Research Article

Hagen-Rothe convolution identities through Lagrange interpolations

Wenchang Chu ${ }^{1,2, *}$
${ }^{1}$ School of Mathematics and Statistics, Zhoukou Normal University, Henan, China
${ }^{2}$ Department of Mathematics and Physics, University of Salento, Lecce, Italy

(Received: 8 November 2022. Received in revised form: 26 January 2023. Accepted: 3 February 2023. Published online: 3 March 2023.)
(c) 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

New proofs of Hagen-Rothe identities concerning binomial convolutions are presented through Lagrange interpolations.

Keywords: Chu-Vandermonde formula; Hagen-Rothe identities; finite difference; Lagrange interpolation.
2020 Mathematics Subject Classification: 05A10, 11B65.

1. Introduction and Outline

The Chu-Vandermonde convolution formula is one of the most popular binomial identities:

$$
\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}=\binom{x+y}{n}
$$

Three classical generalizations of this formula can be reproduced as follows:

$$
\begin{align*}
& \sum_{k=0}^{n} \frac{x}{x+k \lambda}\binom{x+k \lambda}{k}\binom{y-k \lambda}{n-k}=\binom{x+y}{n} \tag{1}\\
& \sum_{k=0}^{n} \frac{x}{x+k \lambda}\binom{x+k \lambda}{k} \frac{y-n \lambda}{y-k \lambda}\binom{y-k \lambda}{n-k}=\frac{x+y-n \lambda}{x+y}\binom{x+y}{n} \tag{2}\\
& \sum_{k=0}^{n}\binom{x+k \lambda}{k}\binom{y-k \lambda}{n-k}=\sum_{\ell=0}^{n}\binom{x+y-\ell}{n-\ell} \lambda^{\ell} \tag{3}
\end{align*}
$$

The first two were discovered by Hagen and Rothe (cf. Comtet [10, §3.1] and Graham et al. [14, §5.4]), while the third identity is due to Jensen [15]. Their limiting cases result in the well-known Abel identities (cf. [1, 8]). When $\lambda=0$, all of them become the Chu-Vandermonde formula. Analogously for $\lambda=1$, it is routine to check that the corresponding formulae are equivalent to the Chu-Vandermonde formula.

These convolution identities have wide applications to enumerative combinatorics and number theory. The reader can refer to Strehl [20] for a historical note. The typical proofs for these convolution identities are highlighted as follows:

- Generating function method: Gould $[12,13]$ (see Chu [3] also).
- Series rearrangement and finite differences: Chu [7].
- Gould-Hsu inverse series relations: Chu and Hsu [2,9].
- The classical Lagrange expansion formula: Riordan [18, §4.5].
- The Cauchy residue method of integral representation: Egorychev [11, §2.1].
- Lattice path combinatorics: Mohanty [16, §4.5] and Narayana [17, Appendix].
- Riordan arrays (equivalent to the Lagrange expansion formula): Sprugnoli [19].

[^0]The objective of this article is to present proofs of Identities (1), (2), and (3), by means of Lagrange interpolations and finite difference method. Let Δ be the difference operator with unit increment

$$
\Delta^{0} f(x):=f(x) \quad \text { and } \quad \Delta f(x):=f(x+1)-f(x) .
$$

For a natural number n, the differences of order n is given by

$$
\Delta^{n} f(x):=\Delta\left\{\Delta^{n-1} f(x)\right\},
$$

which is expressed by the following Newton-Gregory formula

$$
\Delta^{n} f(x)=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} f(x+k) .
$$

For an indeterminate x and an integer n, recall that the Pochhammer symbol $(x)_{n}$ is defined by

$$
(x)_{n}= \begin{cases}x(x+1) \cdots(x+n-1), & n=1,2, \cdots \\ 1, & n=0 \\ \frac{1}{(x-1)(x-2) \cdots(x+n)}, & n=-1,-2, \cdots\end{cases}
$$

When $p_{m}(x)$ is a polynomial of degree $m \leq n$ with the leading coefficient c_{m}, the following properties (cf. [4-6,8]) are quite useful:

$$
\Delta^{n} p_{m}(x)=n!c_{n} \chi(m=n) \quad \text { and } \quad \Delta^{n} \frac{p_{m}(x)}{x-\tau}=(-1)^{n} \frac{n!p_{m}(\tau)}{(x-\tau)_{n+1}}
$$

where χ stands for the logical function with $\chi($ true $)=1$ and $\chi($ false $)=0$. The former equality is well-known. The latter can be justified easily as follows. First when $p_{m}(x) \equiv 1$, it is trivial to check it by the induction principle. Observing that $\frac{p_{m}(x)-p_{m}(\tau)}{x-\tau}$ is a polynomial of degree $m-1$ with its nth difference equal to zero, we have immediately

$$
\Delta^{n} \frac{p_{m}(x)}{x-\tau}=\Delta^{n} \frac{p_{m}(\tau)}{x-\tau}=(-1)^{n} \frac{n!p_{m}(\tau)}{(x-\tau)_{n+1}}
$$

In addition, we fix $\Delta_{0}^{n} f(x)=\left.\Delta^{n} f(x)\right|_{x=0}$ for the differences starting at $x=0$.

