A Gallai's Theorem type result for the edge stability of graphs

Arnfried Kemnitz*, Massimiliano Marangio
Computational Mathematics, Technical University Braunschweig, Universitätsplatz 2, 38106 Braunschweig, Germany

(Received: 5 May 2023. Received in revised form: 25 July 2023. Accepted: 1 August 2023. Published online: 11 August 2023.)
(c) 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For an arbitrary invariant $\rho(G)$ of a graph G the ρ-edge stability number $e s_{\rho}(G)$ of G is the minimum number of edges of G whose removal results in a graph $H \subseteq G$ with $\rho(H) \neq \rho(G)$. If such an edge set does not exist, then $e s_{\rho}(G)=\infty$. Gallai's Theorem states that $\alpha^{\prime}(G)+\beta^{\prime}(G)=n(G)$ for a graph G without isolated vertices, where $\alpha^{\prime}(G)$ is the matching number, $\beta^{\prime}(G)$ the edge covering number, and $n(G)$ the order of G. We prove a corresponding result for invariants that are based on the edge stability number $e s_{\rho}(G)$.

Keywords: edge stability number; graph invariant; Gallai's Theorem.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

We consider finite simple graphs $G=(V(G), E(G))$ and denote the class of finite simple graphs by \mathcal{I}. An empty graph is a graph with empty edge set.

Definition 1.1. A (graph) invariant $\rho(G)$ is a function $\rho: \mathcal{I} \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$. An invariant is integer-valued if $\rho(\mathcal{I}) \subseteq \mathbb{N}_{0}$. An invariant $\rho(G)$ is monotone increasing if $H \subseteq G$ implies $\rho(H) \leq \rho(G)$, and monotone decreasing if $H \subseteq G$ implies $\rho(H) \geq \rho(G) ; \rho(G)$ is monotone if it is monotone increasing or monotone decreasing. If the conditions hold for certain classes of subgraphs (for example, induced or spanning subgraphs), then we say that $\rho(G)$ is monotone (increasing or decreasing) with respect to the class.

Definition 1.2. If H_{1} and H_{2} are disjoint graphs, then an invariant is called additive if $\rho\left(H_{1} \cup H_{2}\right)=\rho\left(H_{1}\right)+\rho\left(H_{2}\right)$ and maxing if $\rho\left(H_{1} \cup H_{2}\right)=\max \left\{\rho\left(H_{1}\right), \rho\left(H_{2}\right)\right\}$.

For example, the maximum degree $\Delta(G)$ of a graph G is integer-valued, monotone increasing, and maxing. The minimum degree $\delta(G)$ is integer-valued, not monotone, but monotone increasing with respect to spanning subgraphs, not additive, and not maxing. The independence number $\alpha(G)$ is integer-valued, not monotone, but monotone increasing with respect to induced subgraphs and monotone decreasing with respect to spanning subgraphs, and additive. The chromatic number $\chi(G)$ is integer-valued, monotone increasing, and maxing. The domination number $\gamma(G)$ is integer-valued, not monotone, and additive.

It is an interesting topic to determine the stability of an arbitrary invariant $\rho(G)$ of a graph G with respect to specific graph operations such as removing vertices of G, or removing edges, or subdividing edges. The stability with respect to removing edges from G leads to the following invariant.

Definition 1.3. The ρ-edge stability number $\operatorname{es}_{\rho}(G)$ of a graph G is the minimum number of edges of G whose removal results in a graph $H \subseteq G$ with $\rho(H) \neq \rho(G)$. If such an edge set does not exist, then we set es $\rho_{\rho}(G)=\infty$.

In [3] the ρ-edge stability number is also defined and called ρ-line-stability. This paper contains just some basic results on this topic.

For some specific invariants $\rho(G)$ the problem of determining the ρ-edge stability number was already considered, for example for the chromatic number $\chi(G)$, for the chromatic index $\chi^{\prime}(G)$, for the total chromatic number $\chi^{\prime \prime}(G)$, and particularly for the domination number $\gamma(G)$.

