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Abstract
Motivated by cut points in graph theory, we consider a similar notion in compositions and bargraphs. This is equivalent
to counting r-chimneys (a single column extending beyond its immediate neighbours by at least r cells in a bargraph).
We establish generating functions for compositions that avoid or count 2-chimneys. Thereafter, in the case of bargraphs
we provide two methods for obtaining these generating functions as well as asymptotic estimates for the more general
r-chimneys where r ≥ 1.
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1. Introduction

A composition of the positive integer n is a representation of n as an ordered sum of the positive integers a1, a2, . . . , am :

n = a1+a2+ · · ·+am. Each such ai is called the i-th part of the composition (for example, see [9]). Any composition may be
represented graphically as a sequence of columns where the height of the i-th column is equal to the size of the i-th part.
We say that a composition of n has a horizontal cut point if removing two vertical edges from the graphical representation
separates the composition into two disjoint smaller compositions. For example, 253 has a cut point which is constituted
by the vertical edges of the fourth cell from the bottom in the second column of size five. Removing these separates the
original into compositions 1 and 233. A 2-chimney is any part that is at least two higher than its left and right neighbour
(if they exist). It is easy to see that having a cut point is equivalent to having a 2-chimney. We want to count the number
of compositions of n that do not have any 2-chimneys. Or, complementarily, the number of compositions of n that have at
least one 2-chimney.

On the other hand a bargraph is a non-intersecting lattice path in N2
0 with 3 allowed types of steps; up (0, 1), down

(0,−1) and horizontal (1, 0). An up step may not immediately follow a down step nor visa versa. They start at the origin
with an up step and terminate immediately upon return to the x-axis and to qualify for the term bargraph, the generating
function for these should track the number of horizontal steps (usually by x) and the number of up steps (usually by y). An
r-chimney in bargraphs is any part that is at least r higher than its left and right neighbour (if they exist). In contrast,
an exact r-chimney is any part that is exactly r higher than its left and right neighbour (if they exist). We find generating
functions for bargraphs that avoid r-chimneys and others that enumerate these for each r. For previous examples of the
methods employed in bargraph statistics, see [1–4]. The earliest papers on bargraphs were in a Physics setting [11,12] and
the first combinatorial paper was [6]. A predecessor of the latter was unpublished, see [8]. Papers straddling the domains
of Physics and Mathematics are [5,10].

The generating function that counts all bargraphs is given by

B(x, y) =
1− x− y − xy −

√
(1− x− y − xy)2 − 4x2y

2x
,

see [6], where x counts the number of horizontal steps and y counts the number of vertical up steps. The asymptotics of
the coefficient of xn in B(x, x) has been considered, and in order to compute it, the dominant singularity ρ is the positive
root of 1− 4x+ 2x2 + x4 = 0. By singularity analysis (for example, see [7]) we have

[xn]B(x, x) ∼ 1

2

√
1− ρ− ρ3
πρn3

ρ−n (1)
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with

ρ =
1

3

(
−1− 28/3

(13 + 3
√
3)1/3

+ 21/3(13 + 3
√
33)1/3

)
≈ 0.295598 · · · . (2)

2. Chimneys in compositions

2.1. The generating function for compositions that avoid 2-chimneys
We first obtain the relevant functional equations as follows:

Consider compositions with no 2-chimneys. More specifically, we define Fa1a2···as(x, y) to be the generating function for
the number of such compositions π1π2 · · ·πm of nwithm parts such that π1π2 · · ·πs = a1a2 · · · as. For s = 0, we define F (x, y)
to be the generating function for these compositions of n with m parts (x marks n and y marks m). From the definitions,
it follows that F (x, y) = 1 +

∑
a≥1 Fa(x, y). We also have

Fa(a−1)(x, y) = xF(a−1)(a−1)(x, y),

Fa(a+1)(x, y) =
1

x
F(a+1)(a+1)(x, y),

Faj(x, y) = 0 for a ≥ 3 and 1 ≤ j ≤ a− 2 and,
Faj(x, y) = xayFj(x, y) for all j ≥ a+ 2 ≥ 3.

