The multicolor star-critical Gallai-Ramsey number for a path of order 5

Mark Budden*
Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, North Carolina 28723, USA

(Received: 5 June 2023. Received in revised form: 11 September 2023. Accepted: 18 September 2023. Published online: 17 October 2023.)
© 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

In this paper, the t-color star-critical Gallai-Ramsey number for a path of order 5 is determined. It is proved that $t+1$ edges are both necessary and sufficient to add between a vertex and a critical coloring for the t-color Gallai-Ramsey number for P_{5} in order to guarantee the existence of a monochromatic subgraph isomorphic to P_{5}. The proof depends on a well-known structural result for Gallai colorings as well as a general lower bound due to Faudree, Gould, Jacobson, and Magnant.

Keywords: Ramsey numbers; Gallai colorings; critical colorings.
2020 Mathematics Subject Classification: 05C55, 05D10.

1. Introduction

Let P_{n} denote a path of order n. This paper focuses on the evaluation of the t-color star-critical Gallai-Ramsey number for P_{5}. Before discussing the main results, we must review the relevant background and definitions. Denote the complete graph of order p by K_{p} and the complete bipartite graph with partite sets having cardinalities m and n by $K_{m, n}$. When $m=1$, the resulting complete bipartite graph $K_{1, n}$ is called a star and the vertex in the partite set with cardinality 1 is called the center vertex for the star.

For $t \geq 2$, define a t-coloring of a graph $G=(V(G), E(G))$ to be a map $f: E(G) \longrightarrow\{1,2, \ldots, t\}$. The t-color Ramsey number $r^{t}(G)$ is the least natural number p such that every t-coloring of the edges of K_{p} contains a monochromatic subgraph isomorphic to G. A critical coloring for $r^{t}(G)$ is a t-coloring of $K_{r^{t}(G)-1}$ that lacks a monochromatic copy of G. In 1967, Gerencsér and Gyárfás [5] proved that

$$
r^{2}\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1, \quad \text { for all } n \geq 2
$$

where P_{n} is a path of order n.
The star-critical Ramsey number serves as a refinement of the concept of a Ramsey number. In order to define it, let $K_{n} \sqcup K_{1, k}$ be the graph formed by taking the union of a vertex v with the graph K_{n} and joining v with edges to exactly k vertices in the $K_{n}(1 \leq k \leq n)$. The star-critical Ramsey number $r_{*}^{t}(G)$ is then defined to be the least k such that every t-coloring of $K_{r^{t}(G)-1} \sqcup K_{1, k}$ contains a monochromatic copy of G. These numbers were first defined by Hook in her dissertation [7] (see also [8] and Section 2.1 of [1]), where she showed that

$$
r_{*}^{2}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil, \quad \text { for all } n \geq 2
$$

A t-coloring f of a graph G is called a Gallai t-coloring of G if it does not contain any rainbow triangles (see [3,9]). That is, $|f(x y), f(y z), f(x z)| \leq 2$ for all distinct $x, y, z \in V(G)$. The t-color Gallai-Ramsey number gr ${ }^{t}(G)$ is then defined to be the least natural number p such that every Gallai t-coloring of K_{p} contains a monochromatic copy of G. Note that when $t=2$, $r^{2}(G)=g r^{2}(G)$. A critical coloring for $g r^{t}(G)$ is a Gallai t-coloring of $K_{g r t(G)-1}$ that lacks a monochromatic copy of G. The star-critical Gallai-Ramsey number gr $_{*}^{t}(G)$ is the least k such that every Gallai t-coloring of $K_{g r^{t}(G)-1} \sqcup K_{1, k}$ contains a monochromatic copy of G. The following structure theorem for Gallai colorings can be found in [6] and is a reinterpretation of a classic result of Gallai [4]. It is the basis of many upper bound results for Gallai-Ramsey numbers.

Theorem 1.1. Every Gallai-colored complete graph can be formed by replacing the vertices of a 2-colored complete graph of order at least two with Gallai-colored complete graphs.

In such a coloring, the 2-colored complete graph is called the base graph while the Gallai-colored complete graphs that replace the vertices in the base graph are called blocks. The partition of the vertex set of the full Gallai-colored complete graph into subsets that correspond with the blocks is referred to as a Gallai partition.