The χ-edge stability number or chromatic edge stability number $e s_{\chi}(G)$ was introduced in $[2,11]$ and also studied in $[1,3,4,6-8,10]$. The χ^{\prime}-edge stability number or chromatic edge stability index $e s_{\chi^{\prime}}(G)$ was considered, among others,

[^0]in [7] and the $\chi^{\prime \prime}$-edge stability number or total chromatic edge stability number $e s_{\chi^{\prime \prime}}(G)$ in [6]. The increase of the domination number $\gamma(G)$ with respect to edge removal was extensively studied (see e.g. [3] or [12] for a survey). The so-called bondage number $b(G)$ coincides with the γ-edge stability number es ${ }_{\gamma}(G)$.

Let us mention that in our previous papers on this topic [6-8, 10] we used a different definition for the second (trivial) case.

Two observations on $e s_{\rho}(G)$ are that if $\rho(G) \neq \rho\left(G-E^{\prime}\right)$, then $e s_{\rho}(G) \leq\left|E^{\prime}\right|$, and if $\rho\left(G-E^{\prime}\right) \neq \rho\left(G-E^{\prime \prime}\right)$, then $e s_{\rho}(G) \leq \max \left\{\left|E^{\prime}\right|,\left|E^{\prime \prime}\right|\right\}$, where $E^{\prime}, E^{\prime \prime} \subseteq E(G)$. Moreover, es $\rho_{\rho}(G) \leq e s_{\rho}\left(G-E^{\prime}\right)+\left|E^{\prime}\right|$.

In [7] we proved several general results on the ρ-edge stability number $e s_{\rho}(G)$.
Theorem 1.1. [7] Let $\rho(G)$ be additive, $G=H_{1} \cup \cdots \cup H_{k}$ a graph whose subgraphs H_{1}, \ldots, H_{k} and the integer $s \geq 0$ are defined such that $\rho\left(H_{i}\right)$ can be changed by edge deletion if and only if $1 \leq i \leq s$. Then $e s_{\rho}(G)=\infty$ if $s=0$ and $e s_{\rho}(G)=\min \left\{e s_{\rho}\left(H_{i}\right): 1 \leq i \leq s\right\}$ if $s \neq 0$.

For maxing invariants we proved the following result.
Theorem 1.2. [7] Let $\rho(G)$ be maxing and monotone increasing, $G=H_{1} \cup \cdots \cup H_{k}$ a graph whose subgraphs H_{1}, \ldots, H_{k} and the integer $s \geq 1$ are defined such that $\rho\left(H_{i}\right)=\rho(G)$ if and only if $1 \leq i \leq s$. Then $e s_{\rho}(G)=\infty$ if there is a subgraph $H_{j}, 1 \leq j \leq s$, such that $\rho\left(H_{j}\right)$ cannot be changed by edge deletions, and $e s_{\rho}(G)=\sum_{i=1}^{s} e s_{\rho}\left(H_{i}\right)$ otherwise.

Theorems 1.1 and 1.2 imply that $e s_{\rho}(G)$ can be computed by the ρ-edge stability numbers of the components of G if the invariant is additive or if it is maxing and monotone increasing. Therefore, it is sufficient to consider connected graphs G in these cases.

The following results provide lower bounds for $e s_{\rho}(G)$.
Theorem 1.3. [7] Let $\rho(G)$ be monotone and let G be a nonempty graph with $\rho(G)=k$. If G contains s nonempty subgraphs G_{1}, \ldots, G_{s} with $\rho\left(G_{1}\right)=\cdots=\rho\left(G_{s}\right)=k$ such that $a \geq 0$ is the number of edges that occur in at least two of these subgraphs and $q \geq 1$ is the maximum number of these subgraphs with a common edge, then both $e s_{\rho}(G) \geq \frac{1}{q} \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right) \geq s / q$ and $e s_{\rho}(G) \geq \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right)-a(q-1)$ hold.

Corollary 1.1. [7] Let $\rho(G)$ be monotone and let G be a nonempty graph with $\rho(G)=k$. If G contains s nonempty subgraphs G_{1}, \ldots, G_{s} with $\rho\left(G_{1}\right)=\cdots=\rho\left(G_{s}\right)=k$ and pairwise disjoint edge sets, then $e s_{\rho}(G) \geq \sum_{i=1}^{s} e s_{\rho}\left(G_{i}\right) \geq s$.