So,

F1(x, y) = xy + F11(x, y) + F12(x, y) +
∑
j≥3

F1j(x, y)

= xy + F11(x, y) +
1

x
F22(x, y) + xy

∑
j≥3

Fj(x, y), (3)

F2(x, y) = x2y + F21(x, y) + F22(x, y) + F23(x, y) +
∑
j≥4

F2j(x, y)

= x2y + xF11(x, y) + F22(x, y) +
1

x
F33(x, y) + x2y

∑
j≥4

Fj(x, y) (4)

and for all a ≥ 3,

Fa(x, y) = Fa(a−1)(x, y) + Faa(x, y) + Fa(a+1)(x, y) +
∑

j≥a+2

Faj(x, y)

= xF(a−1)(a−1)(x, y) + Faa(x, y) +
1

x
F(a+1)(a+1)(x, y) + xay

∑
j≥a+2

Fj(x, y). (5)

Define F (x, y, v) :=
∑

a≥1 Fa(x, y)v
a−1 and G(x, y, v) :=

∑
a≥1 Faa(x, y)v

a−1. Hence, by (3)-(5), we have

∑
a≥1

Fa(x, y)v
a−1 = xy + x2yv + (xv + 1)

∑
a≥1

Faa(x, y) +
1

xv

∑
a≥2

Faa(x, y) +
∑
a≥1

xayva−1
∑

j≥a+2

Fj(x, y),

from which it follows that

F (x, y, v) = xy + x2yv + (xv + 1)G(x, y, v) +
G(x, y, v)−G(x, y, 0)

xv

+
xy(F (x, y, 1)− F (x, y, 0))

1− xv
− y(F (x, y, xv)− F (x, y, 0))

v(1− xv)
. (6)

Similarly for a ≥ 3,

Faa(x, y) = x2ay2 +

a+1∑
j=1

Faaj(x, y) +
∑

j≥a+2

Faaj(x, y)

= x2ay2 +

a+1∑
j=1

x2a−jyFjj(x, y) + x2ay2
∑

j≥a+2

Fj(x, y).
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By (5), we have

Faa(x, y) = x2ay2 + xayFa(x, y) +

a−2∑
j=1

x2a−jyFjj(x, y).

We now multiply by va−1 and sum over a ≥ 3, using the initial values Fjj(x, y) = xjyFj(x, y) for j = 1, 2, to obtain

G(x, y, v) =
x6y2v2

1− x2v
+ xyF (x, y, xv) +

x5yv2

1− x2v
G(x, y, xv). (7)

By employing (7) with v = 0, (6) can be simplified to

F (x, y, v) = xy(1 + xv) +
(
xv + 1 +

1

xv

)
G(x, y, v) +

y(xvF (x, y, 1)− F (x, y, xv))
v(1− xv)

. (8)

Now, write (7) and (8) in the matrix form, to obtain(
1 −xv − 1− 1

xv
0 1

)(
F (x, y, v)
G(x, y, v)

)
=

(
− y

v(1−xv) 0

xy x5yv2

1−x2v

)(
F (x, y, xv)
G(x, y, xv)

)
+

(
xy(1 + xv) + xyF (x,y,1)

1−xv
x6y2v2

1−x2v

)
,

which is equivalent to (
F (x, y, v)
G(x, y, v)

)
= A(v)

(
F (x, y, xv)
G(x, y, xv)

)
+ b(v) + F (x, y, 1)c(v). (9)

with

A(v) =

 −x3yv2

1−xv
x4yv(1+xv+x2v2)

1−x2v

xy x5yv2

1−x2v

 , b(v) =

 xy(1 + xv)− (x3v3−1)x5y2v
(xv−1)(x2v−1)

x6y2v2

1−x2v

 and c(v) =

(
xy

1−xv

0

)
.

In order to solve (9), we need the following lemma which follows immediately using induction.

Lemma 2.1.1. For all m ≥ 0,

B2m(v) :=

2m∏
j=0

A(xjv) =
xm

2+5m+1y2m+1vm∏2m+1
i=1 (xiv − 1)

(
x2v2 −xm+3v(x3m+3v3−1)

x2m+2v−1

xv − 1 −x4m+4v2(xv−1)
x2m+2v−1

)

and

B2m+1(v) :=

2m+1∏
j=0

A(xjv) =
xm

2+6m+5y2m+2vm+1∏2m+2
i=1 (xiv − 1)

(
1 −xm+3(x3m+3−1)v2

x2m+3v−1

0 xm+1(xv−1)
x2m+3v−1

)
.

