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Abstract

A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring Z3 of integers modulo 3 to the
vertices of G such that the sum of the labels of the vertices on the boundary of each region of G is the zero element of Z3. A
plane graph possessing such a labeling is a zonal graph. If there is at most one exception, then the labeling is inner zonal
and the graph is inner zonal. In 2019, Chartrand, Egan, and Zhang proved that showing the existence of zonal labelings
in all cubic maps is equivalent to giving a proof of the Four Color Theorem. It is shown that every inner zonal cubic map
is zonal, thereby establishing an improvement of the 2019 result. It is also shown that (i) while certain 2-connected plane
graphs of maximum degree 3 may not be zonal, they must be inner zonal and (ii) no connected cubic plane graph with bridges
can be inner zonal.
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1. Introduction

Let G be a connected plane graph each of whose vertices is labeled with one of the two nonzero elements 1 and 2 of the
ring Z3 of integers modulo 3. The value of a region (zone) R of G is the sum in Z3 of the labels of the vertices on the
boundary of R. Such a labeling of G is said to be a zonal labeling if the value of each zone in G is the zero element of Z3.
Let Z∗3 = Z3 − {0} = {1, 2}. Hence, a labeling ` : V (G) → Z∗3 of a plane graph G is zonal if the value `(R) of each zone R

with boundary B, defined by `(R) =
∑

x∈V (B) `(x), is 0 in Z3. If G admits a zonal labeling, then G is zonal. For example,
Figure 1 shows the plane graphs K4 − e and K4 together with a labeling for each using labels from the set Z∗3. We can
obtain a value of 0 for all zones in K4 by assigning each vertex of K4 the label 1 (or by assigning each vertex of K4 the
label 2). For K4 − e, however, we can obtain a value of 0 for the interior zones but not for the exterior zone. In fact, there
is no way to obtain the label 0 for all three zones of K4 − e. Thus, K4 is zonal, while K4 − e is not.
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Figure 1: The planar graphs K4 − e and K4.

This concept was introduced by Cooroo Egan in 2014 (see [5]) and studied in [2–4,6]. We refer to the book [7] for graph
theory notation and terminology not described in this paper.

There is a close connection between zonal labelings of planar graphs and the famous Four Color Problem:

Can the countries of every map be colored with four or fewer colors so that every two countries with a common
boundary line are colored differently?

This problem was introduced in 1852 by the British mathematician Francis Guthrie (see [10], for example). A computer-
aided solution to this problem was obtained in 1976 by Appel and Haken [1], resulting in the Four Color Theorem stated
on the top of the next page.
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The regions of every plane graph can be colored with at most four colors so that every two regions with a common
boundary line are colored differently.

A connected bridgeless cubic plane graph (or multigraph) is referred to as a cubic map. Thus, every cubic map is a 3-
regular 2-connected plane graph. For example, the three graphs K4, K3 � K2 (the Cartesian product of K3 and K2) and
the 3-cube Q3 in Figure 2 are cubic maps.

Figure 2: Cubic maps.

Long before the Four Color Problem was solved, the following was known (see [7], for example).

Theorem 1.1. The Four Color Conjecture is true if and only if the regions of every cubic map can be colored with four or
fewer colors so that every two regions with a common boundary line are colored differently.

Theorem 1.1 then says that to solve the Four Color Theorem, we need only consider cubic maps. The mathematician
Peter Tait brought edge colorings to the forefront of the Four Color Problem rather than only coloring regions or vertices.
A proper vertex coloring of a graph G is a vertex coloring in which every two adjacent vertices are colored differently.
The chromatic number of G is the minimum number of colors in a proper vertex coloring of G. A proper edge coloring of a
graph G is one in which every two adjacent edges are colored differently. The chromatic index of G is the minimum number
of colors in a proper edge coloring of G. In 1880 Tait [9] proved the following.

Theorem 1.2. (Tait’s Theorem) The regions of a cubic map G can be colored with four or fewer colors so that every two
adjacent regions are colored differently if and only if the chromatic index of G is 3.