In [2], Faudree, Gould, Jacobson, and Magnant showed that for all $t \geq 3$,

$$
g r^{t}\left(P_{4}\right)=t+3 \quad \text { and } \quad g r^{t}\left(P_{5}\right)=t+4
$$

The lower bounds for both of these Gallai-Ramsey numbers came from a general construction which implies that if G is a connected graph of order n, then

$$
\begin{equation*}
g r^{t}(G) \geq n+(c(G)-1)(t-1) \tag{1}
\end{equation*}
$$

Here, $c(G)$ is the edge cover number, defined to be the minimum cardinality of a subset $C \subseteq V(G)$ such that every edge in $E(G)$ is incident with some element in C. In 2022, Su and Liu [10] determined the t-color star-critical Gallai-Ramsey number for P_{4} :

$$
g r_{*}^{t}\left(P_{4}\right)=t, \quad \text { for all } t \geq 3 .
$$

The focus of this paper is the evaluation

$$
g r_{*}^{t}\left(P_{5}\right)=t+1 .
$$

2. Main results

Before considering the evaluation of $g r_{*}^{t}\left(P_{5}\right)$, we prove an important property of the the critical colorings of $g r^{t}\left(P_{5}\right)$. The following lemma depends heavily on Theorem 1.1.

Lemma 2.1. If $t \geq 2$, then every critical coloring for $g^{t}\left(P_{5}\right)$ contains a vertex that is incident with edges that are all in the same color class.

Proof. When $t=2$, this lemma follows from the critical colorings of $r\left(P_{5}, P_{5}\right)$ described in Proposition 2.6 of [8], all of which contain a vertex incident with edges that are all in the same color class (also, see Theorem 2.1 of [1]). For $t \geq 3$, consider a Gallai t-coloring of K_{t+3} that lacks a monochromatic P_{5}. By Theorem 1.1, this complete graph can be formed by replacing the vertices of a 2 -colored complete graph of order at least two with Gallai-colored complete graphs. Let \mathcal{B} be a base graph of minimum order $q \geq 2$ among all possible Gallai partitions and denote the vertex sets that correspond with the vertices in \mathcal{B} by $X_{1}, X_{2}, \ldots, X_{q}$. The Ramsey number $r^{2}\left(P_{5}\right)=6$ (see [5]) implies that $q \leq 5$. Also, Lemma 3.1 of [9] implies that $q \neq 3$ since q is chosen to be minimal and the case of $q=3$ can be reduced to the case in which $q=2$. The values $q=2,4,5$ must be considered separately.

Case 1. Assume that $q=2$. By the pigeonhole principle, either $\left|X_{1}\right| \geq 3$ or $\left|X_{2}\right| \geq 3$ since $t+3 \geq 6$. If both blocks have order at least two, then without loss of generality, assume that $x_{1}, y_{1}, z_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$. Then $x_{1} x_{2} y_{1} y_{2} z_{1}$ is a monochromatic P_{5}, contradicting the assumption that we are considering a critical coloring. It follows that one block has only a single vertex and that vertex is incident with edges that are all in the same color class.

Case 2. Assume that $q=4$. If some block, say X_{1}, satisfies $\left|X_{1}\right| \geq 3$, then suppose that $x_{1}, y_{1}, z_{1} \in X_{1}$ and $x_{i} \in X_{i}$ for each i such that $2 \leq i \leq 4$. By the pigeonhole principle, at least two of X_{2}, X_{3}, X_{4} must join to X_{1} via edges of the same color. Without loss of generality, suppose that X_{2} and X_{3} both join to X_{1} via red edges (see Figure 1). Then $x_{1} x_{2} y_{1} x_{3} z_{1}$ is a red P_{5}, contradicting the assumption that we are considering a critical coloring.

If no X_{i} contains at least three vertices, then at least two X_{i} must contain exactly two vertices and $t \leq 5$. Assume that $\left|X_{1}\right|=\left|X_{2}\right|=2, x_{1}, y_{1} \in X_{1}, x_{2}, y_{2} \in X_{2}, x_{3} \in X_{3}, x_{4} \in X_{4}$, and all edges joining X_{1} and X_{2} are red. If either of X_{3} or X_{4} join to X_{1} or X_{2} via red edges, say X_{1} and X_{3} are joined by red edges, then $x^{2} x_{1} y_{2} y_{1} x_{3}$ is a red P_{5}, again giving a contradiction (see the first image in Figure 2). So, assume that X_{3} and X_{4} join to X_{1} and X_{2} via blue edges (see the second image in Figure 2. Then $x_{1} x_{3} y_{1} x_{4} x_{2}$ is a blue P_{5}, giving a contradiction. Thus, it follows that no such critical coloring exists with $q=4$.

