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Abstract
A weak-friendship graph is a connected induced subgraph of a friendship graph. The unique graphs attaining the first two
smallest eccentricity spread in the class of weak-friendship graphs of given order are determined in this paper.
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1. Introduction

Let G = (VG, EG) be a graph with order n = |VG| and size m = |EG|, and let M(G) be a corresponding n×n real symmetric
or Hermitian complex matrix defined in a prescribed way. TheM -spectrum ofG is the multiset spM (G) consisting of theM -
eigenvalues λM1 (G) > · · · > λMn (G) of M(G), i.e. the roots of the M -characteristic polynomial pM (G, x) := det(xIn −M(G)).
The M -spread of G is defined as

SM (G) := λM1 (G)− λMn (G).

This algebraic invariant has applications in combinatorial optimization problems (see for instance [7]).
The distance between two vertices u and v of VG, i.e. the minimum length of the paths joining them, is denoted by

dG(u, v). Let D(G) = (duv) be the distance matrix of G, where duv = dG(u, v). The eccentricity eG(u) of a vertex u ∈ VG is
given by eG(u) = max{duv | v ∈ VG}. The distance spread SD(G) is also known as the spectral diameter of the distance
matrix of G, and it is used as a molecular descriptor in chemoinformatics (see, e.g., [5,9]).

The matrix E(G) = (εuv), where

εuv =

 dG(u, v) if dG(u, v) = min{eG(u), eG(v)},

0 otherwise,

is known as the eccentricity matrix of G (see for instances [10, 11, 17, 22–26]). The matrix E(G) can be obtained from the
distance matrix D(G) by retaining the largest distances in each row and each column and replacing the remaining entries
with zeros. The locutions DMAX matrix and anti-adjacency matrix are alternative names assigned in the literature to
E(G). For the eigenvalue λEi (G) we adopt the lighter notation λi(G).

We recall that the friendship graph with 2p+1 vertices is the graph with 3p edges consisting of p(> 1) disjoint triangles
that meet in one vertex. Following [20], a weak-friendship graph is a connected induced subgraph of a friendship graph.
Weak-friendship graphs are also known as butterfly-graphs [1, 21]. They are a peculiar type of bundles (i.e. cacti whose
cycles all have a common vertex), firefly graphs [1] and butterfly-like graphs [16].

Let n be a positive integer. For 0 6 k 6
⌊
n−1
2

⌋
, we denote by WFn,k the (unique) weak-friendship graph with n vertices

and k triangles. Alternatively, WFn,k can be described as the graph obtained fron the starK1,n−1 with n vertices by adding
k independent edges, or as the join between P1 and kP2 ∪ (n− 2k − 1)P1 (see Fig. 1). We set

WFn :=

{
WFn,k

∣∣∣ 0 6 k 6 ⌊n− 1

2

⌋}
and WF :=

⋃
n∈N
WFn.

One of the reasons making the graphs in WF quite interesting is that specific weak-friendship graphs turned out to be
extremal with respect to several and very different spectral invariants (see, for instance, [1–3,6,8,12,13,19]).
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k triangles

n− 2k − 1

Figure 1: The weak friendship graph WFn,k.

As usual, we respectively denote by Pn and by Cn (if n > 3) the path and the cycle with n vertices. Let H be an induced
subgraph of a graph G. Unlike what happens for other well-studied graph matrices, for M ∈ {D, E} the M -eigenvalues of
H and G are not necessarily interlaced and it may happen that SM (H) > SM (G). For instance,

SD(P5) ≈ 13.52492 > SD(C6) = 13, and SE(P5) ≈ 12.1882 > SE(C6) = 6.

Nevertheless, there are many results about the distance eigenvalues and the distance spread [3,4,14,15,18,27,28], whereas
the literature on the eccentricity spread is still scarce. In this paper, we determine the unique graphs with the first two
smallest eccentricity spreads inWFn.

