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Abstract

For an arbitrary invariant ρ(G) of a graph G the ρ-edge stability number esρ(G) of G is the minimum number of edges of
G whose removal results in a graph H ⊆ G with ρ(H) 6= ρ(G). If such an edge set does not exist, then esρ(G) =∞. Gallai’s
Theorem states that α′(G) + β′(G) = n(G) for a graph G without isolated vertices, where α′(G) is the matching number,
β′(G) the edge covering number, and n(G) the order of G. We prove a corresponding result for invariants that are based on
the edge stability number esρ(G).
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1. Introduction

We consider finite simple graphs G = (V (G), E(G)) and denote the class of finite simple graphs by I. An empty graph is a
graph with empty edge set.

Definition 1.1. A (graph) invariant ρ(G) is a function ρ : I → R+
0 ∪ {∞}. An invariant is integer-valued if ρ(I) ⊆ N0.

An invariant ρ(G) is monotone increasing if H ⊆ G implies ρ(H) ≤ ρ(G), and monotone decreasing if H ⊆ G implies
ρ(H) ≥ ρ(G); ρ(G) is monotone if it is monotone increasing or monotone decreasing. If the conditions hold for certain classes
of subgraphs (for example, induced or spanning subgraphs), then we say that ρ(G) is monotone (increasing or decreasing)
with respect to the class.

Definition 1.2. If H1 and H2 are disjoint graphs, then an invariant is called additive if ρ(H1 ∪H2) = ρ(H1) + ρ(H2) and
maxing if ρ(H1 ∪H2) = max{ρ(H1), ρ(H2)}.

For example, the maximum degree ∆(G) of a graph G is integer-valued, monotone increasing, and maxing. The min-
imum degree δ(G) is integer-valued, not monotone, but monotone increasing with respect to spanning subgraphs, not
additive, and not maxing. The independence number α(G) is integer-valued, not monotone, but monotone increasing with
respect to induced subgraphs and monotone decreasing with respect to spanning subgraphs, and additive. The chromatic
number χ(G) is integer-valued, monotone increasing, and maxing. The domination number γ(G) is integer-valued, not
monotone, and additive.

It is an interesting topic to determine the stability of an arbitrary invariant ρ(G) of a graph G with respect to specific
graph operations such as removing vertices of G, or removing edges, or subdividing edges. The stability with respect to
removing edges from G leads to the following invariant.

Definition 1.3. The ρ-edge stability number esρ(G) of a graph G is the minimum number of edges of G whose removal
results in a graph H ⊆ G with ρ(H) 6= ρ(G). If such an edge set does not exist, then we set esρ(G) =∞.

In [3] the ρ-edge stability number is also defined and called ρ-line-stability. This paper contains just some basic results
on this topic.

For some specific invariants ρ(G) the problem of determining the ρ-edge stability number was already considered,
for example for the chromatic number χ(G), for the chromatic index χ′(G), for the total chromatic number χ′′(G), and
particularly for the domination number γ(G).

The χ-edge stability number or chromatic edge stability number esχ(G) was introduced in [2, 11] and also studied
in [1, 3, 4, 6–8, 10]. The χ′-edge stability number or chromatic edge stability index esχ′(G) was considered, among others,
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in [7] and the χ′′-edge stability number or total chromatic edge stability number esχ′′(G) in [6]. The increase of the
domination number γ(G) with respect to edge removal was extensively studied (see e.g. [3] or [12] for a survey). The
so-called bondage number b(G) coincides with the γ-edge stability number esγ(G).

Let us mention that in our previous papers on this topic [6–8,10] we used a different definition for the second (trivial)
case.

Two observations on esρ(G) are that if ρ(G) 6= ρ(G − E′), then esρ(G) ≤ |E′|, and if ρ(G − E′) 6= ρ(G − E′′), then
esρ(G) ≤ max{|E′| , |E′′|}, where E′, E′′ ⊆ E(G). Moreover, esρ(G) ≤ esρ(G− E′) + |E′|.

In [7] we proved several general results on the ρ-edge stability number esρ(G).