Tait thought that his theorem would lead to a verification of the Four Color Conjecture as he thought it would be easy to
prove that there is a proper coloring of the edges of every cubic map with three colors. But, as it turned out, this problem is
equivalent to, and therefore just as difficult as, the Four Color Problem. However, we now know the following edge version
of the Four Color Theorem: The chromatic index of every cubic map is 3. In 2019, Chartrand, Egan, and Zhang [5] proved
that showing the existence of zonal labelings in all cubic maps is equivalent to giving a proof of the Four Color Theorem.
More precisely, they proved the following result.

Theorem 1.3. A cubic map M has chromatic index 3 if and only if M is zonal.

By Theorems 1.1, 1.2, and 1.3, the Four Color Problem deals with

(1) coloring the regions of a map or the vertices of a planar graph with 4 colors,
(2) properly coloring the edges of a cubic map with 3 colors, and
(3) assigning a zonal labeling to the vertices of a cubic map with the 2 elements in Z∗3.

Hence, because of the Four Color Theorem, we know that every cubic map is zonal. We also know that if every cubic
map has a zonal labeling, then the Four Color Theorem is true. While we know that every cubic map has a zonal labeling
(because of the Four Color Theorem), the question is whether one could give an independent proof that every cubic map
has a zonal labeling without using the Four Color Theorem. Therefore, Theorem 1.3 provides a new perspective of the Four
Color Theorem as well as a new approach to a potentially different solution of the Four Color Problem.

2. Inner zonal labelings of cubic maps

For a plane graph G, a labeling ` : V (G) → Z∗3 is an inner zonal labeling of G if the value `(R) of every region R of G is
the zero element in Z3 with at most one exception. A plane graph G is inner zonal if G has an inner zonal labeling. We
may always assume that an inner zonal plane graph G is embedded in the plane so that the value of every interior region
of G is 0 in Z3. Consequently, every zonal plane graph is also inner zonal. We show that every inner zonal cubic map is,
in fact, zonal thereby establishing a result that is an improvement of Theorem 1.3. Since showing that every cubic map
is inner zonal would imply that every planar graph is 4-colorable, this would indicate that an independent proof of this
fact would likely be nontrivial. In order to provide an initial step with this goal in mind, rather than considering cubic
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maps in general, we consider certain plane graphs that are related to cubic maps, namely connected plane graphs having
maximum degree 3. We show that (1) while certain 2-connected plane graphs of maximum degree 3 may not be zonal, they
must be inner zonal and (2) no connected cubic plane graph with bridges can be inner zonal.

There are inner zonal plane graphs that are not zonal. For example, the labeling of the nonzonal plane graph K4 − e

given in Figure 1 is an inner zonal labeling and so K4 − e is inner zonal. On the other hand, every inner zonal cubic map
is zonal, as we show next.

Theorem 2.1. Every inner zonal cubic map is zonal.

Proof. Let G be an inner cubic zonal map where R0 is the exterior region and R1, R2, . . . , Rt are the interior regions of G.
Let ` be an inner zonal labeling of G where `(Ri) = 0 in Z3 for 1 ≤ i ≤ t. Therefore,

t∑
i=1

`(Ri) = 0 in Z3. (1)

Since G is cubic and 2-connected, every vertex of G lies on the boundaries of exactly three regions of G. Hence, the sum of
the values of all regions R0, R1, R2, . . . , Rt of G is

t∑
i=0

`(Ri) =
∑

v∈V (G)

3`(v) = 0 in Z3. (2)

It follows by (1) and (2) that `(R0) =
∑t

i=0 `(Ri)−
∑t

i=1 `(Ri) = 0 in Z3. Thus, ` is a zonal labeling of G and so G is zonal.

Since every zonal plane graph is also inner zonal, the following corollary is a consequence of Theorem 2.1.

Corollary 2.1. A cubic map is zonal if and only if it is inner zonal.