2. The least eccentricity eigenvalue

Throughout the paper, we assume that the vertices in VWFn,k
= {v1, . . . , vn} have been labelled in such a way that v1 is the

unique dominating vertex, and v2i is adjacent to v2i+1 for 1 6 i 6 k.
Let Mm×n be the set of real matrices with m rows and n columns. In order to write down the eccentricity matrix of

WFn,k, we adopt the following standard notation: Jn×m ∈Mm×n and On×m ∈Mm×n are the all-ones matrix and the zero
matrix respectively. We also set Jn = Jn×n, On = On×n, (J−I)n = Jn−In and 1n = Jn×1. We also recall that the Kronecker
product R⊗ S of R = (rij) ∈Mm×n and S = (Shk) ∈Mp×q is the mp× nq matrix obtained from R by replacing each entry
rij of R with rijS.

It is somehow instructive to check that

E(WF6,2) =



0 1 1 1 1 1

1 0 0 2 2 2

1 0 0 2 2 2

1 2 2 0 0 2

1 2 2 0 0 2

1 2 2 2 2 0


.

More generally,

E(WFn,k) =

 0 1T
2k 1T

n−2k−1

12k 2 (J2k − Ik ⊗ J2) 2J2k×(n−2k−1)

1n−2k−1 2J(n−2k−1)×2k 2(J − I)n−2k−1

 for n− 2k − 1 > 0. (1)

Instead, the eccentricity matrix of the friendship graph WF2k+1,k consists of the upper-left 2× 2 block matrix in (1).
Along the proof of Proposition 2.1, whose techniques resemble those adopted to prove Lemma 2.3 in [13], we make use

of the well-known Schur formula for computing the determinant of a 2×2-block matrix: ifQ is an invertible square matrix,
then

det

[
M N
P Q

]
= detQ · det

[
M −NQ−1P

]
. (2)

Additionally, we use the symbols κi  κi + qκj (respectively, κi  κi + qκj) to denote the operation consisting in adding
q-times the j-th row (respectively, j-th column) of a matrix to its i-th row (respectively, i-th column).

Proposition 2.1. For n > 5 and 2 6 k 6
n− 1

2
, λn(WFn,k) = −4.

Proof. We split the proof in two cases, dealing first with the case n− 2k − 1 > 0.
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Case 1: 2 6 k < (n− 1)/2. From (1) we obtain

pE(WFn,k, x) = det

 x −1T
2k −1T

n−2k−1
−12k Ik ⊗ (2J2 + xI2)− 2J2k −2J2k×(n−2k−1)

−1n−2k−1 −2J(n−2k−1)×2k (x+ 2)In−2k−1 − 2Jn−2k−1


If we perform the operations κi  κi − 2κ1, for 2 6 i 6 n, on the lines of the matrix xIn − E(WFn,k), followed by κ2i+1  

κ2i+1 − κ2i, for 1 6 i 6 k, and finally κ2i  κ2i + κ2i+1, for 1 6 i 6 k, we arrive at

pE(WFn,k, x) = det

 x −1T
k ⊗A −1T

n−2k−1
−1k ⊗B Ik ⊗ C O2k×(n−2k−1)

−(2x+ 1)1n−2k−1 O(n−2k−1)×2k (x+ 2)In−2k−1

 ,
where

A =
[
2 1

]
, B =

[
2x+ 1

0

]
and C =

[
x+ 4 2
0 x

]
.

We now set
M =

[
x −1T

k ⊗A
−1k ⊗B Ik ⊗ C

]
, N =

[
−1T

n−2k−1
O2k×(n−2k−1)

]
,

P =
[
−(2x+ 1)1n−2k−1 O(n−2k−1)×2k

]
and Q = (x+ 2)In−2k−1.

Since

NQ−1P =

[
(n−2k−1)(2x+1)

x+2 O1×2k

O2k×1 O2k

]
,

we can write
det(M −NQ−1P ) = det

[
x− (n−2k−1)(2x+1)

x+2 −1T
k ⊗A

−12k ⊗B 12k ⊗ C

]

= xk(x+ 4)k−1
(
x(x+ 4)− (n− 2k − 1)(x+ 4)(2x+ 1)

x+ 2
− 2k(2x+ 1)

)
.