Next, we assume that |x|, |y| < 1. By iterating (9), we obtain(
F (x, y, v)
G(x, y, v)

)
=
∑
j≥0

(
j−1∏
i=0

A(xiv)

)
(b(xjv) + F (x, y, 1)c(xjv)).

Employing the notation in Lemma 2.1.1, we have(
F (x, y, v)
G(x, y, v)

)
=
∑
j≥0

Bj−1(v)b(x
jv) + F (x, y, 1)

∑
j≥0

Bj−1(v)c(x
jv)

=
∑
j≥0

B2j−1(v)b(x
2jv) +

∑
j≥0

B2j(v)b(x
2j+1v)

+ F (x, y, 1)
∑
j≥0

B2j−1(v)c(x
2jv) + F (x, y, 1)

∑
j≥0

B2j(v)c(x
2j+1v).

And again from Lemma 2.1.1, we obtain(
F (x, y, 1)
G(x, y, 1)

)
=
∑
j≥0

xj(j+4)+1y2j+1∏2j
i=1(x

i − 1)

(
1 + x2j+1 + x2j+4(1−x3j+3)y

(x2j+1−1)(x2j+2−1)

− x5j+5(x−1)y
(x2j+1−1)(x2j+2−1)

)

+
∑
j≥0

xj(j+5)+2y2j+2∏2j+1
i=1 (xi − 1)

(
x2(1 + x2j+2) + x2j+7(1−x3j+3)y

(x2j+2−1)(x2j+3−1)

(1 + x2j+2)(x− 1)− x2j+5(x−1)y
(x2j+2−1)(x2j+3−1)

)

− F (x, y, 1)
∑
j≥0

xj(j+4)+1y2j+1∏2j+1
i=1 (xi − 1)

(
1
0

)
− F (x, y, 1)

∑
j≥0

xj(j+5)+2y2j+2∏2j+2
i=1 (xi − 1)

(
x2

x− 1

)
.

Solving for F (x, y, 1), we obtain the next result.

124



M. Archibald, A. Blecher, A. Knopfmacher, and T. Mansour / Discrete Math. Lett. 12 (2023) 122–129 125

Theorem 2.1.1. The generating function F (x, y, 1) for the number of compositions of n with m parts and no 2-chimneys is
given by ∑

j≥0

xj(j+4)+1y2j+1∏2j
i=1(x

i−1)

(
1 + x2j+1 + x2j+4(1−x3j+3)y

(x2j+1−1)(x2j+2−1)

)
+
∑
j≥0

xj(j+5)+4y2j+2∏2j+1
i=1 (xi−1)

(
1 + x2j+2 + x2j+5(1−x3j+3)y

(x2j+2−1)(x2j+3−1)

)
1 +

∑
j≥0

xj(j+4)+1y2j+1∏2j+1
i=1 (xi−1)

+
∑
j≥0

xj(j+5)+4y2j+2∏2j+2
i=1 (xi−1)

.

The denominator of F (x, 1, 1) has a dominant simple zero at η = 0.541219 · · · . Using singularity analysis again (see [7])
we deduce the next result.

Corollary 2.1.1. With η as above, the number of compositions of n with no 2-chimneys is asymptotic to c(η)η−n−1 where
c(η) = 0.252779 · · · as n→∞.

2.2. The total number of two-chimneys over all compositions of n
Consider the following three cases.

1. For compositions with one part, 2-chimneys are counted by

f1(x) :=
x2

1− x
.

2. The first part or the last part is a 2-chimney:

f2(x) := 2
1− x
1− 2x

∑
i≥1

∑
j≥i+2

xi+j .

3. Internal 2-chimneys: To count internal 2-chimneys we set up a bijection with compositions with a marked internal
2-chimney. Eg: 315142 or 315142 where the internal 2-chimneys are indicated in bold.