In 1959 Gallai proved the following results [5]. Let G be a graph of order $n(G)$ without isolated vertices, $\alpha(G)$ be the independence number, that is, the maximum number of mutually non-adjacent vertices of $G, \beta(G)$ the vertex covering number, that is, the minimum number of vertices of G such that every edge of G is incident to at least one of these vertices, $\alpha^{\prime}(G)$ the edge independence number or matching number, that is, the maximum number of mutually non-adjacent edges of G, and $\beta^{\prime}(G)$ the edge covering number, that is, the minimum number of edges of G such that every vertex of G is incident to at least one of these edges. Then $\alpha(G)+\beta(G)=n(G)$ and $\alpha^{\prime}(G)+\beta^{\prime}(G)=n(G)$. The latter equation nowadays is known as Gallai's Theorem. We prove a corresponding result for invariants that depend on the edge stability number es $\rho_{\rho}(G)$.

2. Results

The following results are based on Gallai's Theorem [5]. We define two invariants $\alpha_{\rho}^{\prime}(G)$ and $\beta_{\rho}^{\prime}(G)$ as follows.
Definition 2.1. If $\rho(G)$ is an invariant, then $\alpha_{\rho}^{\prime}(G)$ is defined to be the maximum number of edges of a spanning subgraph H of G with $\rho(H) \neq \rho(G)$. If such a subgraph does not exist (that is, if $\rho(H)$ is constant for all spanning subgraphs H of G), then we set $\alpha_{\rho}^{\prime}(G)=\infty$. Let $\beta_{\rho}^{\prime}(G)$ be the minimum number of edges of G that cover all nonempty spanning subgraphs H of G with $\rho(H)=\rho(G)$, that is, each such subgraph must contain at least one edge of the covering set.

Note that $0 \leq \beta_{\rho}^{\prime}(G) \leq m(G)$ where $m(G)$ is the size $|E(G)|$ of G. If $\rho(H)$ is constant for all spanning subgraphs H of G, then $e s_{\rho}(G)=\alpha_{\rho}^{\prime}(G)=\infty$ by the definitions and $\beta_{\rho}^{\prime}(G)=m(G)$ (including the case that G is empty) by considering the spanning subgraphs that contain a single edge $e \in E(G)$.

In the following we require that $\rho(H)$ is not constant for all spanning subgraphs H of G which is equivalent to requiring that $e s_{\rho}(G)<\infty$.

Lemma 2.1. If $e s_{\rho}(G)<\infty$, then $e s_{\rho}(G)=m(G)-\alpha_{\rho}^{\prime}(G)$.
Proof. Since $\rho(G)$ can be changed by edge deletions, there are sets $E^{\prime} \subseteq E(G)$ with $\rho\left(G-E^{\prime}\right) \neq \rho(G)$. If $\left|E^{\prime}\right|=e s_{\rho}(G)$ is in addition minimal, then the size of the spanning subgraph $G-E^{\prime}$ is maximal, and vice versa. This implies that $\alpha_{\rho}^{\prime}(G)=m(G)-e s_{\rho}(G)$, that is, $e s_{\rho}(G)=m(G)-\alpha_{\rho}^{\prime}(G)$.

Theorem 2.1. If $\rho(G)$ is monotone with respect to spanning subgraphs and es $\rho_{\rho}(G)<\infty$, then $\alpha_{\rho}^{\prime}(G)+\beta_{\rho}^{\prime}(G)=m(G)$.
Proof. Note that $e s_{\rho}(G)<\infty$ implies $\alpha_{\rho}^{\prime}(G)<\infty$.
Let $G^{\prime}=\left(V(G), E^{\prime}\right)$ be a spanning subgraph of G with $E^{\prime} \subsetneq E(G),\left|E^{\prime}\right|=\alpha_{\rho}^{\prime}(G)$, and $\rho\left(G^{\prime}\right) \neq \rho(G)$. Then the complement $\overline{E^{\prime}}=E(G) \backslash E^{\prime}$ covers all nonempty spanning subgraphs H of G with $\rho(H)=\rho(G)$. Suppose not, then there is a nonempty spanning subgraph H of G with $\rho(H)=\rho(G)$ that contains no edge of $\overline{E^{\prime}}$, that is, $E(H) \subseteq E^{\prime}$ and H is a spanning subgraph of G^{\prime}. But $\rho(G)$ is monotone with respect to spanning subgraphs, so either $\rho(H) \leq \rho\left(G^{\prime}\right)<\rho(G)$, or $\rho(H) \geq \rho\left(G^{\prime}\right)>\rho(G)$, that is, $\rho(H) \neq \rho(G)$, a contradiction.