Theorem 1.1. [7] Let ρ(G) be additive, G = H1 ∪ · · · ∪ Hk a graph whose subgraphs H1, . . . ,Hk and the integer s ≥ 0

are defined such that ρ(Hi) can be changed by edge deletion if and only if 1 ≤ i ≤ s. Then esρ(G) = ∞ if s = 0 and
esρ(G) = min{esρ(Hi) : 1 ≤ i ≤ s} if s 6= 0.

For maxing invariants we proved the following result.

Theorem 1.2. [7] Let ρ(G) be maxing and monotone increasing, G = H1 ∪ · · · ∪Hk a graph whose subgraphs H1, . . . ,Hk

and the integer s ≥ 1 are defined such that ρ(Hi) = ρ(G) if and only if 1 ≤ i ≤ s. Then esρ(G) = ∞ if there is a subgraph
Hj , 1 ≤ j ≤ s, such that ρ(Hj) cannot be changed by edge deletions, and esρ(G) =

∑s
i=1 esρ(Hi) otherwise.

Theorems 1.1 and 1.2 imply that esρ(G) can be computed by the ρ-edge stability numbers of the components of G if the
invariant is additive or if it is maxing and monotone increasing. Therefore, it is sufficient to consider connected graphs G
in these cases.

The following results provide lower bounds for esρ(G).

Theorem 1.3. [7] Let ρ(G) be monotone and letG be a nonempty graph with ρ(G) = k. IfG contains s nonempty subgraphs
G1, . . . , Gs with ρ(G1) = · · · = ρ(Gs) = k such that a ≥ 0 is the number of edges that occur in at least two of these subgraphs
and q ≥ 1 is the maximum number of these subgraphs with a common edge, then both esρ(G) ≥ 1

q

∑s
i=1 esρ(Gi) ≥ s/q and

esρ(G) ≥
∑s
i=1 esρ(Gi)− a(q − 1) hold.

Corollary 1.1. [7] Let ρ(G) be monotone and let G be a nonempty graph with ρ(G) = k. If G contains s nonempty
subgraphs G1, . . . , Gs with ρ(G1) = · · · = ρ(Gs) = k and pairwise disjoint edge sets, then esρ(G) ≥

∑s
i=1 esρ(Gi) ≥ s.

In 1959 Gallai proved the following results [5]. Let G be a graph of order n(G) without isolated vertices, α(G) be the
independence number, that is, the maximum number of mutually non-adjacent vertices of G, β(G) the vertex covering
number, that is, the minimum number of vertices ofG such that every edge ofG is incident to at least one of these vertices,
α′(G) the edge independence number or matching number, that is, the maximum number of mutually non-adjacent edges
ofG, and β′(G) the edge covering number, that is, the minimum number of edges ofG such that every vertex ofG is incident
to at least one of these edges. Then α(G) +β(G) = n(G) and α′(G) +β′(G) = n(G). The latter equation nowadays is known
as Gallai’s Theorem. We prove a corresponding result for invariants that depend on the edge stability number esρ(G).

2. Results

The following results are based on Gallai’s Theorem [5]. We define two invariants α′ρ(G) and β′ρ(G) as follows.

Definition 2.1. If ρ(G) is an invariant, then α′ρ(G) is defined to be the maximum number of edges of a spanning subgraph
H of G with ρ(H) 6= ρ(G). If such a subgraph does not exist (that is, if ρ(H) is constant for all spanning subgraphs H of G),
then we set α′ρ(G) =∞. Let β′ρ(G) be the minimum number of edges of G that cover all nonempty spanning subgraphs H of
G with ρ(H) = ρ(G), that is, each such subgraph must contain at least one edge of the covering set.

Note that 0 ≤ β′ρ(G) ≤ m(G) where m(G) is the size |E(G)| of G. If ρ(H) is constant for all spanning subgraphs H of
G, then esρ(G) = α′ρ(G) =∞ by the definitions and β′ρ(G) = m(G) (including the case that G is empty) by considering the
spanning subgraphs that contain a single edge e ∈ E(G).

In the following we require that ρ(H) is not constant for all spanning subgraphsH ofG which is equivalent to requiring
that esρ(G) <∞.

Lemma 2.1. If esρ(G) <∞, then esρ(G) = m(G)− α′ρ(G).