Let ijk be the three columns that make up the marked internal 2-chimney. The cases k < i and i < k are equivalent.
The internal 2-chimney generating function is

f3(x) :=

(
1− x
1− 2x

)2
2
∑
i≥1

∑
j≥i+2

i−1∑
k=1

xi+j+k +
∑
i≥1

∑
j≥i+2

x2i+j

 .

We precede and follow the marked 2-chimney with arbitrary unmarked compositions.

The generating function for the total number of 2-chimneys is

f1(x) + f2(x) + f3(x) =
x2(1− 2x+ 2x4 + x5)

1− 3x+ 3x3 + 3x4 − 4x6
.

By singularity analysis, the total number of 2-chimneys over all compositions of n is asymptotic to 1
4412

n−3(105n+ 116) as
n→∞.

Remark 2.2.1. The generating function for the number of 2-chimneys can be extended to 3-chimneys by observing that a
2-chimney can be extended to a 3-chimney by adding one cell, so the number of 2-chimneys for a composition of n is the
number of 3-chimneys for a composition of n− 1, and so on. That means the generating function for the total number of cut
points is just the generating function for the number of 2-chimneys minus x2, with an extra factor of 1−x in the denominator,
which agrees with the final formula in Section 2.3 as derived below.

2.3. The total number of cut points over all compositions of n
The number of cut points corresponds to the total number of r-chimneys summed over all r ≥ 2. Corresponding to the
three cases above we have

1. For compositions with one part, cut points are counted by

f1(x) :=
∑
j≥3

(j − 2)xj .
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2. The first part or the last part has cut points:

f2(x) := 2
1− x
1− 2x

∑
i≥1

∑
j≥i+2

(j − i− 1)xi+j .

3. Internal cut points: In this case the corresponding generating function is

f3(x) :=

(
1− x
1− 2x

)2
2
∑
i≥1

∑
j≥i+2

i−1∑
k=1

(j − i− 1)xi+j+k +
∑
i≥1

∑
j≥i+2

(j − i− 1)x2i+j

 .

The generating function for the total number of cut points is

f1(x) + f2(x) + f3(x) =
x3 − 3x5 − x6 + x7 + 4x8

(1− 2x)2(1− x)2(1 + x) (1 + x+ x2)
.

By singularity analysis, the total number of cut points over all compositions of n is asymptotic to 1
4412

n−2(105n + 11) as
n→∞.

3. Counting exact r-chimneys in bargraphs

We say that a bargraph B contains an exact r-chimney if the path B′ without its first up step has a factor uu · · ·uhdd · · · d =

urhdr; that is there exist B′′, B′′′ such that B′ = B′′urhdrB′′′, where B′′ does not end with an up step and B′′′ does not start
with a d step. For example, the bargraph

uuuhddhhuuuuhddddhhuhdhuhhdd

contains the factors u2hd2, u4hd4 and uhd, so it contains exact 2-chimneys, 4-chimneys and 1-chimneys. We use two different
methods to obtain the same result.

3.1. Using an iterative decomposition
Define F (x, y) = F (x, y, q1, q2, . . .) to be the generating function for the number of bargraphs according to the number of
horizontal steps, up steps, exact 1-chimneys, exact 2-chimneys, . . ., where xmarks the number of horizontal steps, y marks
number of up steps and for all i ≥ 1, qi marks the number of exact i-chimneys. To facilitate obtaining an expression for
F (x, y), we refine this by also defining Fj(x, y) = Fj(x, y, q1, q2, . . .) to be the generating function for the number of bargraphs
B with the trackers as before but where ujBdj has no horizontal step at line y = 0, 1, . . . , j − 1.

