www.dmlett.com

Research Article

Generating trees for 0021-avoiding inversion sequences and a conjecture of Hong and Li

Toufik Mansour*
Department of Mathematics, University of Haifa, Haifa 3498838, Israel

(Received: 27 September 2022. Received in revised form: 19 December 2022. Accepted: 13 February 2023. Published online: 7 March 2023.)
(C) 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

An inversion sequence of length n is a word $e=e_{0} \cdots e_{n}$ which satisfies, for each $i \in[n]=\{0,1, \ldots, n\}$, the inequality $0 \leq e_{i} \leq i$. In this paper, by generating tree tools, an explicit formula is found for the generating function for the number of inversion sequences of length n that avoid 0021, which resolves the conjecture of Hong and Li posed in the recent paper [Electron. J. Combin. 29 (2022) \#4.37].

Keywords: inversion sequences; generating trees; 0021-avoiding inversion sequences.
2020 Mathematics Subject Classification: 05A05, 05A15.

1. Introduction

An inversion sequence [5,10] of length n is a word $e=e_{0} \cdots e_{n}$ which satisfies for each $i \in[n]=\{0,1, \ldots, n\}$ the inequality $0 \leq e_{i} \leq i$. The set of inversion sequences of length n is denoted by \mathbf{I}_{n}.

We say that a word $x=x_{1} \cdots x_{n}$ is order-isomorphic to a word $y=y_{1} \cdots y_{n}$ if for every pair of indices $i, j \in[n]$, we have $x_{i}<x_{j}$ if and only if $y_{i}<y_{j}$. We say that a word $w=w_{1} \cdots w_{n}$ contains a word $p=p_{1} \cdots p_{m}$ if w contains a (not necessarily consecutive) subsequence of length m which is order-isomorphic to p. Otherwise, we say that w avoids p. In such context, p is usually called a pattern. We denote the set of all inversion sequences in \mathbf{I}_{n} that avoid a pattern p by $\mathbf{I}_{n}(p)$.

The systematic study of pattern avoidance for inversion sequences is initiated around 2015 [5, 10]. Several aspects of pattern-avoidance for inversion sequences have been considered (for example, see [1-3,6-9,11-14] and references therein). Recently, Hong and Li [6] conjectured that the generating function $A(x)=\sum_{n \geq 0} \mathbf{I}_{n}(0021) x^{n+1}$ satisfies the relation

$$
(1-A(x))(1+A(x))^{2}=\frac{1}{1-x} .
$$

The aim of this paper is to prove this conjecture, namely, we aim to show the following result.
Theorem 1.1. The generating function $A(x)=\sum_{n \geq 0}\left|\mathbf{I}_{n}(0021)\right| x^{n+1}$ for the number of inversion sequences of length n that avoid 0021 satisfies

$$
(1-A(x))(1+A(x))^{2}=\frac{1}{1-x}
$$

Moreover,

$$
\begin{aligned}
A(x) & =\frac{4}{3} \sin \left(\frac{1}{3} \arccos \left(\frac{11+16 x}{16(1-x)}\right)+\frac{\pi}{6}\right)-\frac{1}{3} \\
& =x+2 x^{2}+6 x^{3}+23 x^{4}+101 x^{5}+480 x^{6}+2400 x^{7}+12434 x^{8}+66142 x^{9}+359112 x^{10} \\
& +1981904 x^{11}+11085198 x^{12}+62696874 x^{13}+357970472 x^{14}+2060459256 x^{15} \\
& +11943445311 x^{16}+69656978837 x^{17}+408466559630 x^{18}+2406825745010 x^{19} \\
& +14243262687023 x^{20}+\cdots .
\end{aligned}
$$

Note that the conjecture of Hong and Li has been simultaneously proved by Chern, Fu, and Lin [4]. Here, by using generating trees tools for the set of inversion sequences that avoid 0021 and then translating to generating functions, we obtain an explicit formula for the generating function $\sum_{n \geq 0} \mathbf{I}_{n}(0021) x^{n+1}$. We end the paper, by considering the generating function $\sum_{n \geq 0} \mathbf{I}_{n}(0011) x^{n+1}$.