Case 3. Assume that $q=5$. Since $t+3 \geq 6$, the pigeonhole principle implies that some X_{i} contains more than one vertex. Assume that $\left|X_{1}\right| \geq 2$ and let $x_{1}, y_{1} \in X_{1}$. For each i such that $2 \leq i \leq t$, select a single vertex in X_{i} and denote it by x_{i}. Suppose that at least three of $X_{2}, X_{3}, X_{4}, X_{5}$ join to X_{1} via the same color edge. Without loss of generality, assume that X_{2}, X_{3}, X_{4} all join to X_{1} via red edges (see the first image in Figure 3). Then $x_{2} x_{1} x_{3} y_{1} x_{4}$ is a red P_{5}, which is a contradiction.

If at most two of $X_{2}, X_{3}, X_{4}, X_{5}$ join to X_{1} via the same color edges, then exactly two of them will join in each color. Without loss of generality, assume that X_{2} and X_{3} join to X_{1} via red edges and X_{4} and X_{5} join to X_{1} via blue edges (see the second image in Figure 3). If $x_{2} x_{5}$ is red then, $x_{5} x_{2} x_{1} x_{3} y_{1}$ forms a red P_{5}. If $x_{2} x_{5}$ is blue, then $x_{2} x_{5} x_{1} x_{4} y_{1}$ is a blue P_{5}. In all cases, there is a monochromatic P_{5}, so no such critical coloring exists with $q=5$.

Figure 1: The case where $q=4$ and some block has order at least 3.

Figure 2: Two cases where $q=4$ and all blocks have cardinality at most 2.

Figure 3: Two cases where $q=5$.

Overall, we have shown that every critical coloring for $g r^{t}\left(P_{5}\right)$ has a Gallai partition containing two blocks, one of which consists of a single vertex. This vertex is incident with edges in only one color class.

Theorem 2.1. For all $t \geq 2, g r_{*}^{t}\left(P_{5}\right)=t+1$.
Proof. To show that $t+1$ is a lower bound for $g r_{*}^{t}\left(P_{5}\right)$, start with the construction that led to the lower bound given by Inequality (1). Specifically, begin with a copy of K_{4} in color 1 , which we denote by G_{1}. Then for each i such that $1 \leq i \leq t-1$, recursively form G_{i+1} by introducing vertex x_{i} and joining x_{i} to all of the vertices in G_{i} using edges in color $i+1$. The result
is that G_{t} is a Gallai t-colored complete graph of order $t+3$ that avoids a monochromatic P_{5}, producing a critical coloring for $g r^{t}\left(P_{5}\right)$. Next, introduce a vertex v and join v to x_{i} using color $i+1$. Also, join v to a single vertex in the original K_{4} using color 2 (see Figure 4). The result is a Gallai t-coloring of $K_{t+3} \sqcup K_{1, t}$ that avoids a monochromatic P_{5}. It follows that $g r_{*}^{t}\left(P_{5}\right) \geq t+1$.

Figure 4: A Gallai t-coloring of $K_{t+3} \sqcup K_{1, t}$ that avoids a monochromatic P_{5}, from which it follows that $g r_{*}^{t}\left(P_{5}\right) \geq t+1$.
To prove the reverse inequality, we will proceed by using induction on $t \geq 2$, with $r_{*}^{2}\left(P_{5}\right) \leq 3$ (see [7] and [8]) serving as the base case. Assume that $g r_{*}^{t-1}\left(P_{5}\right) \leq t$ and consider a Gallai t-coloring of $K_{t+3} \sqcup K_{1, t+1}$, where v denotes the center vertex of the missing star. Deleting vertex v results in a Gallai t-coloring of K_{t+3}. If a monochromatic copy of P_{5} is to be avoided, then by Lemma 2.1, some vertex must be incident with edges in only one color. Label this vertex x, the other vertices $y_{1}, y_{2}, \ldots, y_{t+2}$, and without loss of generality, assume that $x y_{i}$ receives color 1 , for all $1 \leq i \leq t+2$. We identify color 1 with the color red and consider the following cases.

Case 1. Suppose that at least two edges in the subgraph induced by $\left\{y_{1}, y_{2}, \ldots, y_{t+2}\right\}$ are red. Regardless of whether or not two red edges are adjacent, there exists a red P_{5}. For example, if $y_{1} y_{2}$ and $y_{2} y_{3}$ are red, then $y_{1} y_{2} y_{3} x y_{4}$ is a red P_{5} and if $y_{1} y_{2}$ and $y_{3} y_{4}$ are red, then $y_{1} y_{2} x y_{3} y_{4}$ is a red P_{5}.

