+2}y_{t+1}y_1y_iv$ is a P_5 in color i. If it has color j, then $y_{t+1}y_{t+2}y_1y_jv$ is a P_5 in color j. So, assume that y_1y_{t+1} and y_1y_{t+2} both receive color k. If for any $\ell \in \{2, 3, \ldots, k - 1, k + 1, \ldots, t\}$, the edge $y_\ell y_{\ell+1}$ has color k, then $y_\ell y_{t+1}y_1y_kv$ is a P_5 in color k. The same is true for the edges $y_\ell y_{t+2}$. In order for rainbow triangles to be avoided, the edges $y_\ell y_{t+1}$ and $y_\ell y_{t+2}$ must receive color ℓ , for all $\ell \in \{2, 3, \ldots, k - 1, k + 1, \ldots, t\}$. Now, if edge $y_{t+1}y_{t+2}$ is given color k, then $y_{t+1}y_{t+2}y_1y_kv$ is a P_5 in color k. So, assume that $y_{t+1}y_{t+2}$ receives color m, where $m \ne 1, k$. Finally, consider the edges joining y_k to $\{y_{t+1}, y_{t+2}\}$. If either such edge has color k, say $y_k t_{t+1}$, then $vy_ky_{t+1}y_1y_{t+2}$ is a P_5 in color k. If either such edge has color m, say y_ky_{t+1} , then $vy_my_{t+2}y_{t+1}y_k$ is a P_5 in color k. So, both edges y_ky_{t+1} and y_ky_{t+2} must both receive the same color n, for some $n \ne 1, k, m$, and $vy_ny_{t+1}y_ky_{t+2}$ is a P_5 in color n.

In all cases, it has been shown that a Gallai *t*-coloring of $K_{t+3} \sqcup K_{1,t+1}$ contains a monochromatic P_5 . It follows that $gr_*^t(P_5) \le t+1$.

While it has not been explicitly discussed here, the cases in the proof of the upper bound for $gr_*^t(P_5)$ in Theorem 2.1 may assist in the complete classification of the critical colorings for $gr^t(P_5)$. It is also worth considering that there may be other ways in which one can prove Theorem 2.1 than the proof given here. In particular, in the proof that $gr^t(P_5) = t + 3$ given in [2], the authors made use of the fact that every Gallai coloring of a complete graph contains a monochromatic spanning *broom* (consisting of a path $x_1x_2 \cdots x_n$ along with a star with center vertex x_n). This result appeared in [6] and may serve as an alternate tool in a revised proof of the upper bound in Theorem 2.1.

References

- [1] M. Budden, Star-Critical Ramsey Numbers for Graphs, Springer, Cham, 2023.
- [2] R. Faudree, R. Gould, M. Jacobson, C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269–284.
- [3] S. Fujita, C. Magnant, Y. Mao, K. Ozeki, Rainbow generalizations of Ramsey theory: A dynamic survey, *Theory Appl. Graphs* 0 (2014) #1.
- [4] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci Hungar. 18 (1967) 25-66.
- [5] L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167–170.
- [6] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211–216.
- [7] J. Hook, The Classification of Critical Graphs and Star-Critical Ramsey Numbers, Ph.D. Thesis, Lehigh University, 2010.
- [8] J. Hook, Critical graphs for $R(P_n, P_m)$ and the star-critical Ramsey number for paths, Discuss. Math. Graph Theory 35 (2015) 689–701.
- [9] C. Magnant, P. Salehi Nowbandegani, Topics in Gallai-Ramsey Theory, Springer, Cham, 2020.
- [10] X. Su, Y. Liu, Star-critical Gallai-Ramsey numbers of graphs, Graphs Combin. 38 (2022) #158.