[^0]
2. Proof of Theorem 1.1

Fix $\tau=0021$. As a first step, we recall the generating trees for pattern avoidance in inversion sequences as described in [12]. Let $\mathbf{I}=\cup_{n=0}^{\infty} \mathbf{I}_{n}(\tau)$. We will construct a pattern-avoidance tree \mathcal{T} for the class of pattern-avoiding inversion sequences \mathbf{I}. The root is 0 (inversion sequence with one letter), that is, $0 \in \mathcal{T}$. Starting with this root which stays at level 0 , the nodes at level $n+1$ of tree \mathcal{T} can be constructed from the nodes at level n such a way that the children of $e=e_{0} \cdots e_{n} \in \mathbf{I}_{n}(0021)$ are $e^{\prime}=e_{0} \cdots e_{n} j$ with $j=0,1, \ldots, n+1$ such that $e^{\prime} \in \mathbf{I}_{n+1}(0021)$.

Now, we relabel the vertices of the tree \mathcal{T} as follows. Define $\mathcal{T}(e)$ to be the subtree consisting of the inversion sequence e as the root and its descendants in \mathcal{T}. We say that e is equivalent to e^{\prime}, denoted by $e \sim e^{\prime}$, if and only if $\mathcal{T}(e) \cong \mathcal{T}\left(e^{\prime}\right)$ (in the sense of plain trees). Let \mathcal{T}^{\prime} be the same tree \mathcal{T} where we replace each node e by the first node $e^{\prime} \in \mathcal{T}$ from top to bottom and from left to right in \mathcal{T} such that $\mathcal{T}(e) \cong \mathcal{T}\left(e^{\prime}\right)$. For instance, $\mathcal{T}(001) \cong \mathcal{T}(000), \mathcal{T}(002) \cong \mathcal{T}(00)$, and $\mathcal{T}(010) \cong \mathcal{T}(000)$.

Lemma 2.1. The generating tree \mathcal{T}^{\prime} is given by root 0 and the following succession rules

$$
\begin{aligned}
r_{k} & \rightsquigarrow t_{0, k+2}, t_{1, k+1}, \ldots, t_{k, 2}, r_{k+1}, \quad k \geq 0, \\
t_{d, m} & \rightsquigarrow t_{0, m+d+1}, t_{1, m+d}, \ldots, t_{d, m+1}, t_{d, m+1}, t_{d, m}, \ldots, t_{d, 2}, \quad m \geq 2, d \geq 0,
\end{aligned}
$$

where $r_{k}=01 \cdots k$ and $t_{d, m}=01 \cdots(d-1) d^{m}$.
Proof. We label the inversion sequences $0 \in \mathbf{I}_{0}(0021)$ by r_{0}. Thus, $r_{0} \rightsquigarrow t_{0,2} r_{1}$. Thus, it remains to show that the rules are holding. By the definitions, the children of $r_{k} \in \mathbf{I}_{k}(0021)$ are $01 \cdots k 0,01 \cdots k 1, \cdots, 01 \cdots k k, 012 \cdots k(k+1)$. By reordering the letters of any inversion sequence $r_{k} \pi^{\prime} \in \mathbf{I}_{n}(0021)$, we have that $\mathcal{T}(01 \cdots k d) \cong \mathcal{T}\left(01 \cdots(d-1) d^{k+2-d}\right)$. Thus,

$$
r_{k} \rightsquigarrow t_{0, m+d+1}, t_{1, m+d}, \ldots, t_{d, m+1} t_{d, m+1}, t_{d, m}, \ldots, t_{d, 2},
$$