Proof. Since ρ(G) can be changed by edge deletions, there are sets E′ ⊆ E(G) with ρ(G − E′) 6= ρ(G). If |E′| = esρ(G)

is in addition minimal, then the size of the spanning subgraph G − E′ is maximal, and vice versa. This implies that
α′ρ(G) = m(G)− esρ(G), that is, esρ(G) = m(G)− α′ρ(G).
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Theorem 2.1. If ρ(G) is monotone with respect to spanning subgraphs and esρ(G) <∞, then α′ρ(G) + β′ρ(G) = m(G).

Proof. Note that esρ(G) <∞ implies α′ρ(G) <∞.
LetG′ = (V (G), E′) be a spanning subgraph ofGwithE′ ( E(G), |E′| = α′ρ(G), and ρ(G′) 6= ρ(G). Then the complement

E′ = E(G) \E′ covers all nonempty spanning subgraphs H of G with ρ(H) = ρ(G). Suppose not, then there is a nonempty
spanning subgraph H of G with ρ(H) = ρ(G) that contains no edge of E′, that is, E(H) ⊆ E′ and H is a spanning subgraph
of G′. But ρ(G) is monotone with respect to spanning subgraphs, so either ρ(H) ≤ ρ(G′) < ρ(G), or ρ(H) ≥ ρ(G′) > ρ(G),
that is, ρ(H) 6= ρ(G), a contradiction.

This implies β′ρ(G) ≤
∣∣E′∣∣ = m(G)− α′ρ(G) by the minimality of β′ρ(G), that is, α′ρ(G) + β′ρ(G) ≤ m(G).

Conversely, letE′′ ⊆ E(G) be a set of β′ρ(G) edges that covers all nonempty spanning subgraphsH ofGwith ρ(H) = ρ(G).
Consider the complement E′′ = E(G) \ E′′ and G′′ = (V (G), E′′). If G′′ is empty, then ρ(G′′) 6= ρ(G) by the monotonicity
and esρ(G) < ∞. Otherwise, G′′ is a nonempty spanning subgraph of G with no edge of the covering set E′′. Then
ρ(G′′) 6= ρ(G) since otherwise G′′ would contain an edge of the covering set E′′, a contradiction. By the maximality,
α′ρ(G) ≥

∣∣E′′∣∣ = m(G)− β′ρ(G), that is, α′ρ(G) + β′ρ(G) ≥ m(G) and thus equality follows.

Corollary 2.1. If ρ(G) is monotone with respect to spanning subgraphs and esρ(G) <∞, then esρ(G) = β′ρ(G).

Proof. By Lemma 2.1 and Theorem 2.1, esρ(G) = m(G)− α′ρ(G) = β′ρ(G).

These results imply that only one of the invariants esρ(G), α′ρ(G), β′ρ(G) needs to be determined in order to know also
the other two invariants if ρ(G) is monotone with respect to spanning subgraphs. Moreover, known bounds for esρ(G)

can also be applied to the other two invariants. We give some examples considering the chromatic number χ(G) and the
chromatic index χ′(G) of a graph G, which are monotone increasing invariants (see [7,10]).

Example 2.1.

(1). If G is a non-empty bipartite graph, then χ(G) = 2 and all edges of G must be removed in order to lower the chromatic
number. Therefore, esχ(G) = |E(G)| = m(G) and β′χ(G) = m(G) by Corollary 2.1. This can also be shown directly
since all subgraphs induced by a single edge have the same chromatic number as G and must be covered. Note that
α′χ(G) = 0 since the only subgraph of G with a lower chromatic number is empty.

(2). Consider the Petersen graph P with chromatic number χ(P ) = 3. There are 12 cycles C5 in P , and each edge e = uv is
contained in 4 of them: The end-vertices u, v have 2 neighbors each that do not belong to e, so there are 2 · 2 = 4 paths
P4 with e as middle edge, and their end-vertices are connected by a path of length 2 which forms a C5. This shows
that at least 12/4 = 3 edges are needed to cover all odd cycles of P , that is, β′χ(P ) ≥ 3. On the other hand, consider an
independent vertex set S of P of cardinality 4. The subgraph P −S contains 3 edges e1, e2, e3 such that P −{e1, e2, e3}
is isomorphic to a complete graph K4 with vertex set S and each edge subdivided once (the subdivision vertices are
the end-vertices of e1, e2, e3). This is a bipartite graph with partition sets S and the set of subdivision vertices, which
implies that esχ(P ) ≤ 3. Therefore, esχ(P ) = β′χ(P ) = 3 by Corollary 2.1 and α′χ(P ) = 2 · 6 = 12 by Lemma 2.1.