Since an inner zonal labeling is less restrictive than a zonal labeling, it may be less challenging to determine the
existence of an inner zonal labeling in a cubic map rather than a zonal labeling. Consequently, Corollary 2.1 provides an
improvement of the 2019 result (Theorem 1.3) by Chartrand, Egan, and Zhang.

Combining well-known results on graph colorings, results on zonal graphs, and Corollary 2.1, we have the following.

Theorem 2.2. The following six statements are equivalent.

1. The Four Color Theorem: The regions of every plane graph can be colored with four or fewer colors so that every two
regions with a common boundary are colored differently.

2. The regions of every cubic map can be colored with four or fewer colors so that every two regions with a common
boundary are colored differently.

3. The chromatic number of every planar graph is at most 4.
4. The chromatic index of every cubic map is 3.
5. Every cubic map is zonal.
6. Every cubic map is inner zonal.

Proof. By Theorem 1.1, Statements 1, 2 and 3 are equivalent. By Theorem 1.2 (Tait’s Theorem), Statements 2 and 4 are
equivalent. By Theorem 1.3, Statements 4 and 5 are equivalent. By Corollary 2.1, Statements 5 and 6 are equivalent.
Therefore, these six statements are equivalent.

Because of the Four Color Theorem and Corollary 2.1, we know that every cubic map is, in fact, inner zonal. We also
know (without using the Four Color Theorem) that if every cubic map is inner zonal, then the Four Color Theorem is true.
Consequently, the question arises as to whether there is an independent proof that shows every cubic map is inner zonal
without using the Four Color Theorem. Therefore, as with zonal labelings, inner zonal labelings provide a possible new
perspective and approach to the Four Color Problem.

3. Inner zonal labelings of plane graphs of maximum degree 3

We now investigate inner zonality in connected plane graphs having maximum degree 3. First, we introduce some ad-
ditional definitions and notation as well as some preliminary results. For a labeling ` of the vertices of a graph G with
the labels 1 and 2 of Z∗3, the vertex labeling ` of G defined by `(v) = 3 − `(v) = 2`(v) for each vertex v of G is called the
complementary labeling of `. Thus, for every region R of a plane graph G,

¯̀(R) = 2`(R). (3)
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It is immediate that a labeling ` of a connected plane graph is zonal if and only if its complementary labeling ¯̀ is zonal.
This is also the case for inner zonal labelings.

Observation 3.1. Let ` : V (G) → Z∗3 be a labeling of of a plane graph G. Then ` is an inner zonal labeling if and only if
its complementary labeling ¯̀ is an inner zonal labeling.

It was observed in [5] that every cycle is zonal and therefore inner zonal. By Corollary 2.1, every cubic map is inner
zonal. Both cycles and cubic maps are 2-connected graphs, where the first is 2-regular and the second is 3-regular. This
gives rise to the following question: What happens for 2-connected plane graphs that lie between cycles and cubic maps?
These are 2-connected plane graphs in which every vertex has degree 2 or 3, where there are some vertices of each degree.
To investigate this problem, we first investigate those 2-connected plane graphs obtained by (i) adding two vertices of
degree 3 (a chord) to a cycle or (ii) adding a vertex of degree 2 to a cubic map. We begin with (i). For an integer n ≥ 4, let
Cn + e be the graph obtained by adding a chord e to the n-cycle Cn. Thus, Cn + e is a 2-connected subgraph of a cubic map.
As we saw in Figure 1, the graph C4 +e is not zonal but it is inner zonal. It was shown in [4] that Cn +e is zonal if and only
if Cn + e is triangle-free. Therefore, if the chord e joins two vertices at distance 2 in Cn, then Cn + e is not zonal. On the
other hand, for n ≥ 4, every graph Cn + e is inner zonal. In fact, these graphs belong to a class of inner zonal subgraphs
of cubic maps. The following theorem appeared in [5] whose proof is independent of the Four Color Theorem.

Theorem 3.1. Every plane graph G with maximum degree ∆(G) ≤ 3 where the boundary cycle of the exterior zone is a
Hamiltonian cycle of G is inner zonal.