for all $d \geq 0$ and $m \geq 2$.
By the definitions, the children of $t_{d, m} \in \mathbf{I}_{m+d}(0021)$ are $t_{d, m} j$ with $0 \leq j \leq d+m$. By reordering the letters of any inversion sequence, we have that $\mathcal{T}\left(t_{d, m} j\right) \cong \mathcal{T}\left(t_{j, m+d+1-j}\right)$ whenever $j=0,1, \ldots, d$ and $\mathcal{T}\left(t_{d, m} j\right) \cong \mathcal{T}\left(t_{d, m+2+d-j}\right)$ whenever $j=d+1, \ldots, d+m$. Since similarity, let us explain only the case $j=d+m$ as follows. Let $d \geq 0, m \geq 2$, and let $\pi=01 \cdots(d-1) d^{m}(d+m) \pi^{\prime}$ to be any inversion sequence that avoids 0021 . Since the subword $d d(d+m)$ plays as 002 in 0021 , we have that π^{\prime} does not contain any letter between d and $d+m$. So by reducing the letters, we see that $\pi \in \mathbf{I}_{n}(0021)$ if and only if $01 \cdots(d-1) d^{2} \pi^{\prime \prime} \in \mathbf{I}_{n+1-m}(0021)$, where $\pi^{\prime \prime}$ obtain from π^{\prime} by subtracting $m-1$ from each letter greater than or equal to $d+m$ in π^{\prime}. Thus, $\mathcal{T}\left(t_{d, m}(d+m)\right) \cong \mathcal{T}\left(t_{d, 2}\right)$. Hence,

$$
t_{d, m} \rightsquigarrow t_{0, m+d+1}, t_{1, m+d}, \ldots, t_{d, m+1}, t_{d, m+1}, t_{d, m}, \ldots, t_{d, 2}, \quad m \geq 2, d \geq 0,
$$

which completes the proof.
To find an explicit formula for the generating function $A(x)=\sum_{n \geq 0}\left|\mathbf{I}_{n}(0021)\right| x^{n+1}$, we define $R_{k}(x)$ (respectively, $T_{d, m}(x)$) to be the generating function for the number of nodes at level $n \geq 1$ for the tree of $\mathcal{T}\left(r_{k}\right)$ (respectively, $\mathcal{T}\left(t_{d, m}\right)$), where its root stays at level 0 . Clearly, $A(x)=R_{0}(x)$. By Lemma 2.1, we have

$$
\begin{aligned}
R_{k}(x) & =x+x \sum_{j=0}^{k} T_{j, k+2-j}(x)+x R_{k+1}(x), \quad k \geq 0, \\
T_{d, m}(x) & =x+x \sum_{j=0}^{d} T_{j, d+m+1-j}(x)+x \sum_{j=2}^{m+1} T_{d, j}(x), \quad d \geq 0, m \geq 2 .
\end{aligned}
$$

Define $R(x, v)=\sum_{k \geq 0} R_{k}(x) v^{k}$ and $T(x, v, u)=\sum_{d \geq 0} \sum_{m \geq 2} T_{d, m}(x) v^{d} u^{m-2}$. Then, the recurrence relations can be written as

$$
\begin{aligned}
R(x, v) & =\frac{x}{1-v}+x T(x, v, v)+\frac{x}{v}(R(x, v)-R(x, 0)), \\
T(x, v, u) & =\frac{x}{(1-v)(1-u)}+\frac{x}{u-v}(T(x, v, u)-T(x, v, v))+\frac{x}{u(1-u)} T(x, v, u)-\frac{x}{u} T(x, v, 0) .
\end{aligned}
$$

In particular, by taking $v=x$, we obtain

$$
\begin{align*}
R(x, 0) & =\frac{x}{1-x}+x T(x, x, x) \tag{1}\\
\left(1-\frac{x}{u-x}-\frac{x}{u(1-u)}\right) T(x, x, u) & =\frac{x}{(1-x)(1-u)}-\frac{x}{u-x} T(x, x, x)-\frac{x}{u} T(x, x, 0) . \tag{2}
\end{align*}
$$