Therefore, using (2),
pE(WFn,k, x) = detQ · det(M −NQ−1P )

= (x+ 2)n−2k−2 · xk · (x+ 4)k−1 · qn,k(x),
(3)

where
qn,k(x) = x3 − 2(n− 4)x2 − (9n− 8k − 17)x− 4(n− k − 1). (4)

Let x1 > x2 > x3 be the three roots of qn,k(x). Since n > 2k + 1 and k > 2, we have

qn,k(2n) = 2(7n2 + 8nk + 15n+ 2k + 2) > 0,

qn,k(0) = −4(n− k − 1) < 0,

qn,k(−1) = 3n− 4k − 6 > 3(2k + 2)− 4k − 6 = 2k > 0,

qn,k(−2) = 6(n− 2k − 1) > 0,

qn,k(−4) = −28k < 0.

It follows that x1 ∈ (0, 2n), x2 ∈ (−1, 0) and x3 ∈ (−4,−2); moreover, from (3), we deduce that E(WFn,k) has six pairwise
distinct eigenvalues, namely x1 > 0 > x2 > −2 > x3 > −4. Hence, λn(WFn,k) = −4.
Case 2: k = (n− 1)/2. We are now dealing with the friendship graph WF2k+1,k, whose E-characteristic polynomial is

pE(WF2k+1,k, x) = det

[
x −1T

2k

−12k Ik ⊗ (2J2 + xI2)− 2J2k

]
= xk · (x+ 4)k−1 · rk(x),

where rk(x) = x2 − 4(k − 1)x− 2k. Let x1 > x2 be the two roots of rk(x). Note that

rk(4k) = 14k > 0, rk(0) = −2k < 0, and rk(−1) = 2k − 3 > 0 (since k > 2).

Thus, x1 ∈ (0, 4k) and x2 ∈ (−1, 0). This time, the pairwise distinct eccentricity eigenvalues of WFn,k are x1 > 0 > x2 > −4,
implying that the least eccentricity eigenvalue λ2k+1(WF2k+1,k) is −4 as in the previous case.
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By gathering the spectral results achieved along the proof of Proposition 2.1, we can easily prove Propositions 2.2
and 2.3. The statement of the latter involves the polynomials

fn(x) = x3 − 2(n− 4)x2 − (5n− 9)x− 2n and gn(x) = x2 − 2(n− 3)x− (n− 1), (5)

defined for every n ∈ N.

Proposition 2.2. Let n > 7 and 2 6 k < (n − 1)/2. λ1(WFn,k) is the unique positive root of the polynomial qn,k(x) in (4).
Moreover, λ1(WFn,k) < 2n.

Proposition 2.3. Let n > 5.

(i) If n is even, λ1(WFn,n2−1) is the largest root of the polynomial fn(x) in (5);

(ii) If n is odd, λ1(WFn,n−1
2

) is equal to n− 3 +
√
n2 − 5n+ 8, the positive root of the polynomial gn(x) in (5);

(iii) pE(WFn,1, x) = x(x+ 2)n−4hn(x), where hn(x) = x3 − 2(n− 4)x2 − (9n− 25)x− 4(n− 2).

3. Weak friendship graphs with minimum eccentricity spread

Lemma 3.1. [29, Theorem 3.9] Let G be a tree of order n > 3. Then, SD(G) ≥ n+
√
n2 − 3n+ 3, with equality if and only

if G ∼= WFn,0 = K1,n−1.

Actually, the restriction n > 3 is absent both in [29, Theorem 3.9] and [13, Lemma 2.1]. Yet, it is clear that SD(WF1,0) =

0 and SD(WF2,0) = 2; in fact, the proof of [29, Theorem 3.9] uses the fact that −2 is the least distance eigenvalue of WFn,0,
and this is only true for n > 3.

Proposition 3.1. For n > 5, SE(WFn,0) < SE(WFn,bn−1
2 c

).

Proof. Since n > 5 and D(K1,n−1) = E(K1,n−1), by Proposition 2.1 and Lemma 3.1 we have

λn

(
WFn,bn−1

2 c

)
= −4 and SE(WFn,0) = n+

√
n2 − 3n+ 3.