2. Proofs of three formulae

Now, we are in a position to present detailed proofs for the three identities announced in the introduction. To be precise, we assume that λ is a variable subject to $\lambda \neq 1$ throughout this section, even though three identities (1), (2) and (3) are also valid in this case as declared in the introduction.

Proof of Identity (1)

Denote by $\mathcal{P}(x)$ the binomial sum in (1), which is obviously a polynomial of degree n. Its value at $x=m-y$ can be reformulated as

$$
\begin{aligned}
\mathcal{P}(m-y) & =\sum_{k=0}^{n} \frac{m-y}{m-y+k \lambda}\binom{m-y+k \lambda}{k}\binom{y-k \lambda}{n-k} \\
& =\frac{m-y}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(1+m-k+k \lambda-y)_{k-1}(k \lambda-y)_{n-k} .
\end{aligned}
$$

By making use of the two equalities

$$
\begin{aligned}
& (k \lambda-y)_{n-k}=(k \lambda-y)_{1+m-k}(1+m-k+k \lambda-y)_{n-m-1}, \\
& (k \lambda-y)_{1+m-k}(1+m-k+k \lambda-y)_{k-1}=(k \lambda-y)_{m}
\end{aligned}
$$

we have the following alternative expression

$$
\mathcal{P}(m-y)=\frac{m-y}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(k \lambda-y)_{m}(1+m-k+k \lambda-y)_{n-m-1} .
$$

Then $\mathcal{P}(m-y)$ vanishes for $0 \leq m<n$, because it results in the nth difference of the polynomial $(x \lambda-y)_{m}(1+m-x-y+$ $x \lambda)_{n-m-1}$ of degree $n-1$. When $m=n$, we can evaluate

$$
\begin{aligned}
\mathcal{P}(n-y) & =\frac{n-y}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{(k \lambda-y)_{n}}{n-k-y+k \lambda} \\
& =\frac{n-y}{n!} \Delta_{0}^{n} \frac{(x \lambda-y)_{n}}{n-x-y+x \lambda} \\
& =\frac{n-y}{n!(\lambda-1)} \Delta_{0}^{n} \frac{\left(\frac{y-n \lambda}{\lambda-1}\right)_{n}}{x-\frac{y-n}{\lambda-1}} \\
& =(-1)^{n} \frac{n-y}{\lambda-1} \frac{\left(\frac{y-n \lambda}{\lambda-1}\right)_{n}}{\left(-\frac{y-n}{\lambda-1}\right)_{n+1}}=1 .
\end{aligned}
$$

Therefore, the first convolution identity (1) follows from the Lagrange polynomial of $\mathcal{P}(x)$ for the interpolation points $\left\{x_{m}:=m-y\right\}_{m=0}^{n}$, which contains the only surviving term with $m=n$:

$$
\mathcal{P}(x)=\sum_{m=0}^{n} \mathcal{P}\left(x_{m}\right) \prod_{\substack{\ell=0 \\ \ell \neq m}}^{n} \frac{x-x_{\ell}}{x_{m}-x_{\ell}}=\binom{x+y}{n}
$$

Proof of Identity (2)

Let $\mathcal{Q}(x)$ be the binomial sum in (2), which is again a polynomial of degree n. Its value at $x=m-y$ reads as

$$
\begin{aligned}
\mathcal{Q}(m-y) & =\sum_{k=0}^{n} \frac{m-y}{m-y+k \lambda}\binom{m-y+k \lambda}{k} \frac{y-n \lambda}{y-k \lambda}\binom{y-k \lambda}{n-k} \\
& =\frac{(y-m)(y-n \lambda)}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(1+m-k+k \lambda-y)_{k-1}(1+k \lambda-y)_{n-k-1} \\
& =\frac{(y-m)(y-n \lambda)}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(1+k \lambda-y)_{m-1}(1+m-k+k \lambda-y)_{n-m-1} .
\end{aligned}
$$

