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Abstract

For a geodesic metric space X and for x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics
[x1x2], [x2x3] and [x3x1] inX. The spaceX is δ-hyperbolic (in Gromov sense) if any side of T is contained in a δ-neighborhood
of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp
hyperbolicity constant of X, i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle inX }. In this paper, we collect previous
results and prove new theorems on the hyperbolic constant of some important unitary operators on graphs.
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1. Introduction

Gromov introduced hyperbolic spaces in [18]. These spaces have many interesting applications in computer science and
in various fields of mathematics, including geometric group theory, topology, and analysis (see [2, 10, 17, 18, 44, 47]). In
geometric group theory, hyperbolic groups (i.e., groups whose Cayley graphs are hyperbolic) play a central role, as they
have many desirable properties, such as finiteness properties, rigidity properties, and algorithmic properties. Hyperbolic
spaces also arise in the study of mapping class groups, Teichmuller spaces, and other moduli spaces of geometric objects.

In geometry and topology, hyperbolic spaces are important in the study of manifolds with negative sectional curvature,
as they provide a way to approximate such manifolds by discrete models. Hyperbolic spaces also have interesting properties
related to their boundaries, such as the Gromov boundary, which can be used to study the large-scale geometry of the space.

The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical hyperbolic space,
Riemannian manifolds of negative sectional curvature bounded away from 0, and of discrete spaces like trees and the
Cayley graphs of many finitely generated groups.

The relation between graphs and metric spaces is an important point to consider when studying hyperbolicity. In
fact, the notion of hyperbolicity was originally introduced in the context of graphs, and later extended to geodesic metric
spaces. The relationship between hyperbolicity in these two settings is well understood, and there are many results that
establish equivalence between the two notions (see [10]). Understanding the relationship between hyperbolicity in graphs
and geodesic metric spaces is important because we can gain insights into the behavior of these structures and develop
new techniques for analyzing them. In particular, the hyperbolicity of a geodesic metric space is equivalent to hyperbolicity
of a graph related to it [10]. This result indicates that the study of hyperbolicity can be reduced to the analysis of certain
graphs associated with the metric space, which may simplify many computations and proofs.

In a geodesic metric space, a geodesic is a curve that minimizes distance between its endpoints, and is equipped with
an arc-length parametrization. A metric space is said to be geodesic if every pair of points in the space can be connected
by a geodesic. In general, there may be multiple geodesics between two points x and y in a geodesic metric space, but we
can use the notation [xy] to denote any one of them; this notation is ambiguous, but it is very convenient. In the case of a
graph, we can use the notation uv to denote the edge that connects vertices u and v.

Let X be a geodesic metric space, and let x1, x2, x3 ∈ X be three points. The geodesic triangle T with vertices x1, x2, x3
is defined to be the union of the three geodesics [x1x2], [x2x3], and [x3x1] in X. We say that X is δ-hyperbolic if for every
geodesic triangle T any point on a geodesic between two points in T is within distance δ of the other sides of T . If X is
hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) := inf{δ : X is δ-hyperbolic }; if X is not
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hyperbolic, we define δ(X) = ∞. We say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0. If X has connected
components {Xi}i∈I , then we define δ(X) := supi∈I δ(Xi), and we say that X is hyperbolic if δ(X) <∞.

Gromov hyperbolicity can be formulated in various equivalent ways. The book [17] provides several definitions of
Gromov hyperbolicity, each with its own strengths and weaknesses. The authors have chosen the above definition based
on its deep geometric meaning [17].

Along this work, G = (V,E) = (V (G), E(G)) will denote a simple (without loops and multiple edges) graph (not neces-
sarily connected) such that V 6= ∅ and every edge has length 1. In order to consider a connected graph G as a geodesic
metric space, we identify any edge uv ∈ E(G) with the real interval [0, 1]. Hence, the points in G are the points in the
interior of any edge in E(G) and the vertices in V (G). In this way, any connected graph G has a natural distance defined
as the length of the shortest path connecting two points in the graph, and we can see G as a metric graph. We denote by dG
or d this distance. If two points are in different connected components of the graph, their distance is defined to be infinity.
With this construction, any connected component of a graph is a geodesic metric space in its own right. This construction
allows us to apply geometric concepts and tools from metric spaces to the study of graphs, and vice versa.