Case 2. Suppose that exactly one edge in the subgraph induced by $\left\{y_{1}, y_{2}, \ldots, y_{t+2}\right\}$ is red and suppose it is edge $y_{1} y_{2}$. For each i such that $3 \leq i \leq t+2$, the edges $y_{1} y_{i}$ and $y_{2} y_{i}$ must receive the same color since rainbow triangles are avoided. At most, $t-1$ colors are used on the edges joining $\left\{y_{1}, y_{2}\right\}$ to $\left\{y_{3}, y_{4}, \ldots, y_{t+2}\right\}$. By the pigeonhole principle, there exists distinct numbers $i, j \in\{3,4, \ldots, t+2\}$ such that all edges joining $\left\{y_{i}, y_{j}\right\}$ to $\left\{y_{1}, y_{2}\right\}$ are the same color. We now complete this case by considering serval subcases.

Subcase 2.1. If for any three distinct numbers $i, j, k \in\{3,4, \ldots, t+2\}$, the edges joining $\left\{y_{1}, y_{2}\right\}$ to $\left\{y_{i}, y_{j}, y_{k}\right\}$ are the same color, then $y_{i} y_{1} y_{j} y_{2} y_{k}$ is a monochromatic P_{5}.

Subcase 2.2. If distinct $y_{i}, y_{j}, y_{k}, y_{\ell}$ are such that $\left\{y_{i}, y_{j}\right\}$ joins to $\left\{y_{1}, y_{2}\right\}$ via one color (say, blue) and $\left\{y_{k}, y_{\ell}\right\}$ joins to $\left\{y_{1}, y_{2}\right\}$ via another color (say, green), then consider edge $y_{i} y_{k}$. In order for a rainbow triangle to be avoided, $y_{i} y_{k}$ is either blue or green. If it is blue, then $y_{k} y_{i} y_{1} y_{j} y_{2}$ is a blue P_{5}. If it is green, then $y_{i} y_{k} y_{1} y_{\ell} y_{2}$ is a green P_{5}.

Subcase 2.3. Without loss of generality, assume that $\left\{y_{3}, y_{4}\right\}$ joins to $\left\{y_{1}, y_{2}\right\}$ via edges in color 2 (which we identify with blue), and y_{k} joins to $\left\{y_{1}, y_{2}\right\}$ via color $k-2$, for each $5 \leq k \leq t+2$. If any y_{k} joins to $\left\{y_{3}, y_{4}\right\}$ via a blue edge, then a blue P_{5} is formed. For example, if $y_{3} y_{k}$ is blue, then $y_{k} y_{3} y_{1} y_{4} y_{2}$ is a blue P_{5}. In order for a rainbow triangle to be avoided, y_{k} must the join to $\left\{y_{3}, y_{4}\right\}$ via edges in color $k-2$. Since vertex v joins to at least t of the vertices in $\left\{y_{1}, y_{2}, \ldots, y_{t+2}\right\}$, it must join to at least two of the vertices in $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. If any such edge is red, then a red P_{5} is formed. For example, if $v y_{1}$ is red, then $v y_{1} y_{2} x y_{3}$ is a red P_{5}, and if $v y_{3}$ is red, then $y_{1} y_{2} x y_{3} v$ is a red P_{5}. Likewise, if any edge joining v to $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ is blue, then a blue P_{5} is formed. If v joins to any of the pairs $\left\{y_{1}, y_{2}\right\},\left\{y_{1}, y_{3}\right\},\left\{y_{1}, y_{4}\right\},\left\{y_{2}, y_{3}\right\}$, or $\left\{y_{2}, y_{4}\right\}$, then the two edge must be the same color (and not red or blue) and a monochromatic P_{5} is formed. For example, if $v y_{1}$ and $v y_{3}$ are both given color k, where $3 \leq k \leq t$, then $y_{3} v y_{1} y_{k+2} y_{2}$ is a P_{5} in color k. The only case that remains is if v only joins to $\left\{y_{3}, y_{4}\right\}$. If the two edges receive the same color (say, color k, with $3 \leq k \leq t$, then $y_{3} v y_{4} y_{k+2} y_{1}$ is a P_{5} in color k. If edges $v y_{3}$ and $v y_{4}$ receive different colors, say colors i and j, respectively, then edge $y_{3} y_{4}$ receives one of colors i or j. If $y_{3} y_{4}$ is given color i, then $y_{4} y_{3} v y_{i+2} y_{1}$ is a monochromatic P_{5} and if $y_{3} y_{4}$ is given color j, then $y_{3} y_{4} v y_{j+2} y_{1}$ is a monochromatic P_{5}.