This implies $\beta_{\rho}^{\prime}(G) \leq\left|\overline{E^{\prime}}\right|=m(G)-\alpha_{\rho}^{\prime}(G)$ by the minimality of $\beta_{\rho}^{\prime}(G)$, that is, $\alpha_{\rho}^{\prime}(G)+\beta_{\rho}^{\prime}(G) \leq m(G)$.
Conversely, let $E^{\prime \prime} \subseteq E(G)$ be a set of $\beta_{\rho}^{\prime}(G)$ edges that covers all nonempty spanning subgraphs H of G with $\rho(H)=\rho(G)$. Consider the complement $\overline{E^{\prime \prime}}=E(G) \backslash E^{\prime \prime}$ and $G^{\prime \prime}=\left(V(G), \overline{E^{\prime \prime}}\right)$. If $G^{\prime \prime}$ is empty, then $\rho\left(G^{\prime \prime}\right) \neq \rho(G)$ by the monotonicity and $e s_{\rho}(G)<\infty$. Otherwise, $G^{\prime \prime}$ is a nonempty spanning subgraph of G with no edge of the covering set $E^{\prime \prime}$. Then $\rho\left(G^{\prime \prime}\right) \neq \rho(G)$ since otherwise $G^{\prime \prime}$ would contain an edge of the covering set $E^{\prime \prime}$, a contradiction. By the maximality, $\alpha_{\rho}^{\prime}(G) \geq\left|\overline{E^{\prime \prime}}\right|=m(G)-\beta_{\rho}^{\prime}(G)$, that is, $\alpha_{\rho}^{\prime}(G)+\beta_{\rho}^{\prime}(G) \geq m(G)$ and thus equality follows.

Corollary 2.1. If $\rho(G)$ is monotone with respect to spanning subgraphs and es $\rho_{\rho}(G)<\infty$, then es $\rho(G)=\beta_{\rho}^{\prime}(G)$.
Proof. By Lemma 2.1 and Theorem 2.1, $e s_{\rho}(G)=m(G)-\alpha_{\rho}^{\prime}(G)=\beta_{\rho}^{\prime}(G)$.
These results imply that only one of the invariants $e s_{\rho}(G), \alpha_{\rho}^{\prime}(G), \beta_{\rho}^{\prime}(G)$ needs to be determined in order to know also the other two invariants if $\rho(G)$ is monotone with respect to spanning subgraphs. Moreover, known bounds for es $\rho_{\rho}(G)$ can also be applied to the other two invariants. We give some examples considering the chromatic number $\chi(G)$ and the chromatic index $\chi^{\prime}(G)$ of a graph G, which are monotone increasing invariants (see [7,10]).

Example 2.1.