The study of hyperbolic graphs is a subject of increasing interest in Discrete Mathematics and its applications, for
example, networks and algorithms (see [27]), random graphs (see, [40–42]), etc. In fact, many real networks are hyperbolic
(see [1, 28, 31, 45]). Hyperbolicity in graphs has also been used in issues such as the secure transmission of information
through the network (see [23], [25]). Other problems that have been addressed are sensor networks, distance estimation,
traffic flow, congestion minimization (see [3,24]). The hyperbolicity constant has been successfully applied to the study of
chemical structures, (see [33]) and DNA study (see [11]).

The study of hyperbolic graphs, from a mathematical point of view, has three main objectives:
1.− Study the hyperbolicity constant of some kinds of graphs.
2.− Obtain relationships between the hyperbolicity constant and other parameters of a graph.
3.− Study the invariance of the hyperbolicity constant under transformations.

In this work, in order to achieve the stated objectives, we collect the previous results and prove new theorems on the
hyperbolic constant of some important unitary operators on graphs.

2. Hyperbolicity on unitary operators

In [26], J. Krausz introduced the concept of graph operators. A graph operator is a mapping F : Γ→ Γ′, where Γ and Γ′ are
families of graphs. Different kinds of graph operators have been investigated in the studies on graph dynamics (see [19,32])
and topological indices (see [9,15,16,34,35,48]). Some large graphs are composed from some existing smaller ones by using
graph operators, and many properties of such large graphs are strongly associated with that of the corresponding smaller
ones. Motivated from the above works, we study here the hyperbolicity constant of some graph operators.

Given an edge e = uv ∈ E(G) with endpoints u and v, we write V (e) = {u, v}. Next, we recall the definition of some of
the main graph operators.

The line graph, denoted by L(G), is the graph whose vertices correspond to the edges of G with two vertices being
adjacent if and only if the corresponding edges in G have a vertex in common.

The complement of a graphG, denoted byG, is the graph whose vertices correspond to V (G) but whose edge set consists
of the edges not present in G.

The subdivision graph, denoted by S(G), is the graph obtained from G by replacing each of its edge by a path of length
two, or equivalently, by inserting an additional vertex into each edge of G.

The para-line graph of G, denoted by P(G), is the line graph of the subdivision graph of G, i.e. P(G) = L(S(G)).
The total graph, denoted by T (G), has as its vertices the edges and vertices of G. Adjacency in T (G) is defined as

adjacency or incidence for the corresponding elements of G.
The graphR(G) is obtained fromG by adding a new vertex corresponding to each edge ofG, then joining each new vertex

to the end vertices of the corresponding edge. Another way to describe R(G) is to replace each edge of G by a triangle.
The graph Q(G) is the graph obtained from G by inserting a new vertex into each edge of G and by joining edges those

pairs of these new vertices which lie on adjacent edges of G.
The central graph of G, denoted by C(G), is obtained by subdividing every edge of G exactly once and joining all non-

adjacent vertices of G in C(G).
Operator R(G) is referred to by some authors as semi-total point or semi-total vertex and operator Q(G) as semi-total

line, semi-total edge or middle graph of G (see [4,20,39,46]).
In this section we prove some results relating the hyperbolicity constants of a graph G and its operators S(G), P(G)

and C(G). For more information about the R(G), Q(G) and T (G) operators, see [29].
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Definition 2.1. Let (X, d) be a metric space and x, y ∈ X. The Gromov product between x and y, with base point w ∈ X, is
defined as (x, y)w := 1

2

(
d(x,w) + d(y, w)− d(x, y)

)
≥ 0. We say that the metric space (X, d) is δ-hyperbolic with respect to the

Gromov product, for some constant δ ≥ 0, if

(x, z)w ≥ min
{

(x, y)w, (y, z)w
}
− δ (1)

for every x, y, z, w ∈ X.

The following result reported in [2,17] establishes a relationship between the definition given by the Rips condition and
the Gromov product.

Theorem 2.1. Let X be a geodesic metric space:

1. If X is δ-hyperbolic with respect to the Gromov product, then X is 3δ-hyperbolic.

2. If X is δ-hyperbolic, then X is 4δ-hyperbolic with respect to the Gromov product.

Let us consider now the hyperbolicity constant with respect to the Gromov product (see Definition 2.1). We denote by
δ∗(G) the sharp constant for the inequality (1), i.e.,

δ∗(G) := sup
{

min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ G

}
.