For $1 \leq m<n$, it is clear that $\mathcal{Q}(m-y)$ vanishes because it results in the nth difference of the polynomial $(1-y+x \lambda)_{m-1}(1+$ $m-x-y+x \lambda)_{n-m-1}$ of degree $n-2$. In addition, we can further evaluate

$$
\begin{aligned}
\mathcal{Q}(0-y) & =\frac{y(y-n \lambda)}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{(1-k-y+k \lambda)_{n-1}}{k \lambda-y} . \\
& =\frac{y(y-n \lambda)}{n!} \Delta_{0}^{n} \frac{(1-x+x \lambda-y)_{n-1}}{x \lambda-y} \\
& =\left.\frac{y(y-n \lambda)}{n!\lambda} \Delta^{n} \frac{(1-y / \lambda)_{n-1}}{x-y / \lambda}\right|_{x=0} \\
& =(-1)^{n} \frac{y(y-n \lambda)}{\lambda} \frac{(1-y / \lambda)_{n-1}}{(-y / \lambda)_{n+1}}=(-1)^{n} \lambda
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{Q}(n-y) & =\frac{(y-n)(y-n \lambda)}{n!} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{(1+k \lambda-y)_{n-1}}{n-k+k \lambda-y} \\
& =\frac{(y-n)(y-n \lambda)}{n!} \Delta_{0}^{n} \frac{(1+x \lambda-y)_{n-1}}{n-x+x \lambda-y} \\
& =\left.\frac{(y-n)(y-n \lambda)}{n!(\lambda-1)} \Delta^{n} \frac{\left(1+\frac{y-n \lambda}{\lambda-1}\right)_{n-1}}{x-\frac{y-n}{\lambda-1}}\right|_{x=0} \\
& =(-1)^{n} \frac{(y-n)(y-n \lambda)}{\lambda-1} \frac{\left(1+\frac{y-n \lambda}{\lambda-1}\right)_{n-1}}{\left(-\frac{y-n}{\lambda-1}\right)_{n+1}}=1-\lambda .
\end{aligned}
$$

Consequently, the second convolution identity (2) follows from the Lagrange polynomial of $\mathcal{Q}(x)$ for the interpolation points $\left\{x_{m}:=m-y\right\}_{m=0}^{n}$, which consists of the only two terms corresponding to $m=0$ and $m=n$:

$$
\begin{aligned}
\mathcal{Q}(x) & =\sum_{m=0}^{n} \mathcal{Q}\left(x_{m}\right) \prod_{\substack{\ell=0 \\
\ell \neq m}}^{n} \frac{x-x_{\ell}}{x_{m}-x_{\ell}} \\
& =\lambda\binom{x+y-1}{n}+(1-\lambda)\binom{x+y}{n} \\
& =\frac{x+y-n \lambda}{x+y}\binom{x+y}{n} .
\end{aligned}
$$

Proof of Identity (3)

Assume that $\mathcal{R}(x)$ stands for the left sum of (3). Its value at $x=m-y$ can be expressed as

$$
\begin{aligned}
\mathcal{R}(m-y) & =\sum_{k=0}^{n}\binom{m-y+k \lambda}{k}\binom{y-k \lambda}{n-k} \\
& =\sum_{k=0}^{n} \frac{(-1)^{n-k}}{n!}\binom{n}{k}(1-k+m-y+k \lambda)_{k}(k \lambda-y)_{n-k} \\
& =\sum_{k=0}^{n} \frac{(-1)^{n-k}}{n!}\binom{n}{k}(k \lambda-y)_{m+1}(1+m-k-y+k \lambda)_{n-m-1} .
\end{aligned}
$$

When $0 \leq m<n$, we have that $\mathcal{R}(m-y)$ results in the nth difference of the polynomial $(x \lambda-y)_{m+1}(1+m-x-y+x \lambda)_{n-m-1}$ of degree n :

$$
\mathcal{R}(m-y)=\lambda^{m+1}(\lambda-1)^{n-m-1}
$$

which coincides with the right sum of (3) at $x=m-y$:

$$
\begin{aligned}
\sum_{\ell=0}^{n}\binom{m-\ell}{n-\ell} \lambda^{\ell} & =\sum_{k=0}^{n}\binom{m-n+k}{k} \lambda^{n-k}=\sum_{k=0}^{n-m-1}(-1)^{k}\binom{n-m-1}{k} \lambda^{n-k} \\
& =\lambda^{n}\left(1-\lambda^{-1}\right)^{n-m-1}=\lambda^{m+1}(\lambda-1)^{n-m-1}
\end{aligned}
$$