(1). If G is a non-empty bipartite graph, then $\chi(G)=2$ and all edges of G must be removed in order to lower the chromatic number. Therefore, es ${ }_{\chi}(G)=|E(G)|=m(G)$ and $\beta_{\chi}^{\prime}(G)=m(G)$ by Corollary 2.1. This can also be shown directly since all subgraphs induced by a single edge have the same chromatic number as G and must be covered. Note that $\alpha_{\chi}^{\prime}(G)=0$ since the only subgraph of G with a lower chromatic number is empty.
(2). Consider the Petersen graph P with chromatic number $\chi(P)=3$. There are 12 cycles C_{5} in P, and each edge $e=u v$ is contained in 4 of them: The end-vertices u, v have 2 neighbors each that do not belong to e, so there are $2 \cdot 2=4$ paths P_{4} with e as middle edge, and their end-vertices are connected by a path of length 2 which forms a C_{5}. This shows that at least $12 / 4=3$ edges are needed to cover all odd cycles of P, that is, $\beta_{\chi}^{\prime}(P) \geq 3$. On the other hand, consider an independent vertex set S of P of cardinality 4 . The subgraph $P-S$ contains 3 edges e_{1}, e_{2}, e_{3} such that $P-\left\{e_{1}, e_{2}, e_{3}\right\}$ is isomorphic to a complete graph K_{4} with vertex set S and each edge subdivided once (the subdivision vertices are the end-vertices of e_{1}, e_{2}, e_{3}). This is a bipartite graph with partition sets S and the set of subdivision vertices, which implies that $e s_{\chi}(P) \leq 3$. Therefore, $e s_{\chi}(P)=\beta_{\chi}^{\prime}(P)=3$ by Corollary 2.1 and $\alpha_{\chi}^{\prime}(P)=2 \cdot 6=12$ by Lemma 2.1.
(3). Consider the complete r-partite graph $K=K_{n_{1}, n_{2}, \ldots, n_{r}}$ with $n_{1} \leq n_{2} \leq \cdots \leq n_{r}, r \geq 3$. Removing all $n_{1} n_{2}$ edges between the two smallest partition sets gives a complete ($r-1$)-partite subgraph $K_{n_{1}+n_{2}, n_{3}, \ldots, n_{r}}$. On the other hand, removing less than $n_{1} n_{2}$ arbitrary edges gives a subgraph with a K_{r} (see [10]). This shows that the largest $(r-1)$ partite subgraph is $K_{n_{1}+n_{2}, n_{3}, \ldots, n_{r}}$, that is, $\alpha_{\chi}^{\prime}(K)=m\left(K_{n_{1}+n_{2}, n_{3}, \ldots, n_{r}}\right)$. Therefore, es $(K)=\beta_{\chi}^{\prime}(K)=m(K)-\alpha_{\chi}^{\prime}(K)=$ $n_{1} n_{2}$ by Lemma 2.1 and Corollary 2.1.

Example 2.2. For complete graphs $K_{n}, n \geq 2$, it holds that $\chi^{\prime}\left(K_{n}\right)=n-1$ if n is even and $\chi^{\prime}\left(K_{n}\right)=n$ if n is odd. Removing the edges of an arbitrary color in a $\chi^{\prime}\left(K_{n}\right)$-edge coloring of K_{n} (that is, a perfect matching if n is even or a near-perfect matching if n is odd) reduces the chromatic index, so $e s_{\chi^{\prime}}\left(K_{n}\right) \leq\lfloor n / 2\rfloor$ follows. If n is even, then removing less than $n / 2$ edges leaves a vertex of degree $n-1$ which implies that the chromatic index of the subgraph is the same as that of K_{n}. If n is odd, then an edge coloring with $n-1$ colors may only properly color $(n-1)(n-1) / 2$ edges of a subgraph of K_{n}, which implies that at least $n(n-1) / 2-(n-1)(n-1) / 2=(n-1) / 2$ edges must be removed in order to reduce the chromatic index. In both cases it follows $e s_{\chi^{\prime}}\left(K_{n}\right) \geq\lfloor n / 2\rfloor$. Therefore, es $\chi_{\chi^{\prime}}\left(K_{n}\right)=\lfloor n / 2\rfloor$ (see also [7]) and $\beta_{\chi}^{\prime}\left(K_{n}\right)=\lfloor n / 2\rfloor$ by Corollary 2.1. Thus, by Lemma 2.1, the largest subgraph of K_{n} with chromatic index less than $\chi^{\prime}\left(K_{n}\right)$ is obtained by removing $\lfloor n / 2\rfloor$ independent edges, that is, the complete multipartite graph with $n / 2$ partition sets of size 2 if n is even or with 1 partition set of size 1 and $(n-1) / 2$ partition sets of size 2 if n is odd.