Theorem 2.1 gives δ∗(G) ≤ 4δ(G) and δ(G) ≤ 3δ∗(G). In [43] we found the following improvement of the previous inequality:
δ∗(G) ≤ 2δ(G). We denote by δ∗v(G) the constant of hyperbolicity of the Gromov product restricted to the vertices of G, i.e.,

δ∗v(G) := sup
{

min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ V (G)

}
.

The following result given in [29] relates δ∗(G) and δ∗v(G).

Proposition 2.1. Let G be a graph. Then δ∗v(G) ≤ δ∗(G) ≤ δ∗v(G) + 3.

Subdivision and para-line operators
The following result is immediate from the definition of S(G).

Proposition 2.2. [29, Proposition 1] Let G be a graph. Then δ(S(G)) = 2δ(G), δ∗(S(G)) = 2δ∗(G).

We remark that the equality is not true for δ∗v(G) (e.g., S(C5) = C10 but 2δ∗v(C5) = 1 6= 2 = δ∗v(S(C5))), but there are
inequalities. In order to obtain these inequalities, we need the following result [14].

Theorem 2.2. Let B = (V0 ∪ V1, E) be a bipartite graph. We have δB(Vi) ≤ δ∗v(B) ≤ δB(Vi) + 2, where

δB(Vi) = sup{min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ Vi}

for every i ∈ {1, 2}.

Proposition 2.3. [29, Corollary 1] Let G be a graph. Then 2δ∗v(G) ≤ δ∗v(S(G)) ≤ 2δ∗v(G) + 2.

The hyperbolicity of the line graph has been studied previously (see [12–14]). The line graph of G is interesting in the
theory of geometric graphs, since it is the intersection graph of E(G).

Theorem 2.3. [12, Corollary 3.12] Let G be a graph. Then δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 5/2. Furthermore, the first inequality
is sharp: the equality is attained by every cycle graph.

Proposition 2.2 and Theorem 2.3 have the following consequence.

Corollary 2.1. Let G be a graph. Then
2δ(G) ≤ δ(P(G)) ≤ 10δ(G) +

5

2
.

Theorem 2.4. [14, Theorem 6] Let G be a graph. Then δ∗v(G)− 1 ≤ δ∗v(L(G)) ≤ δ∗v(G) + 1.

Proposition 2.2, Corollary 2.3 and Theorem 2.4 give the following result:

Corollary 2.2. Let G be a graph. Then 2δ∗v(G)− 1 ≤ δ∗v(P(G)) ≤ 2δ∗v(G) + 3.
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Theorem 2.5. [29, Theorem 4] Let G be a graph. Then δ∗(G)− 4 ≤ δ∗(L(G)) ≤ δ∗(G) + 4.

The following result follows from Proposition 2.2 and Theorem 2.5

Corollary 2.3. Let G be a graph. Then 2δ∗(G)− 4 ≤ δ∗(P(G)) ≤ 2δ∗(G) + 4.

Proposition 2.2, and Theorems 2.3 and 2.5 have the following consequence.

Corollary 2.4. [29, Corollary 3] Let G be a graph. Then

δ(S(G)) ≤ 2δ(L(G)) ≤ 5δ(S(G)) + 5,

δ∗(S(G))− 8 ≤ 2δ∗(L(G)) ≤ δ∗(S(G)) + 8.

Note that Theorem 2.5 improves the inequality δ∗(L(G)) ≤ δ∗(G) + 6 reported in [13]. Given a graph G, we define

diamV (G) := sup
{
dG(v, w) | v, w ∈ V (G)

}
,

diamG := sup
{
dG(x, y) | x, y ∈ G

}
.

The following result appears in [38].

Theorem 2.6. For any graph G the inequalities

diamV (G) ≤ diamG ≤ diamV (G) + 1,

δ(G) ≤ 1

2
diamG ≤ 1

2
(diamV (G) + 1),

are fulfilled.

From [38] we have the following result.

Theorem 2.7. The following graphs with edges of length 1 have these precise values of δ.
• The path graphs Pn satisfies δ(Pn) = 0 for every n ≥ 1.

• The cycle graphs Cn satisfies δ(Cn) = n/4 for every n ≥ 3.

• The complete graphs Kn satisfies δ(K1) = δ(K2) = 0, δ(K3) = 3/4 and δ(Kn) = 1 for every n ≥ 4.