Furthermore, we can evaluate

$$
\begin{aligned}
\mathcal{R}(n-y) & =\sum_{k=0}^{n} \frac{(-1)^{n-k}}{n!}\binom{n}{k} \frac{(k \lambda-y)_{n+1}}{n-k-y+k \lambda}=\frac{\Delta_{0}^{n}}{n!(\lambda-1)} \frac{(x \lambda-y)_{n+1}}{x-\frac{y-n}{\lambda-1}} \\
& =\frac{1}{n!(\lambda-1)} \Delta_{0}^{n}\left\{\frac{(x \lambda-y)_{n+1}-\left(\frac{y-n \lambda}{\lambda-1}\right)_{n+1}}{x-\frac{y-n}{\lambda-1}}+\frac{\left(\frac{y-n \lambda}{\lambda-1}\right)_{n+1}}{x-\frac{y-n}{\lambda-1}}\right\} \\
& =\frac{1}{\lambda-1}\left\{\lambda^{n+1}+(-1)^{n} \frac{\left(\frac{y-n \lambda}{\lambda-1}\right)_{n+1}}{\left(-\frac{y-n}{\lambda-1}\right)_{n+1}}\right\}=\frac{\lambda^{n+1}-1}{\lambda-1} .
\end{aligned}
$$

This coincides again with the right sum of (3) at $x=n-y$:

$$
\sum_{\ell=0}^{n}\binom{n-\ell}{n-\ell} \lambda^{\ell}=\sum_{\ell=0}^{n} \lambda^{\ell}=\frac{\lambda^{n+1}-1}{\lambda-1}
$$

Since both sides of (3) are polynomials of the same degree n and have the same values at the $n+1$ distinct points $\{m-y\}_{m=0}^{n}$, they have the same Lagrange polynomial for the interpolation points $\left\{x_{m}:=m-y\right\}_{m=0}^{n}$:

$$
\sum_{m=0}^{n} \mathcal{R}\left(x_{m}\right) \prod_{\substack{\ell=0 \\ \ell \neq m}}^{n} \frac{x-x_{\ell}}{x_{m}-x_{\ell}}=\binom{x+y}{n} \frac{\lambda^{n+1}-1}{\lambda-1}+\sum_{m=0}^{n-1} \lambda^{m+1}\binom{x+y}{m}\binom{n-x-y}{n-m}(\lambda-1)^{n-m-1}
$$

This not only confirms Jensen's convolution identity (3), but also gives, as a bonus, the third expression

$$
\mathcal{R}(x)=\sum_{m=0}^{n}\left\{\lambda^{m+1}-\chi(m=n)\right\}\binom{x+y}{m}\binom{n-x-y}{n-m}(\lambda-1)^{n-m-1}
$$

Acknowledgement

The author is sincerely grateful to the two anonymous referees for their careful reading, accurate corrections and valuable suggestions that make the manuscript improved during the revision.

References

[1] N. H. Abel, Beweis eines Ausdrucks, von welchem die Binomial-Formel ein einzelner Fall ist, J. Reine Angew. Math. 1 (1826) 159-160.
[2] W. Chu, Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations, Math. Appl. 283 (1994) 31-57.
[3] W. Chu, Generating functions and combinatorial identities, Glas. Mat. 33 (1998) 1-12.
[4] W. Chu, Divided differences and symmetric functions, Boll. Unione Mat. Ital. 2-B (1999) 609-618.
[5] W. Chu, Divided differences and generalized Taylor series, Forum Math. 20 (2008) 1097-1108.
[6] W. Chu, Finite differences and determinant identities, Linear Algebra Appl. 430 (2009) 215-228.
[7] W. Chu, Elementary Proofs for Convolution Identities of Abel and Hagen-Rothe, Electron. J. Combin. 17 (2010) \#N24.
[8] W. Chu, Finite differences and terminating hypergeometric series, Bull. Irish Math. Soc. 78 (2016) 31-45.
[9] W. Chu, L. C. Hsu, Some new applications of Gould-Hsu inversions, J. Combin. Inf. System Sci. 14 (1990) 1-4.
[10] L. Comtet, Advanced Combinatorics, Dordrecht-Holland, 1974.
[11] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Translated from the Russian by H. H. McFadden: Translations of Mathematical Monographs 59; American Mathematical Society, 1984.
[12] H. W. Gould, Some generalizations of Vandermonde's convolution, Amer. Math. Monthly 63 (1956) 84-91.
[13] H. W. Gould, Generalization of a theorem of Jensen concerning convolutions, Duke Math. J. 27 (1960) 71-76.
[14] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
[15] J. L. W. V. Jensen, Sur une identité d'Abel et sur d'autres formules analogues, Acta Math. 26 (1902) 307-318.
[16] S. G. Mohanty, Lattice Path Counting and Applications, Academic Press, 1979.
[17] T. V. Narayana, Lattice Path Combinatorics with Statistical Applications, University of Toronto Press, 1979.
[18] J. Riordan, Combinatorial Identities, John Wiley \& Sons, 1968.
[19] R. Sprugnoli, Riordan arrays and the Abel-Gould identity, Discrete Math. 142 (1995) 213-233.
[20] V. Strehl, Identities of Rothe-Abel-Schläfli-Hurwitz-type, Discrete Math. 99 (1992) 321-340.

[^0]: *E-mail address: chu.wenchang@unisalento.it