There are nonzonal plane graphs that satisfy the conditions described in Theorem 3.1. For example, consider the
plane graph G of Figure 3 where the boundary cycle of the exterior zone is a Hamiltonian cycle of G and ∆(G) = 3. By
Theorem 3.1, G is inner zonal. We claim that G is not zonal. Assume, to the contrary, that G has a zonal labeling `. Then
`(Ri) = 0 for i = 1, 2, 3 and so

∑9
i=1 `(vi) = 0. Thus, `(R5) =

∑10
i=1 `(vi) = `(v10) 6= 0, a contradiction. Thus, G is not zonal.
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Figure 3: A nonzonal graph G.

We now investigate those 2-connected plane graphs obtained by adding a vertex of degree 2 to a cubic map or to a
connected cubic plane graph. First, we introduce an additional concept. A connected plane graph G is a nearly cubic plane
graph if all vertices of G have degree 3 except for one vertex having degree 2. Thus, a nearly cubic plane graph is a graph
obtained by subdividing one edge of a connected cubic plane graph exactly once. Four nearly cubic plane graphs are shown
in Figure 4, three of which are 2-connected and the fourth one contains bridges and so is not 2-connected.

Figure 4: Nearly cubic plane graphs.

Proposition 3.1. No nearly cubic plane graph is zonal.
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Proof. Assume, to the contrary, that there is a nearly cubic plane graph G that is zonal. Then G has a zonal labeling `.
Let R be the set of all regions of G. Since `(R) = 0 for each R ∈ R, it follows that∑

R∈R
`(R) = 0 in Z3. (4)

Next, let w be the vertex of degree 2 in G. Then w lies on the boundaries of two regions R1 and R2 of G. Every other vertex
of G lies on the boundaries of three regions of G. Hence,∑

R∈R
`(R) =

∑
v∈V (G)

`(v) = 2`(w) +
∑

v∈V (G)−{w}

3`(v) = 2`(w) 6= 0 in Z3,

which contradicts (4).

There are many nearly cubic plane graphs that are not inner zonal. For example, let G be the nearly cubic plane graph
of Figure 4 whose vertices are labeled as shown in Figure 5. We claim that G is not inner zonal. Assume, to the contrary,
that G has an inner zonal labeling `. Then ` must assign the same label to the vertices lying on each triangle of G. Thus,
u, v, , w, x must be labeled the same. By Observation 3.1, we may assume that u, v, , w, x are labeled 1. However then, the
value of R is 1 + 1 + 1 + `(y) ∈ {1, 2} in Z3. Similarly, the value of R′ cannot be 0 in Z3, a contradiction. Therefore, G is
not inner zonal. Since this graph G has bridges, it is not 2-connected. On the other hand, every 2-connected nearly cubic
plane graph is inner zonal, as we show next. For a region R, we write V (R) for the vertex set of the boundary of R.
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Figure 5: A nearly cubic plane graph that is not inner zonal.

Theorem 3.2. Every 2-connected nearly cubic plane graph is inner zonal.

Proof. Let G be a 2-connected nearly cubic plane graph and let w be the vertex of degree 2 in G. Then w lies on the boundary
of two regions R1 and R2. Let u and v be the two neighbors of w and so (u,w, v) is a 3-path in G and v lies on the boundaries
of R1 and R2 as well as a third region R3 in G. Let R4, R5, . . . , Rt be the remaining regions of G. Next, let G′ be the graph
(or multigraph) constructed from G by replacing the 3-path (u,w, v) with the edge uv.

Denote the t corresponding regions in G′ by R′1, R
′
2 . . . , R

′
t such that V (R′i) = V (Ri) for 3 ≤ i ≤ t and V (R′i)∪{w} = V (Ri)

for i = 1, 2. This is shown in Figure 6. Then G′ is a cubic map.
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Figure 6: Constructing the graph (multigraph) G.

By Theorem 1.3, the cubic map G′ is zonal and therefore has a zonal labeling `′. By Observation 3.1, we may assume
that `′(v) = 2 in Z3. We now define a labeling of ` : V (G)→ Z∗3 by

`(x) =

{
1 if x ∈ {v, w}
`′(x) otherwise.