Immediately from the definitions,

F (x, y) = 1 + F1(x, y). (10)

Now let us write an equation for F1(x, y). Note that each bargraph uBd that has no horizontal step at line y = 0 can be
decomposed as uB(0)hB(1) · · ·hB(s)d with B(i) having no horizontal step at lines y = 0, 1. Thus, the contribution of the case
s is given by F2(x, y) and yxs(F2(x, y)/y + 1)s+1, where s = 0 and s ≥ 1, respectively. Hence

F1(x, y) = F2(x, y) +
yx(F2(x, y)/y + 1)2

1− x(F2(x, y)/y + 1)
. (11)

Next let us write an equation for Fj(x, y) where j ≥ 2. Note that each bargraph ujBdj that has no horizontal step at line
y = 0, 1, . . . , j − 1 can be decomposed as ujB(0)hB(1) · · ·hB(s)dj with B(i) having no horizontal step at lines y = 0, 1, . . . , j.
The contribution of the case s = 0 is Fj+1(x, y). The case s = 1 can be considered by looking at the bargraphs ujhdj ,
ujB′hdj , ujhB′′dj and ujB′hB′′dj with B′, B′′ non empty and with no horizontal step at line y = j. Thus, the contribution
of the case s = 1 is

yjxQj−1 + yjxF2(x, y)/y + yjxF2(x, y)/y + yjxF 2
2 (x, y)/y

2,

where Qi = q1q2 · · · qi. The contribution of the case s ≥ 2 is yjxs(F2(x, y)/y + 1)s+1. Hence, by adding all the contributions,
we obtain

Fj(x, y) = Fj+1(x, y) + yjx(Qj−1 − 1) + yjx(F2(x, y)/y + 1)2 +
∑
s≥2

yjxs(F2(x, y)/y + 1)s+1,

which is equivalent to
Fj(x, y) = Fj+1(x, y) + yjx(Qj−1 − 1) +

yjx(F2(x, y)/y + 1)2

1− x(F2(x, y)/y + 1)
.
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Now summing for j ≥ 2 while using the fact that F (x, y) = 1 + F1(x, y), we obtain

F2(x, y) =
∑
j≥2

yjx(Qj−1 − 1) +
y2x(F2(x, y)/y + 1)2

(1− y)(1− x(F2(x, y)/y + 1))
.

Therefore,

F2(x, y) =
y(1 + x+ xH −

√
(1 + x+ xH)2 − 4x

1−y (1 +H))

2x
1−y

− y,

where H =
∑

j≥2 y
j−1x(q1q2 · · · qj−1 − 1). Hence, by (10)-(11), we have the following result.

Theorem 3.1.1. The generating function F (x, y, q1, q2, . . .) defined at the start of this section is given by

1 + x− xH −
√
(1 + x+ xH)2 − 4x

1−y (1 +H)

2x
1−y

.

where H =
∑

j≥2 y
j−1x(q1q2 · · · qj−1 − 1).

3.2. Counting all bargraphs that avoid chimneys (using the wasp-waist decomposition)
As stated at the beginning of this section, we present a second method to obtain the generating function enumerating
bargraphs which avoid r-chimneys. This is based on a first return to level one decomposition colloquially known as the
wasp-waist decomposition. Here is a symbolic sketch of this decomposition (see [6]) which has 5 cases. Cases 4 and 5
represent the first return to level one.

= + + + +

1 2 3 4 5

Figure 1: Wasp-waist decomposition of bargraphs.

Recall that we set x as a horizontal step and y as an up step and here we use f(x, y) as the generating function for
counting chimneys in bargraphs. We use q to track all r chimneys (for any r), q1 to tracks 1-chimneys, q2 to track 2-chimneys
etc. Following the order of the wasp-waist decomposition, we obtain:

f(x, y, q) = yx+ xf(x, y, q) + y(f(x, y, q) + h) + yx(f(x, y, q) + h) + xf(x, y, q)(f(x, y, q) + h)

where
h =

∑
j≥2

yj−1x(q1q2q3 . . . qj−2(qj−1 − 1)).

Solving for f yields

f(x, y, q) =
−hx− xy − y − x+ 1

2x
−
√
(−hx− xy − y − x+ 1)2 + 4x(−hyx− hy − yx)

2x
.

Note that for H as defined in Theorem 3.1.1 and h as in this subsection, we have (1− y)H = h. Hence the two generating
functions agree except for the constant term. This is because the wasp-waist method excludes the case of the empty
bargraph.

For the rest of this section, we will use the generating function obtained in Theorem 3.1.1.

Example 3.2.1. Applying the above theorem for q2 = 0 and qj = 1 where j 6= 2, we obtain the generating function for the
number of bargraphs with no 2-chimneys according to number of horizontal steps and up steps to be given by

G2(x, y) := F (x, y, 1, 0, 1, 1, . . .)