Case 3. Suppose that the subgraph induced by $\left\{y_{1}, y_{2}, \ldots, y_{t+2}\right\}$ does not contain any red edges and note that v joins to at least t vertices in this set. If v joins to $\left\{y_{1}, y_{2}, \ldots, y_{t+2}\right\}$ via t edges in colors $2,3, \ldots, t$, then they form a $(t-1)$-colored $K_{t+2} \sqcup K_{1, t}$, which contains a monochromatic P_{5} by the inductive hypothesis. So, assume that v joins to $\left\{y_{1}, y_{2}, \ldots, y_{t+2}\right\}$ using at least one red edge. If two such edges are red, say $v y_{1}$ and $v y_{2}$, then $y_{1} v y_{2} x y_{3}$ is a red P_{5}. So, only one such red edge
exists. Without loss of generality, assume that $v y_{1}$ is red. Without loss of generality, assume that v also joins to vertices $y_{2}, y_{3}, \ldots, y_{t}$, using only colors $2,3, \ldots, t$. In order for a rainbow triangle to be avoided, for each k such that $2 \leq k \leq t$, the edges $v y_{k}$ and $y_{1} y_{k}$ receive the same color.

Subcase 3.1. If for any three distinct numbers $i, j, k \in\{2,3, \ldots, t\}$, the edges joining $\left\{v, y_{1}\right\}$ to $\left\{y_{2}, y_{3}, \ldots, y_{t}\right\}$ receive the same color, then a monochromatic P_{5} is formed. For example, if the edges joining $\left\{v, y_{1}\right\}$ to $\left\{y_{2}, y_{3}, y_{4}\right\}$ are all blue, then $y_{2} y_{1} y_{3} v y_{4}$ is a blue P_{5}.

Subcase 3.2. If distinct $y_{i}, y_{j}, y_{k}, y_{\ell}$, where $i, j, k, \ell \in\{2,3, \ldots, t\}$, are such that $\left\{y_{i}, y_{j}\right\}$ joins to $\left\{v, y_{1}\right\}$ via one color (say, blue) and $\left\{y_{k}, y_{\ell}\right\}$ joins to $\left\{v, y_{1}\right\}$ via another color (say, green), then consider edge $y_{i} y_{k}$, which must be either blue or green. If $y_{i} y_{k}$ is blue, then $y_{k} y_{i} y_{1} y_{j} v$ is a blue P_{5}. If $y_{i} y_{k}$ is green, then $y_{i} y_{k} y_{1} y_{\ell} v$ is a green P_{5}.

Subcase 3.3. Without loss of generality, assume that the edges joining $\left\{v, y_{1}\right\}$ to $\left\{y_{2}, y_{3}\right\}$ are given color 2 (blue) and for $4 \leq k \leq t$, the edges joining y_{k} to $\left\{v, y_{1}\right\}$ receive color $k-1$. If any edge joining y_{k} to $\left\{v, y_{1}, y_{2}, y_{3}\right\}$ is blue, then a blue P_{5} is formed. In order to avoid rainbow triangles, the edges joining y_{k} to $\left\{y_{2}, y_{3}\right\}$ must all receive color $k-1$. Note that if any edge joining $\left\{y_{t+1}, y_{t+2}\right\}$ to $\left\{y_{1}, y_{2}, y_{3}\right\}$ is blue, then a blue P_{5} is formed. It follows that all edges joining y_{t+1} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ must be a color other than blue and they must all be the same color. If they receive color $k-1$, then $y_{3} y_{t+1} y_{1} y_{k} y_{2}$ is a P_{5} in color $k-1$. Thus, all edges joining y_{t+1} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ must receive color t. The same argument can be made for the edges joining y_{t+2} to $\left\{y_{1}, y_{2}, y_{3}\right\}$, and it follows that $y_{1} y_{t+1} y_{2} y_{t+2} y_{3}$ is a P_{5} in color t.