If $\rho(G)$ is monotone with respect to spanning subgraphs and $e s_{\rho}(G)<\infty$, then Theorem 1.3 and Corollary 1.1 also give bounds for $\beta_{\rho}^{\prime}(G)$ in terms of $\beta_{\rho}^{\prime}\left(G_{i}\right)$ by Corollary 2.1, where the G_{i} are nonempty subgraphs of G with the same value of the invariant ρ.

3. Remarks

If we remove vertices instead of edges, then we obtain the following related invariant (see [9]).
Definition 3.1. The ρ-vertex stability number $v s_{\rho}(G)$ of a graph G is the minimum number of vertices of G whose removal results in a graph $H \subseteq G$ with $\rho(H) \neq \rho(G)$. If such a vertex set does not exist, then we set vs ${ }_{\rho}(G)=\infty$.

In [9] we proved a corresponding Gallai's Theorem type result for the vertex stability of graphs.
Definition 3.2. If $\rho(G)$ is an invariant, then $\alpha_{\rho}(G)$ is defined to be the maximum number of vertices of an induced subgraph H of G with $\rho(H) \neq \rho(G)$. If such a subgraph does not exist (that is, if $\rho(H)$ is constant for all induced subgraphs H of G), then we set $\alpha_{\rho}(G)=\infty$. Let $\beta_{\rho}(G)$ be the minimum number of vertices that cover all induced subgraphs H of G with $\rho(H)=\rho(G)$, that is, each such subgraph must contain at least one vertex of the covering set.

Note that $1 \leq \beta_{\rho}(G) \leq n(G)$ since G is an induced subgraph of itself. If $\rho(H)$ is constant for all induced subgraphs H of G (including K_{1}), then $v s_{\rho}(G)=\alpha_{\rho}(G)=\infty$ and $\beta_{\rho}(G)=n(G)$ by the definitions.

We proved in [9] that $v s_{\rho}(G)=n(G)-\alpha_{\rho}(G)$ if $v s_{\rho}(G)<\infty$. Moreover, if $\rho(G)$ is monotone with respect to induced subgraphs and $v s_{\rho}(G)<\infty$, then $\alpha_{\rho}(G)+\beta_{\rho}(G)=n(G)$, and therefore $v s_{\rho}(G)=\beta_{\rho}(G)$.

References

[^1]
[^0]: *Corresponding author (a.kemnitz@tu-bs.de).

[^1]: [1] S. Akbari, S. Klavžar, N. Movarraei, M. Nahvi, Nordhaus-Gaddum and other bounds for the chromatic edge-stability number, European J. Combin. 84 (2020) \#103042.
 [2] S. Arumugam, I. Sahul Hamid, A. Muthukamatchi, Independent domination and graph colorings, Ramanujan Math. Soc. Lect. Notes Ser. Math. 7 (2008) 195-203.
 [3] D. Bauer, F. Harary, J. Nieminen, C. L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161.
 [4] B. Brešar, S. Klavžar, N. Movarraei, Critical graphs for the chromatic edge-stability number, Discrete Math. 343 (2020) \#111845.
 [5] T. Gallai, Uber extreme Punkt- und Kantenmengen (German), Ann. Univ. Sci. Budapest. Eôtvốs Sect. Math. 2 (1959) 133-138.
 [6] A. Kemnitz, M. Marangio, On the total chromatic edge stability number and the total chromatic subdivision number of graphs, Discrete Math. Lett. 10 (2022) 1-8.
 [7] A. Kemnitz, M. Marangio, On the ρ-edge stability number of graphs, Discuss. Math. Graph Theory 42 (2022) 249-262.
 [8] A. Kemnitz, M. Marangio, On the ρ-subdivision number of graphs, Discuss. Math. Graph Theory 43 (2023) 979-997.
 [9] A. Kemnitz, M. Marangio, On the vertex stability number of graphs, Submitted.
 [10] A. Kemnitz, M. Marangio, N. Movarraei, On the chromatic edge stability number of graphs, Graphs Combin. 34 (2018) 1539-1551.
 [11] W. Staton, Edge deletions and the chromatic number, Ars Combin. 10 (1980) 103-106.
 [12] J.-M. Xu, On bondage numbers of graphs: A survey with some comments, Int. J. Combin. 2013 (2013) \#595210.