=
(1− y)(1 + x) + y2x2 −

√
((1− y)(1 + x)− y2x2)2 − 4x(1− y − y2x)

2x
.
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In particular, the generating function for the number of bargraphs with no 2-chimneys according to semi-perimeter is given
by

G2(x, x) =
1− x2 + x4 −

√
(1− x2 − x4)2 − 4x(1− x− x3)

2x
.

Hence, by singularity analysis (for example, see [7]) we have

[xn]G2(x, x) =

√
−2ψ7 − 3ψ5 − 3ψ3 − ψ + 1

2
√
πψn3

ψ−n,

where ψ is the smallest positive root of the polynomial (1− x2 − x4)2 − 4x(1− x− x3) = x8 + 2x6 + 3x4 + 2x2 − 4x+ 1.

3.3. Avoiding r-chimneys
Applying Theorem 3.1.1 using qr = 0 and qj = 1 for j 6= r, the generating function Gr(x, y) for the number of bargraphs
without r-chimneys according to number of horizontal steps and up steps is given by

Gr(x, y) =
(1− y)(1 + x) + yrx2 −

√
((1− y)(1 + x)− yrx2)2 − 4x(1− y − yrx)

2x
.

Thus, the generating function for the number of bargraphs without r-chimneys according to semi-perimeter is given by
Gr(x, x). By singularity analysis we have [xn]Gr(x, x) =(

1
n

)3/2
ψ−n−

1
2

√
−2rψr+1 − 4ψr+1 − 2rψr+3 − 8ψr+3 − 2rψ2r+3 − 4ψ2r+3 − 4ψ3 − 4ψ + 4

4
√
π

,

where ψ is the smallest positive root of the polynomial (1− x2 − xr+2)2 − 4x(1− x− xr+1).

3.4. Average of r-chimneys
Applying Theorem 3.1.1 for qr = q and qj = 1 for j 6= r, the generating function Gr(x, y, q) for the number of bargraphs
according to the number of horizontal steps, up steps and number of r-chimneys is

(1− y)(1 + x) + (1− q)yrx2 −
√
((1− y)(1 + x)− (1− q)yrx2)2 − 4x(1− y − (1− q)yrx)

2x
.

Thus, the generating function for the number of bargraphs according to semi-perimeter and number of r-chimneys is given
by Gr(x, x, q) and the total number of r-chimneys has generating function

∂Gr(x, x, q)

∂q
|q=1 =

x1+r
(
1 + x2 −

√
1− 4x+ 2x2 + x4

)
2
√
1− 4x+ 2x2 + x4

.

Hence, by singularity analysis the total number of r-chimneys in bargraphs of semi-perimeter n is asymptotic to√
1
nρ

1
2−n+r

(
1 + ρ2

)
2
√
π
√
4− 4ρ− 4ρ3

as n→∞, where ρ is given by (2).

3.5. Average number of cut points
By applying Theorem 3.1.1 for q2 = q3 · · · = q and q1 = 1, we obtain that the generating function A(x, y, q) for the number
of bargraphs according to number of horizontal steps, up steps and number of cut points (equivalently, all r-chimneys for
r ≥ 2) is given by

A(x, y, q) =
1 + x+ y2x2(1−q)

(1−yq)(1−y) −
√
(1 + x− y2x2(1−q)

(1−yq)(1−y) )
2 − 4x

1−y (1−
y2x(1−q)

(1−yq)(1−y) )

2x
1−y

.

Thus, the generating function for the number of bargraphs according to semi-perimeter and number of cut points is given
by A(x, x, q) and the generating function for the total number of cut points is

∂A(x, x, q)

∂q
|q=1 =

x3
(
x− 1 +

(x−1)(1+x2)√
1−4x+2x2+x4

)
2(1− x)2

.

Hence, by singularity analysis the total number of cut points in bargraphs of semi-perimeter n is asymptotic to√
1
nρ

5
2−n

(
1 + ρ2

)
4
√
π(1− ρ)

√
1− ρ− ρ3

as n→∞, where ρ is given by (2).
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