We claim that ` is an inner zonal labeling of G.
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? Since `′(v) = `(v) + `(w), it follows for i = 1, 2 that `(Ri) = `′(Ri)− `′(v) + `(v) + `(w) = `′(Ri) = 0 in Z3.

? If i = 3, then `(Ri) = `′(Ri)− `′(v) + `(v) = `′(Ri)− 1 = 2 6= 0 in Z3.

? If 4 ≤ i ≤ t, then `(Ri) = `′(Ri) = 0 in Z3.

Thus, the only region of G with a nonzero value is R3, and so ` is an inner zonal labeling of G.

There are infinitely many zonal (inner zonal) graphs obtained from a given zonal (inner zonal) graph G by inserting
vertices of degree 2 to G (or subdividing the edges of G). In order to present this fact, we first present a useful observa-
tion [4].

Observation 3.2. If X is a set of vertices of a graph with |X| ≥ 2, then there is a labeling ` : X → Z∗3 of X such that∑
x∈X `(x) = 0 in Z3.

Theorem 3.3. Let H be a plane graph, let Z be a nonempty set of edges of H and let G be the graph obtained by subdividing
each edge in Z at least twice. Then (1) G is zonal if H is zonal and (2) G is inner zonal if H is inner zonal. Consequently, if
H is a cubic map, then G is zonal; while if H is a nearly cubic plane graph, then G is inner zonal.

Proof. Let Z = {e1, e2, . . . , et} be a nonempty set of edges of H and let G be the graph obtained by subdividing each edge
in Z at least twice. For 1 ≤ i ≤ t, let ei = uivi and let Qi be the ui − vi path of order 4 or more that replaces ei in G and
let Xi = V (Qi) − {ui, vi}. Since |Xi| ≥ 2 for 1 ≤ i ≤ t, it follows by Observation 3.2 that there is a labeling `i : Xi → Z∗3
of Xi such that

∑
x∈Xi

`i(x) = 0 in Z3. Let `H be a zonal or inner zonal labeling of the graph H, depending on whether H

is zonal or inner zonal. We define a labeling ` : V (G)→ Z∗3 by

`(v) =

{
`H(v) if v ∈ V (H)

`i(v) if v ∈ Xi where 1 ≤ i ≤ t.

There is a one-to-one correspondence between the set of all regions of G and the set of all regions of H. For each region R′

of G, let R be the corresponding region of H. Let B′ be the boundary of R′ in G and B the boundary of R in H. If B′ = B,
then `(R′) = `H(R). If B′ 6= B, then B contains at least one edge in Z. We may assume that B contains e1, e2, . . . , er. Then
V (B′) = V (B)∪ (∪ri=1Xi). Thus, `(R′) = `H(R) +

∑r
i=1

(∑
x∈Xi

`i(x)
)

= `H(R). Therefore, `(R′) = `H(R) for every region R′

of G. Consequently, (1) and (2) hold.

By Corollary 2.1, every cubic map (namely 2-connected cubic plane graph) is zonal. The following theorem appeared
in [5] whose proof is independent of the Four Color Theorem.

Theorem 3.4. If G is a connected cubic plane graph with bridges, then G is not zonal.

By Theorem 3.4, no connected cubic plane graph with bridges is zonal. We also saw that the nearly cubic plane graph of
Figure 5 contains bridges and is not inner zonal. In fact, this is the case for all connected cubic plane graphs with bridges.

Theorem 3.5. If G is a connected cubic plane graph with bridges, then G is not inner zonal.