Subcase 3.4. Without loss of generality, assume that for each k such that $2 \leq k \leq t$, the edges joining $\left\{v, y_{1}\right\}$ to y_{k} receive color k. Then the edge $y_{1} y_{t+1}$ must have a color the same as some other edge $y_{1} y_{k}$. The same argument applies to the edge $y_{1} y_{t+2}$. If for $i \neq j$, edge $y_{1} y_{t+1}$ receives color i and $y_{1} y_{t+2}$ receives color j, then consider edge $y_{t+1} y_{t+2}$, which must also be one of the colors i or j. If it has color i, then $y_{t+2} y_{t+1} y_{1} y_{i} v$ is a P_{5} in color i. If it has color j, then $y_{t+1} y_{t+2} y_{1} y_{j} v$ is a P_{5} in color j. So, assume that $y_{1} y_{t+1}$ and $y_{1} y_{t+2}$ both receive color k. If for any $\ell \in\{2,3, \ldots, k-1, k+1 \ldots, t\}$, the edge $y_{\ell} y_{t+1}$ has color k, then $y_{\ell} y_{t+1} y_{1} y_{k} v$ is a P_{5} in color k. The same is true for the edges $y_{\ell} y_{t+2}$. In order for rainbow triangles to be avoided, the edges $y_{\ell} y_{t+1}$ and $y_{\ell} y_{t+2}$ must receive color ℓ, for all $\ell \in\{2,3, \ldots, k-1, k+1 \ldots, t\}$. Now, if edge $y_{t+1} y_{t+2}$ is given color k, then $y_{t+1} y_{t+2} y_{1} y_{k} v$ is a P_{5} in color k. So, assume that $y_{t+1} y_{t+2}$ receives color m, where $m \neq 1, k$. Finally, consider the edges joining y_{k} to $\left\{y_{t+1}, y_{t+2}\right\}$. If either such edge has color k, say $y_{k} t_{t+1}$, then $v y_{k} y_{t+1} y_{1} y_{t+2}$ is a P_{5} in color k. If either such edge has color m, say $y_{k} y_{t+1}$, then $v y_{m} y_{t+2} y_{t+1} y_{k}$ is a P_{5} in color m. So, both edges $y_{k} y_{t+1}$ and $y_{k} y_{t+2}$ must both receive the same color n, for some $n \neq 1, k, m$, and $v y_{n} y_{t+1} y_{k} y_{t+2}$ is a P_{5} in color n.

In all cases, it has been shown that a Gallai t-coloring of $K_{t+3} \sqcup K_{1, t+1}$ contains a monochromatic P_{5}. It follows that $g r_{*}^{t}\left(P_{5}\right) \leq t+1$.

While it has not been explicitly discussed here, the cases in the proof of the upper bound for $\mathrm{gr}_{*}^{t}\left(P_{5}\right)$ in Theorem 2.1 may assist in the complete classification of the critical colorings for $\operatorname{gr}^{t}\left(P_{5}\right)$. It is also worth considering that there may be other ways in which one can prove Theorem 2.1 than the proof given here. In particular, in the proof that $g r^{t}\left(P_{5}\right)=t+3$ given in [2], the authors made use of the fact that every Gallai coloring of a complete graph contains a monochromatic spanning broom (consisting of a path $x_{1} x_{2} \cdots x_{n}$ along with a star with center vertex x_{n}). This result appeared in [6] and may serve as an alternate tool in a revised proof of the upper bound in Theorem 2.1.

References

[1] M. Budden, Star-Critical Ramsey Numbers for Graphs, Springer, Cham, 2023.
[2] R. Faudree, R. Gould, M. Jacobson, C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269-284.
[3] S. Fujita, C. Magnant, Y. Mao, K. Ozeki, Rainbow generalizations of Ramsey theory: A dynamic survey, Theory Appl. Graphs 0 (2014) \#1.
[4] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci Hungar. 18 (1967) 25-66.
[5] L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170.
[6] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211-216.
[7] J. Hook, The Classification of Critical Graphs and Star-Critical Ramsey Numbers, Ph.D. Thesis, Lehigh University, 2010.
[8] J. Hook, Critical graphs for $R\left(P_{n}, P_{m}\right)$ and the star-critical Ramsey number for paths, Discuss. Math. Graph Theory 35 (2015) 689-701.
[9] C. Magnant, P. Salehi Nowbandegani, Topics in Gallai-Ramsey Theory, Springer, Cham, 2020.
[10] X. Su, Y. Liu, Star-critical Gallai-Ramsey numbers of graphs, Graphs Combin. 38 (2022) \#158.