So, to complete the proof, we have to find an explicit formula for the generating function $T(x, x, x)$.
Let $K(u)=1-\frac{x}{u-x}-\frac{x}{u(1-u)}$ be the kernel of (2). For the kernel equation, namely $K(u)=0$, we have three roots

$$
\begin{equation*}
u_{j}(x)=2 \sqrt{Q} \cos \left(\frac{1}{3} \arccos \left(\frac{R}{Q \sqrt{Q}}\right)+\frac{2 \pi j}{3}\right)+\frac{1+2 x}{3}, \quad j=0,1,2, \tag{3}
\end{equation*}
$$

where

$$
Q=\frac{(1-x)(1-4 x)}{9} \quad \text { and } \quad R=\frac{(1-x)\left(2-13 x-16 x^{2}\right)}{54} .
$$

From now, we are interested in the roots

$$
\begin{aligned}
& u_{1}(x)=\frac{3-\sqrt{5}}{2} x+\frac{5-2 \sqrt{5}}{5} x^{2}+\left(\frac{7}{2}-\frac{77 \sqrt{5}}{50}\right) x^{3}+\left(\frac{29}{2}-\frac{1617 \sqrt{5}}{250}\right) x^{4}+\cdots \\
& u_{2}(x)=\frac{3+\sqrt{5}}{2} x+\frac{5+2 \sqrt{5}}{5} x^{2}+\left(\frac{7}{2}+\frac{77 \sqrt{5}}{50}\right) x^{3}+\left(\frac{29}{2}+\frac{1617 \sqrt{5}}{250}\right) x^{4}+\cdots
\end{aligned}
$$

By substituting $u=u_{1}(x)$ and $u=u_{2}(x)$ into (2), then solving the obtaining system of equations for $T(x, x, x)$ and $T(x, x, 0)$, we obtain

$$
\begin{align*}
T(x, x, 0) & =\frac{u_{1}(x) u_{2}(x)}{x\left(1-u_{1}(x)\right)\left(1-u_{2}(x)\right)} \tag{4}\\
& =x^{2}+4 x^{3}+16 x^{4}+70 x^{5}+330 x^{6}+1640 x^{7}+8461 x^{8}+\cdots, \\
T(x, x, x) & =-\frac{\left(u_{1}(x)-x\right)\left(u_{2}(x)-x\right)}{x(1-x)\left(1-u_{1}(x)\right)\left(1-u_{2}(x)\right)} \tag{5}\\
& =x+5 x^{2}+22 x^{3}+100 x^{4}+479 x^{5}+2399 x^{6}+12433 x^{7}+66141 x^{8}+\cdots
\end{align*}
$$

By (1), we have

$$
\begin{equation*}
R(x, 0)=\frac{x}{1-x}+x T(x, x, x) . \tag{6}
\end{equation*}
$$

Lemma 2.2. We have

$$
A(x)=R(x, 0)=\frac{x}{u_{0}(x)-x}=\frac{x}{2 \sqrt{Q} \cos \left(\frac{1}{3} \arccos \left(\frac{R}{Q \sqrt{Q}}\right)\right)+\frac{1-x}{3}}
$$

where

$$
Q=\frac{(1-x)(1-4 x)}{9} \quad \text { and } \quad R=\frac{(1-x)\left(2-13 x-16 x^{2}\right)}{54}
$$