Proof. Assume, to the contrary, that there exists a connected cubic plane graph G with bridges such that G is inner zonal.
Let e = w1w2 be a bridge of G. We may assume that e lies on the boundary of the exterior region of G. Let G1 and G2 be
the two components of G− e where wi ∈ V (Gi) for i = 1, 2. Let ` : V (G)→ Z∗3 be an inner zonal labeling of G. Then either
the value of each interior region of G1 is 0, or the value of each interior region of G2 is 0, or both. Assume, without loss of
generality, that the value of each interior region of G1 is 0. Let B1 be the boundary of the exterior region R1 of G1 where
V (B1)={w1, v1, v2, . . ., vk}. Let `1 be the restriction of ` to G1. Since G1 is a nearly cubic plane graph and `1(R) = `(R) = 0

for each interior region R of G1, it follows by Proposition 3.1 that `1(R1) = `(w1) +
∑k

i=1 `(vi) = a 6= 0 in Z3. Hence, `1 is
an inner zonal labeling of G1, where `1(w1) = `(w1) ∈ Z∗3. By Observation 3.1, the complementary labeling `1 of `1 is also
an inner zonal labeling of G1. Furthermore, `1(R) = 0 for every interior region R of G1 and `1(R1) = 2a 6= 0 in Z3 for the
exterior region R1 of G1.

Let G′1 be another copy of G1, where the vertex w1 in G1 is denoted by w′1 in G′1 and each vertex v of G1 is denoted
by v′ in G′1. We now construct a new graph G′ from G1 and G′1 by adding the edge w1w

′
1. Thus, G′ is a connected cubic

plane graph with the bridge w1w
′
1. Let R′ be the exterior region of G′ whose boundary B′ contains the bridge w1w

′
1.

Hence, V (B′) = V (B1) ∪ {w′1, v′1, v′2, . . . , v′k}. Define a labeling `′ : V (G′) → Z∗3 of G′ as follows: If x ∈ V (G1), then define
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`′(x) = `1(x); while if x′ ∈ V (G′1) where its corresponding vertex x belongs to G1, then define `′(x′) = `1(x). Hence, the
value of the exterior region R′ of G′ is

`′(R′) =

[
`1(w1) +

k∑
i=1

`1(vi)

]
+

[
`1(w1) +

k∑
i=1

`1(vi)

]
= a + 2a = 0.

If R is an interior region of G′, then R is either an interior region of G1 or an interior region of G′1. Thus, either `′(R) =

`1(R) = 0 or `′(R) = `1(R) = 0. Therefore, `′ is a zonal labeling of G′ and so G′ is zonal, which contradicts Theorem 3.4.

By the proof of Theorem 3.2, if G is a 2-connected nearly cubic planar graph, then there is an inner zonal labeling `

of G such that every vertex on the boundary of the exterior region R of G has degree 3 and `(R) 6= 0. In fact, this is true
for every inner zonal labeling of every nearly cubic plane graph, as we show next.

Proposition 3.2. Let G be a nearly cubic plane graph. If ` is an inner zonal labeling of G, then there exists a region R all
of whose boundary vertices have degree 3 such that `(R) 6= 0.

Proof. Let G be a nearly cubic plane graph and let w be the vertex of degree 2 in G. Suppose that ` is an inner zonal
labeling of G. Assume, to the contrary, that `(R) = 0 for every region R all of whose boundary vertices have degree 3. Since
G is not zonal by Proposition 3.1, there is a region R0 in G whose boundary contains the vertex w of degree 2 in G such
that `(R0) 6= 0. Furthermore, `(R) = 0 for every region R 6= R0 of G. We may assume that G is embedded in the plane such
that R0 is the exterior region of G. By Observation 3.1, the complementary labeling ` is also an inner zonal labeling of G.
Thus, `(R) = 0 for every region R 6= R0 in G. Next, let G1 and G2 be two vertex-disjoint copies of G, where w is labeled wi

in Gi and the region R0 in Gi is denoted by R0,i for i = 1, 2. We now construct a new graph G′ from G1 and G2 by adding
the edge w1w2. Thus, G′ is a connected cubic plane graph with the bridge w1w2. The argument in the proof of Theorem 3.5
shows that G′ is zonal, which is impossible by Theorem 3.4.

4. Intermediate value result and problem

Every 2-connected plane graph G of order n ≥ 4 with ∆(G) ≤ 3 has size m where n ≤ m ≤ 3n/2. If m = n, then G is an
n-cycle and if m = 3n/2, then G is a cubic map. In these two instances, more can be said.