(3). Consider the complete r-partite graph K = Kn1,n2,...,nr
with n1 ≤ n2 ≤ · · · ≤ nr, r ≥ 3. Removing all n1n2 edges

between the two smallest partition sets gives a complete (r− 1)-partite subgraph Kn1+n2,n3,...,nr
. On the other hand,

removing less than n1n2 arbitrary edges gives a subgraph with a Kr (see [10]). This shows that the largest (r − 1)-
partite subgraph isKn1+n2,n3,...,nr , that is, α′χ(K) = m(Kn1+n2,n3,...,nr ). Therefore, esχ(K) = β′χ(K) = m(K)−α′χ(K) =

n1n2 by Lemma 2.1 and Corollary 2.1.

Example 2.2. For complete graphsKn, n ≥ 2, it holds that χ′(Kn) = n−1 if n is even and χ′(Kn) = n if n is odd. Removing
the edges of an arbitrary color in a χ′(Kn)-edge coloring of Kn (that is, a perfect matching if n is even or a near-perfect
matching if n is odd) reduces the chromatic index, so esχ′(Kn) ≤ bn/2c follows. If n is even, then removing less than n/2

edges leaves a vertex of degree n− 1 which implies that the chromatic index of the subgraph is the same as that of Kn. If
n is odd, then an edge coloring with n− 1 colors may only properly color (n− 1)(n− 1)/2 edges of a subgraph of Kn, which
implies that at least n(n−1)/2− (n−1)(n−1)/2 = (n−1)/2 edges must be removed in order to reduce the chromatic index.
In both cases it follows esχ′(Kn) ≥ bn/2c. Therefore, esχ′(Kn) = bn/2c (see also [7]) and β′χ(Kn) = bn/2c by Corollary 2.1.
Thus, by Lemma 2.1, the largest subgraph of Kn with chromatic index less than χ′(Kn) is obtained by removing bn/2c
independent edges, that is, the complete multipartite graph with n/2 partition sets of size 2 if n is even or with 1 partition
set of size 1 and (n− 1)/2 partition sets of size 2 if n is odd.

If ρ(G) is monotone with respect to spanning subgraphs and esρ(G) <∞, then Theorem 1.3 and Corollary 1.1 also give
bounds for β′ρ(G) in terms of β′ρ(Gi) by Corollary 2.1, where the Gi are nonempty subgraphs of G with the same value of
the invariant ρ.
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3. Remarks

If we remove vertices instead of edges, then we obtain the following related invariant (see [9]).

Definition 3.1. The ρ-vertex stability number vsρ(G) of a graph G is the minimum number of vertices of G whose removal
results in a graph H ⊆ G with ρ(H) 6= ρ(G). If such a vertex set does not exist, then we set vsρ(G) =∞.

In [9] we proved a corresponding Gallai’s Theorem type result for the vertex stability of graphs.

Definition 3.2. If ρ(G) is an invariant, then αρ(G) is defined to be the maximum number of vertices of an induced subgraph
H ofGwith ρ(H) 6= ρ(G). If such a subgraph does not exist (that is, if ρ(H) is constant for all induced subgraphsH ofG), then
we set αρ(G) =∞. Let βρ(G) be the minimum number of vertices that cover all induced subgraphsH of G with ρ(H) = ρ(G),
that is, each such subgraph must contain at least one vertex of the covering set.

Note that 1 ≤ βρ(G) ≤ n(G) since G is an induced subgraph of itself. If ρ(H) is constant for all induced subgraphs H of
G (including K1), then vsρ(G) = αρ(G) =∞ and βρ(G) = n(G) by the definitions.

We proved in [9] that vsρ(G) = n(G) − αρ(G) if vsρ(G) < ∞. Moreover, if ρ(G) is monotone with respect to induced
subgraphs and vsρ(G) <∞, then αρ(G) + βρ(G) = n(G), and therefore vsρ(G) = βρ(G).
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