Moreover, the generating function $A(x)$ satisfies that $(1-A(x))(1+A(x))^{2}=\frac{1}{1-x}$.
Proof. Since $u_{0}(x), u_{1}(x), u_{2}(x)$ are roots of $K(u)=0$ (see (3)), then we have $u_{1}(x)+u_{2}(x)=1+2 x-u_{0}(x)$ and $u_{1}(x) u_{2}(x)=$ $x^{2} / u_{0}(x)$. Hence, by (5), we have

$$
T(x, x, x)=\frac{1-u_{0}(x)}{(1-x)\left(u_{0}(x)-x\right)},
$$

which, by (6), implies

$$
A(x)=R(x, 0)=\frac{x}{u_{0}(x)-x} .
$$

Note that $K\left(u_{0}(x)\right)=0$ that is $u_{0}^{3}(x)-(1+2 x) u_{0}^{2}(x)+3 x u_{0}(x)-x^{2}=0$. Hence,

$$
\begin{aligned}
(1-A(x))(1+A(x))^{2} & =\frac{\left(u_{0}(x)-2 x\right) u_{0}^{2}(x)}{\left(u_{0}(x)-x\right)^{3}} \\
& =\frac{(1+2 x) u_{0}^{2}(x)-3 x u_{0}(x)+x^{2}-2 x u_{0}^{2}(x)}{(1+2 x) u_{0}^{2}(x)-3 x u_{0}(x)+x^{2}-3 x u_{0}^{2}(x)+3 x^{2} u_{0}(x)-x^{3}} \\
& =\frac{u_{0}^{2}(x)-3 x u_{0}(x)+x^{2}}{(1-x)\left(u_{0}^{2}(x)-3 x u_{0}(x)+x^{2}\right)} \\
& =\frac{1}{1-x},
\end{aligned}
$$

which completes the proof.

By Lemma 2.2, we see that the generating function $A(x)$ satisfies

$$
A^{3}(x)+A^{2}(x)-A(x)+\frac{1}{1-x}=0 .
$$

Note that for this equation there are three roots

$$
a_{j}=\frac{4}{3} \cos \left(\frac{1}{3} \arccos \left(\frac{11+16 x}{16(-1+x)}\right)+\frac{2 \pi j}{3}\right)-\frac{1}{3} .
$$

Since $A(x)$ is a power series with positive coefficients, we have that

$$
A(x)=a_{3}=\frac{4}{3} \sin \left(\frac{1}{3} \arccos \left(\frac{11+16 x}{16(1-x)}\right)+\frac{\pi}{6}\right)-\frac{1}{3},
$$

which completes the proof of Theorem 1.1.

3. Further results

Similarly, as in the proof of Lemma 2.1, we have the following result for the set of inversion sequences in $\mathbf{I}_{n}(0011)$.
Lemma 3.1. The generating tree \mathcal{T}^{\prime} is given by root 0 and the following succession rules

$$
\begin{aligned}
r_{k} & \rightsquigarrow t_{0, k+2} t_{1, k+1} \cdots t_{k, 2} r_{k+1}, \quad k \geq 0, \\
t_{d, m} & \rightsquigarrow t_{0, m+d+1} t_{1, m+d} \cdots t_{d, m+1}\left(t_{d, m}\right)^{m}, \quad m \geq 2, d \geq 0,
\end{aligned}
$$

where $r_{k}=01 \cdots k, t_{d, m}=01 \cdots(d-1) d^{m}$, and $t_{d, m}^{m}=\underbrace{t_{d, m}, \ldots, t_{d, m}}_{m \text { times }}$.
Define $R_{k}(x)$ (respectively, $T_{d, m}(x)$) to be the generating function for the number of nodes at level $n \geq 1$ for the tree of $\mathcal{T}\left(r_{k}\right)$ (respectively, $\mathcal{T}\left(t_{d, m}\right)$), where its root stays at level 1. By Lemma 3.1, we have

$$
\begin{aligned}
R_{k}(x) & =x+x \sum_{j=0}^{k} T_{j, k+2-j}(x)+x R_{k+1}(x), \quad k \geq 0 \\
T_{d, m}(x) & =x+x \sum_{j=0}^{d} T_{j, d+m+1-j}(x)+m x T_{d, m}(x), \quad d \geq 0, m \geq 2 .
\end{aligned}
$$