Every 2-connected plane graph G of order n ≥ 4 with ∆(G) ≤ 3 having size n or 3n/2 is zonal.

This brings up the following question.

Is every 2-connected plane graph G of order n and size m with ∆(G) = 3 zonal?

We saw in Figure 1 that the answer to this question is no for n = 4 as the graph K4 − e has order n = 4 and size m = 5

(where then n < m < 3n/2) is not zonal. In fact, the answer to this question is no for every integer n ≥ 4 and integer m

with n < m < 3n/2. In order to verify this fact, we first present a lemma.

Lemma 4.1. Let G be a plane graph. If there exist distinct regions R0, R1, . . . , Rk of G where the boundary Ri is Bi for
0 ≤ i ≤ k such that {V (B1), V (B2), . . ., V (Bk)} form a partition of V (B0)− {v} for some v ∈ V (B0), then G is not zonal.

Proof. Assume, to the contrary, that G has a zonal labeling `. Then `(Ri) = 0 in Z3 for 1 ≤ i ≤ k. However then,

`(R0) = `(v) +
∑

x∈V (B0)−{v}

`(x) = `(v) +

k∑
i=1

∑
x∈V (Bi)

`(x) = `(v) +

k∑
i=1

`(Ri) = `(v) 6= 0

in Z3, which is a contradiction.

Theorem 4.1. For each pair n,m of integers with n ≥ 4 and n < m < 3n/2, there is a 2-connected plane graph G of order n

and size m with ∆(G) = 3 such that G is not zonal.

Proof. We saw that if the chord e joins two vertices at distance 2 in the cycle Cn of order n ≥ 4, then Cn + e is not zonal.
Thus, there is a 2-connected plane graph G of order n ≥ 4 and size m = n + 1 with ∆(G) = 3 such that G is not zonal.
Thus, we may assume that m ≥ n + 2. By Proposition 3.1, we may assume that G has at least two vertices of degree 2 and
at least four vertices of degree 3. Thus, n ≥ 6 and m = n + p where 2 ≤ p ≤

⌊
n−2
2

⌋
. We consider two cases, according to

whether n is odd or n is even.
Case 1. n ≥ 7 is odd. Let n = 2k + 1 and let C = (w, u1, u2, . . ., uk, vk, vk−1, . . ., v1, w) be a (2k + 1)-cycle. There are two

subcases, depending on the parity of p.
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Subcase 1.1. m = n + p where p ≥ 3 is odd. Since G has at least two vertices of degree 2, it follows that n ≥ 9. Let G be
the graph obtained from C by adding the p chords uivi for 1 ≤ i ≤ p. Let G be embedded in the plane so that the boundary
of the exterior region R is C. For 1 ≤ j ≤ (p − 1)/2, let Rj be the region of G whose boundary is the 4-cycle (u2j−1, u2j ,
v2j , v2j−1, u2j−1) and for j = (p + 1)/2, let Rj be the region of G whose boundary is the cycle (u2j−1, u2j , . . ., uk, vk, vk−1,
. . ., v2j , v2j−1, u2j−1). Let Bj be the boundary of Rj for 1 ≤ j ≤ (p + 1)/2. Since B1, B2, . . ., B p+1

2
are pairwise disjoint and⋃ p+1

2
i=1 V (Bi) = V (C) − {w}, where C is the boundary of the exterior region R of G, it follows by Lemma 4.1 that G is not

zonal.
Subcase 1.2. m = n+ p where p ≥ 2 is even. In this case, n ≥ 7. Let G be the graph obtained from C by adding the chord

u1v1 and the p−1 chords uivi+1 for 2 ≤ i ≤ p. Let G be embedded in the plane so that the boundary of the exterior region R

is C. Let R1 be the region of G whose boundary is the 3-cycle (w, u1, v1, w). For 2 ≤ j ≤ p/2 where p ≥ 4, let Rj be the region
of G whose boundary is the 4-cycle (u2j−2, u2j−1, v2j , v2j−1, u2j−1) and for j = (p + 2)/2, let Rj be the region of G whose
boundary is the cycle (u2j−2, u2j−1, . . ., uk, vk, vk−1, . . ., v2j , v2j−1, u2j−2). Let Bj be the boundary of Rj for 1 ≤ j ≤ (p+2)/2.
Since these boundaries are pairwise disjoint and