Let us denote by V (E) the set of vertices generated by subdividing the edges of G. If vivj ∈ E(G), we denote by vi,j its
associated vertex in V (E).

Theorem 2.8. The following graphs have the following values of δ:

i. The path graph satisfies δ(P(Pn)) = 0 for every n ≥ 1.

ii. The cycle graph satisfies δ(P(Cn)) = n/2 for every n ≥ 3.

iii. The complete graph satisfies δ(P(Kn)) = 2 for every n ≥ 4.

iv. The star graph Sk with k leaves satisfies δ(P(S3)) = 3/4 and δ(P(Sk)) = 1 for every k ≥ 4.

v. The wheel graph satisfies δ(P(W5)) = 9/4, δ(P(W6)) = 5/2 and δ(P(Wn)) = 3 for every n ≥ 7.

vi. The Petersen graph satisfies δ(P(P )) = 3.

Proof. If e = vivj ∈ E(G), then we denote by vvivj the vertex in L(G) corresponding to e.

i. We have P(Pn) = P2n−2, therefore δ(P(Pn)) = 0.

ii. We have P(Cn) = C2n, therefore δ(P(Cn)) = n/2.

iii. Note that P(Kn) has n clique subgraphs of (n− 1) vertices associated with the n vertices of G and diamV (P(Kn)) = 3.
Let x and y be the midpoints of vv4v3,4vv4v1,4 and vv2v1,2vv2v2,3 , respectively. Consider P ∗ and P ′ two geodesics joining x and
y such that P ∗ ∩ V (P(Kn)) = {vv4v1,4 , vv1v1,4 , vv1v1,2 , vv2v1,2} and P ′ ∩ V (P(Kn)) = {vv4v3,4 , vv3v3,4 , vv3v2,3 , vv2v2,3}. Let z and
p be the midpoints of P ∗ and P ′, respectively, and consider the geodesic triangle T = {[xz], [yz], P ′}. We have

δ(P(Kn)) ≥ δ(T ) ≥ dP(Kn)(p, [xz] ∪ [yz]) = 2 =
diamV (P(Kn)) + 1

2
≥ δ(P(Kn)).

iv. Note that P(Sn) is the complete graph Kn−1 with a leaf at each vertex.
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v. If n = 5, then diamV (P(W5)) = 4 and diamP(W5) = 9/2. Let x and y be vv1v0,1 and the midpoint of vv3v3,4vv2,3v3 , respec-
tively. Consider P ∗ and P ′ two geodesics joining x and y such that P ∗ ∩ V (P(W5)) = {vv1v0,1 , vv0v0,1 , vv0v0,3 , vv3v0,3 , vv3v3,4}
and P ′ ∩ V (P(W5)) = {vv1v0,1

, vv1v1,2 , vv2v1,2 , vv2v2,3 , vv3v2,3}. Let z and p be the midpoints of P ∗ and P ′, respectively, and
consider the geodesic triangle T = {[xz], [yz], P ′}. We have

δ(P(W5)) ≥ δ(T ) ≥ dP(W5)(p, [xz] ∪ [yz]) =
9

4
=

diam(P(W5))

2
≥ δ(P(W5)).

If n = 6, then diamP(W6) = diamV (P(W6)) = 5. Let x and y be vv1v1,2 and vv4v3,4 , respectively. Consider P ∗ and P ′ two
geodesics joining x and y such that P ∗ ∩ V (P(W6)) = {vv1v1,2 , vv1v0,1 , vv0v0,1 , vv0v0,4 , vv4v0,4 , vv4v3,4} and P ′ ∩ V (P(W6)) =

{vv1v1,2 , vv2v1,2 , vv2v2,3 , vv3v2,3 , vv3v3,4 , vv4v3,4}. Let z and p be the midpoints of P ∗ and P ′, respectively, and consider the
geodesic triangle T = {[xz], [yz], P ′}. We have

δ(P(W6)) ≥ δ(T ) ≥ dP(W6)(p, [xz] ∪ [yz]) =
5

2
=

diam(P(W6))

2
≥ δ(P(W6)).