Define $R(x, v)=\sum_{k \geq 0} R_{k}(x) v^{k}$ and $T(x, v, u)=\sum_{d \geq 0} \sum_{m \geq 2} T_{d, m}(x) v^{d} u^{m-2}$. Then, the above recurrence relations can be written as

$$
\begin{aligned}
R(x, v) & =\frac{x}{1-v}+x T(x, v, v)+\frac{x}{v}(R(x, v)-R(x, 0)) \\
T(x, v, u) & =\frac{x}{(1-v)(1-u)}+\frac{x}{u-v}(T(x, v, u)-T(x, v, v))+u x \frac{\partial}{\partial u} T(x, v, u)+2 x T(x, v, u) .
\end{aligned}
$$

We failed to obtain an explicit formula for $R(x, 0)$ from this system of equations, but we still can use this system to generate easily the coefficients of $R(x, 0)$. For instance, we have

$$
\begin{aligned}
R(x, 0) & =x+2 x^{2}+6 x^{3}+22 x^{4}+92 x^{5}+428 x^{6}+2184 x^{7}+12096 x^{8}+72104 x^{9}+459440 x^{10} \\
& +3111616 x^{11}+22292592 x^{12}+168263312 x^{13}+1333377904 x^{14}+11059335280 x^{15} \\
& +95753379216 x^{16}+863373139824 x^{17}+8089902823120 x^{18}+78625465178608 x^{19} \\
& +791248858589264 x^{20}+\cdots .
\end{aligned}
$$

References

[1] J. S. Auli, S. Elizalde, Wilf equivalences between vincular patterns in inversion sequences, Appl. Math. Comput. 388 (2021) \#125514.
[2] D. Callan, T. Mansour, Restricted inversion sequences and Schröder paths, Quaest. Math., DOI: 10.2989/16073606.2022.2152399, In press.
[3] S. Chern, On 0012-avoiding inversion sequences and a Conjecture of Lin and Ma, Quaest. Math., DOI: 10.2989/16073606.2022.2039973, In press.
[4] S. Chern, S. Fu, Z. Lin, Burstein's permutation conjecture, Hong and Li's inversion sequence conjecture, and restricted Eulerian distributions, arXiv:2209.12137.
[5] S. Corteel, M. Martinez, C. D. Savage, M. Weselcouch, Patterns in inversion sequences I, Discrete Math. Theor. Comput. Sci. 18 (2016) \#2.
[6] L. Hong, R. Li, Length-four pattern avoidance in inversion sequences, Electron. J. Combin. 29 (2022) \#4.37.
[7] Z. Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, European J. Combin. 70 (2018) 202-211.
[8] Z. Lin, S. H. F. Yan, Vincular patterns in inversion sequences, Appl. Math. Comput. 364 (2020) \#124672.
[9] Z. Lin, S. Fu, On 120-avoiding inversion and ascent sequences, European J. Combin. 93 (2021) \#103282.
[10] T. Mansour, M. Shattuck, Pattern avoidance in inversion sequences, Pure Math. Appl. 25 (2015) 157-176.
[11] T. Mansour, M. Shattuck, Further enumeration results concerning a recent equivalence of restricted inversion sequences, Discrete Math. Theor. Comp. Sci. 24 (2022) \#4.
[12] T. Mansour, G. Yıldırım, An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences, arXiv:2210.04489 [math.CO], (2022).
[13] M. A. Martinez, C. D. Savage, Patterns in inversion sequences II: inversion sequences avoiding triples of relations, J. Integer Seq. 21 (2018) \#18.2.2.
[14] C. Yan, Z. Lin, Inversion sequences avoiding pairs of patterns, Discrete Math. Theor. Comput. Sci. 22 (2020) \#23.

[^0]: *E-mail address: tmansour@univ.haifa.ac.il