To prove the result, we only need to show that λ1 > ξn, where

λ1 := λ1

(
WFn,bn−1

2 c

)
and ξn := n− 4 +

√
n2 − 3n+ 3.

We distinguish two cases depending on the parity of n.
Case 1: n is even. In this case n > 6 and, consequently, ξn > 6. By Proposition 2.3(i), λ1 is the largest root of fn(x) in (5).
One verifies that fn(ξn) = −2(n+ 2ξn) < 0; therefore, λ1 > ξn.
Case 2: n is odd. Since we are assuming n > 5, then ξn > 4. By Proposition 2.3(ii), λ1 is the largest root of gn(x) in (5). Now
g(ξn) = −2(6− 2n+ ξ) < −2(10− 2n) 6 0, implying λ1 > ξn, as claimed.

Proposition 3.2. For n > 5, SE(WFn,bn−1
2 c

) < SE(WFn,1).

Proof. The claimed inequality holds for n ∈ {5, 6, 7, 8}; in fact, by a direct computation,

SE(WF5,2) ≈ 8.8284 < 8.9484 ≈ SE(WF5,1), SE(WF6,2) ≈ 11.1648 < 11.2245 ≈ SE(WF6,1),

SE(WF7,3) ≈ 12.6904 < 12 +
√
2 = SE(WF7,1), SE(WF8,3) ≈ 14.9613 < 15.5534 ≈ SE(WF8,1).

Suppose now n > 9. The E-characteristic polynomial of WFn,1 can be read in Proposition 2.3(iii). We consider the following
evaluations:

hn(2n− 3) = 2n2 + 13n− 22 > 0, hn(−2) = 6(n− 3) > 0,

hn(2n− 4) = −2(n− 2)(n− 7) < 0, hn (−7/2) =
3

8
(8n− 65) > 0

hn(0) = 8− 4n < 0, hn(−4) = −28 < 0.

(6)

Denoted by x1 > x2 > x3 the three roots of hn(x), from (6) one deduces x1 ∈ (2n−4, 2n−3), x2 ∈ (−2, 0) and x3 ∈ (−4,−7/2);
we also see that spE(WFn,1) has five pairwise distinct eigenvalues, namely x3,−2, x2, 0 and x1, implying −4 < λn(WFn,1) <

−7/2, and SE(WFn,1) > µ1 + 7/2, where µ1 := λ1(WFn,1).
By Proposition 2.1, we have λn(WFn,k) = −4. In order to finish the proof, it will be enough to prove the inequality

λ1 := λ1

(
WFn,bn−1

2 c

)
< µ1 −

1

2
. (7)
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Case 1: n is even (and > 10). Recall that λ1 is the largest root of fn(x) in (5) by Proposition 2.3. If we show that fn(µ1−1/2)

is positive, Inequality (7) will be proved. We set

ζ(x) := f

(
x− 1

2

)
= x3 +

4(13− 4n)x2 + 2(7− 12n)x− 21

8
.

Since the first derivative ζ ′(x) is quadratic and has just one positive root, a standard calculus argument based on the
positivity of ζ ′(2n − 4) = 4n2 − 9n − 9/4 shows that the function ζ(x) is strictly increasing in the interval (2n − 4,+∞).
Hence,

f

(
µ1 −

1

2

)
= ζ(µ1) > ζ(2n− 4) = f

(
2n− 9

2

)
= 4n2 − 49

2
n+

243

8
> 0,

as claimed.

Case 2: n is odd (and > 9). This time, by Proposition 2.3(ii), λ1 is the largest root of gn(x) in (5). Similarly to the previous
case, we consider the function

ϑ(x) = gn

(
x− 1

2

)
= x2 − (2n− 5)x− 7

4
.

from ϑ′(2n−4) = 2n−3 > 0 we deduce that the function ϑ(x) is strictly increasing in the interval (2n−4, 2n−3). Therefore,

gn

(
µ1 −

1

2

)
= ϑ(µ1) > ϑ(2n− 4) = gn

(
2n− 9

2

)
= 2n− 23

4
> 0,

proving that µ1 − 1/2 is larger than λ1, the only positive root of gn(x).Thus, (7) is proved and the proof is over.