Consider n ≥ 7, then diamV (P(Wn)) = 5. Let x, y be the midpoints of vv1v1,6vv1v1,2 and vv3,4v4vv4v4,5 , respectively. Consider
P ∗ and P ′ two geodesics joining x and y such that

P ∗ ∩ V (P(Wn)) = {vv1v1,6 , vv1v0,1 , vv0v0,1 , vv0v0,4 , vv4v0,4 , vv4v4,5},

P ′ ∩ V (P(Wn)) = {vv1v1,2 , vv1,2v2 , vv2v2,3 , vv2,3v3 , vv3v3,4 , vv3,4v4}.

Let z and p be the midpoints of P ∗ and P ′, respectively, and consider the geodesic triangle T = {[xz], [yz], P ′}. We have

δ(P(Wn)) ≥ δ(T ) ≥ dP(Wn)(p, [xz] ∪ [yz]) = 3 =
diamV (P(Wn)) + 1

2
≥ δ(P(Wn)).

vi. Consider the Petersen graph P and P(P ) as in Figures 1a and 1b. Note that diamV (P(P )) = 5. Let x, y be the
midpoints of vv7v7,10vv10v7,10 and vv3v3,4vv4v3,4 , respectively. Consider P ∗ and P ′ two geodesics joining x and y such that
P ∗∩V (P(P )) = {vv7v7,10 , vv2v2,7 , vv2v2,3 , vv3v2,3 , vv3v3,4} and P ′∩V (P(P )) = {vv10v7,10 , vv5v5,10 , vv5v4,5 , vv4v4,5 , vv4v3,4}. Let z and
p be the midpoints of P ∗ and P ′, respectively, and consider the geodesic triangle T = {[xz], [yz], P ′}. We have

δ(P(P )) ≥ δ(T ) ≥ dP(P )(p, [xz] ∪ [yz]) = 3 =
diamV (P(P )) + 1

2
≥ δ(P(P )).

Semi total and total operators
If H is a subgraph of G, we always have dH(x, y) ≥ dG(x, y) for every x, y ∈ H. A subgraph H of G is said isometric
if dH(x, y) = dG(x, y) for every x, y ∈ H. Note that this condition is equivalent to dH(u, v) = dG(u, v) for every vertices
u, v ∈ V (H). The following result appeared in [38].

Lemma 2.1. If H is an isometric subgraph of G, then δ(H) ≤ δ(G).

Since G is an isometric subgraph of T (G) and R(G), and L(G) is an isometric subgraph of T (G) and Q(G), we have the
following consequence of Lemma 2.1.

Proposition 2.4. [29, Corollary 2] For any graph G, we have

δ(G) ≤ δ(T (G)), δ∗(G) ≤ δ∗(T (G)), δ∗v(G) ≤ δ∗v(T (G)),

δ(G) ≤ δ(R(G)), δ∗(G) ≤ δ∗(R(G)), δ∗v(G) ≤ δ∗v(R(G)),

δ(L(G)) ≤ δ(T (G)), δ∗(L(G)) ≤ δ∗(T (G)), δ∗v(L(G)) ≤ δ∗v(T (G)),

δ(L(G)) ≤ δ(Q(G)), δ∗(L(G)) ≤ δ∗(Q(G)), δ∗v(L(G)) ≤ δ∗v(Q(G)).

Theorems 2.3, 2.4, 2.5 and Proposition 2.4 have the following consequence.

Corollary 2.5. [29, Corollary 4] Let G be a graph. Then

δ(G) ≤ δ(Q(G)),

δ∗v(G) ≤ δ∗v(Q(G)) + 1,

δ∗(G) ≤ δ∗(Q(G)) + 4.
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(a) Petersen graph. P

(b) P(P )

Figure 1: Petersen graph and its para-line graph.

Given a graphGwith multiple edges, we defineB(G) as the graph (without multiple edges) obtained fromG by replacing
each multiple edge by a single edge with the minimum length of the edges corresponding to that multiple edge. From [7]
we have the following result.

Lemma 2.2. If G is a graph with multiple edges, then G is hyperbolic if and only if B(G) is hyperbolic and J := sup{L(β) :

β is an edge contained in a multiple edge of G} is finite. Besides, if j := inf{d(x, y) : x, y are joined by a multiple edge of G},
then

max
{
δ(B(G)),

J + j

4

}
≤ δ(G) ≤ max

{
δ(B(G)) +

J − j
2

, J
}
.

Proposition 2.5. [29, Corollary 5] If G is a graph, then max
{
δ(G), 34

}
≤ δ(R(G)) ≤ max

{
δ(G) + 1

2 ,
3
4

}
.