⋃ p+2
2

i=1 V (Bi) = V (C)− {v2}, it follows by Lemma 4.1 that G is not zonal.
Case 2. n is even. Let n = 2k + 2. There are two subcases, depending on the parity of p.
Subcase 2.1. m = n + p where p ≥ 3 is odd. Then n = 2k + 2 ≥ 8. Let C = (x, u1, u2, . . . , uk, y, vk, vk−1, . . ., v1, x) be

a (2k + 2)-cycle. Let G be the graph obtained from C by adding the p chords uivi for 1 ≤ i ≤ p. Let G be embedded in the
plane so that the boundary of the exterior region R is C. For 1 ≤ j ≤ (p− 1)/2, let Rj be the region of G whose boundary is
the 4-cycle (u2j−1, u2j , v2j , v2j−1, u2j−1) and for j = (p + 1)/2, let Rj be the region of G whose boundary is the cycle (u2j−1,
u2j , · · · , uk, y, vk, vk−1, · · · , v2j , v2j−1, u2j−1). Let Bj be the boundary of Rj for 1 ≤ j ≤ (p + 1)/2. Since these boundaries
are pairwise disjoint and

⋃ p+1
2

i=1 V (Bi) = V (C)− {x}, it follows by Lemma 4.1 that G is not zonal.
Subcase 2.2. m = n + p where p ≥ 2 is even. Thus, n = 2k + 2 ≥ 6. Let C = (x, u1, u2, . . . , uk, vk, vk−1, . . ., v1, x) be

a (2k + 1)-cycle. Let G be the graph obtained from C by (1) adding the vertex y and joining y to v1, x, u1 and (2) if n ≥ 10

and p ≥ 4, then adding the p − 2 chords ui−1vi+1 for 1 ≤ i ≤ p − 2. Thus, G has order n and size m = n + p. Let G be
embedded in the plane so that the boundary of the exterior region is C. Let R1 be the region of G whose boundary is the
5-cycle (y, u1, u2, v2, v1, y). If n = 6 or n = 8, then p = 2 only. If n ≥ 10 and p ≥ 4, then let Rp/2 be the region of G whose
boundary is the cycle (u2p−1, u2p, · · · , uk, vk, vk−1, · · · , v2p, v2p−1, u2p−1). If n ≥ 14, p ≥ 6, and 2 ≤ j ≤ (p − 2)/2, then let Rj

be the region of G whose boundary is the 4-cycle (u2j−1, u2j , v2j , v2j−1, u2j−1). Let Bj be the boundary of Rj for 1 ≤ j ≤ p/2.
Since these boundaries are pairwise disjoint and

⋃ p
2
i=1 V (Bi) = V (C)−{x}, it follows by Lemma 4.1 that G is not zonal.

By Corollary 2.1 and Theorem 3.2, all 2-connected plane graphs with maximum degree 3 having at most one vertex of
degree 2 are inner zonal. By Theorem 3.3, if G is a 2-connected inner zonal graph with ∆(G) ≤ 3, then any graph obtained
by subdividing each edge in a set of edges of G at least twice is also inner zonal. Furthermore, every nonzonal graph
constructed in the proof of Theorem 4.1 is inner zonal. In addition, it is straightforward to verify that if G is a 2-connected
plane graph with maximum degree 3 having exactly two vertices x and y of degree 2 such that either xy ∈ E(G) or G + xy

is planar, then G is inner zonal. In fact, we are not aware of any 2-connected plane graph with maximum degree 3 that is
not inner zonal. Consequently, we conclude with the following conjecture.

Conjecture 4.1. Every 2-connected plane graph with maximum degree 3 is inner zonal.
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