Theorem 3.1. SE(WFn,k) < SE(WFn,k−1) for all n > 7 and 3 6 k 6

⌊
n− 1

2

⌋
.

Proof. Since, by Proposition 2.1, λn(WFn,k) = −4, it will suffice to prove the inequality

λ1(WFn,k) < λ1(WFn,k−1) for n > 7 and 3 6 k 6

⌊
n− 1

2

⌋
. (8)

We distinguish two cases depending whether WFn,k is a friendship graph or not.

Case 1: n is odd and k =
n− 1

2
. By Propositions 2.2 and 2.3, we have

λ1(WFn,k) = n− 3 +
√
n2 − 5n+ 8,

and λ1(WFn,k−1) is the only positive root of the polynomial qn,n−3
2

(x) defined in (4). Inequality (8) comes from

qn,n−3
2

(
n− 3 +

√
n2 − 5n+ 8

)
= −4

(
2n− 5 + 2

√
n2 − 5n+ 8

)
< 0.

Case 2: 3 6 k < (n− 1)/2. Let qn,k(x) be polynomial defined in (4). We immediately see that

qx,k(x)− qx,k−1(x) = 4(2x+ 1) > 0 for x > 0. (9)

From (9) and Proposition 2.2 we obtain (8) as wanted.

We are now ready to detect the E-spread minimizers inWFn.

Theorem 3.2. For all n ∈ N \ {4}, WFn,0 is the only graph inWFn attaining the minimum E-spread.

Proof. SinceWF1 andWF2 are singletons, the first nontrivial case occurs for n = 3. Clearly,WF3 = {P3, C3}, and

SE(WF3,0) = SE(P3) = 2
√
2 < 3 = SE(C3) = SE(WF3,1).

From Lemma 2.1 and a direct computation, we see that WF4,0 does not attain the minimum E-spread ofWF4. In fact, the
cardinality ofWF4 is 2, and

SE(WF4,0) = 4 +
√
7 ≈ 6.6457 > 6.4982 ≈ SE(WF4,1).

The setsWF5 andWF6 both contains three weak friendship graphs. By Propositions 3.1 and 3.2

SE(WF5,0) < SE(WF5,2) < SE(WF5,1) and SE(WF6,0) < SE(WF6,2) < SE(WF6,1).

Let now n > 7. Using Proposition 3.1 and Theorem 3.1, we arrive at

SE(WFn,0) < SE(WFn,bn−1
2 c

) < SE(WFn,bn−1
2 c−1

) < · · · < SE(WFn,3) < SE(WFn,2).

The proof ends by combining the above inequalities with SE(WFn,bn−1
2 c

) < SE(WFn,1), coming from Proposition 3.2.

The results achieved along the proof in Theorem 3.2 lead to the following theorem.

Theorem 3.3. For n = 3 or n > 5, WFn,bn−1
2 c

is the unique graph inWFn attaining the second smallest E-spread.
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4. Conclusions

In this paper we have proved that for n > 5, the graphs WFn,0 and WFn,bn−1
2 c

respectively attain the smallest and the
second smallest E-spread in the set WFn containing the weak friendship graphs with n vertices. Let Bn (respectively,
Cn) be the set of bundles (respectively, cacti graph) with n vertices. In Section 1, we already noted that the sequence of
inclusionsWFn ⊆ Bn ⊆ Cn holds. By comparing SE(WFn,0) = n+

√
n2 − 3n+ 3 with

SE(Cn) =


n if n is even;

4 + 2k cos

(
π

2k + 1

)
if n is odd and k = (n− 1)/2

(computed with the aid of [24, Theorem 3.2]), we observe that for n > 5, in both Bn and Cn the weak fiendship graph WFn,0

does not attain the minimum E-spread; in fact, SE(WFn,0) > SE(Cn). For this reason, we end this paper by proposing the
following problem (which actually comprises six interrelated issues):

Problem 4.1. For n > 5, find the graphs attaining the minimum and the maximum E-spread in Bn, Cn, Bn \ {Cn} and
Cn \ {Cn}.
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