Given any graphGwhich is not a tree, we define its girth g(G) as the infimum of the lengths of the cycles inG. From [30]
we have the following result.

Theorem 2.9. Let G be a graph that is not a tree. Then

δ(G) ≥ g(G)

4
.

Proposition 2.6. [29, Corollary 7] Let G be a graph which is not a tree. Then δ(G) ≤ δ(R(G)) ≤ δ(G) + 1
2 .

Theorem 2.3 and Proposition 2.6 have the following consequence.

Corollary 2.6. [29, Corollary 8] Let G be a graph that is not a tree. Then

δ(R(G))− 1

2
≤ δ(L(G)) ≤ 5δ(R(G)) +

5

2
.

Proposition 2.2 and Proposition 2.6 have the following consequence.

Corollary 2.7. [29, Corollary 9] Let G be a graph that is not a tree. Then

δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1.
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Theorem 2.10. [29, Theorem 6] If G is a graph, then

δ∗(L(G)) ≤ δ∗(Q(G)) ≤ δ∗v(L(G)) + 6 ≤ δ∗(L(G)) + 6,

δ∗v(L(G)) ≤ δ∗v(Q(G)) ≤ δ∗v(L(G)) + 6,

δ∗(L(G)) ≤ δ∗(T (G)) ≤ δ∗v(L(G)) + 9 ≤ δ∗(L(G)) + 9,

δ∗v(L(G)) ≤ δ∗v(T (G)) ≤ δ∗v(L(G)) + 6,

δ∗(G) ≤ δ∗(R(G)) ≤ δ∗v(G) + 6 ≤ δ∗(G) + 6,

δ∗v(G) ≤ δ∗v(R(G)) ≤ δ∗v(G) + 6,

δ∗(G) ≤ δ∗(T (G)) ≤ δ∗v(G) + 9 ≤ δ∗(G) + 9,

δ∗v(G) ≤ δ∗v(T (G)) ≤ δ∗v(G) + 6.

Corollary 2.5 and Theorems 2.4 and 2.10 have the following consequence.

Corollary 2.8. [29, Corollary 10] Let G be a graph. Then

δ∗v(G)− 1 ≤ δ∗v(Q(G)) ≤ δ∗v(G) + 7,

δ∗(G)− 4 ≤ δ∗(Q(G)) ≤ δ∗v(G) + 7 ≤ δ∗(G) + 7.

The inequalities δ(G) ≤ 3δ∗(G) and δ∗(G) ≤ 2δ(G), Theorem 2.10, Proposition 2.4 and Corollaries 2.5 and 2.8 have the
following consequence.

Proposition 2.7. [29, Corollary 11] If G is a graph, then

δ(L(G)) ≤ δ(Q(G)) ≤ 6δ(L(G)) + 18,

δ(L(G)) ≤ δ(T (G)) ≤ 6δ(L(G)) + 27,

δ(G) ≤ δ(T (G)) ≤ 6δ(G) + 27,

δ(G) ≤ δ(Q(G)) ≤ 6δ(G) + 21.

Proposition 2.8. [29, Theorem 7] If G is a path graph, then

0 = δ(L(G)) ≤ δ(Q(G)) ≤ 3/4.

The union of the set of the midpoints of the edges of a graph G and the set of vertices, V (G), will be denoted by J(G).
Let T1 be the set of geodesic triangles T in G that are cycles and such that each vertex of T belongs to J(G). Let us define

δ1(G) := inf{λ : every geodesic triangle in T1 is λ-thin}.

The following results appeared in [6].

Theorem 2.11. For every graph G we have δ1(G) = δ(G).

Theorem 2.12. If G is an hyperbolic graph, then there exists T ∈ T1 with δ(T ) = δ(G).

The following results improve the inequality δ(Q(G)) ≤ 6δ(L(G)) + 18 in Proposition 2.7.

Theorem 2.13. [29, Theorem 8] If G is not a path graph, then

δ(L(G)) ≤ δ(Q(G)) ≤ δ(L(G)) + 1/2.

Proposition 2.2, Theorems 2.3 and 2.13, and Corollary 2.4 have the following consequence.

Corollary 2.9. [29, Corollary 12] Let G be a graph. If G is not a path graph, then

δ(S(G)) ≤ 2δ(Q(G)) ≤ 5δ(S(G)) + 6.

Central graph
The central graph of G, C(G), has the same set of vertices as S(G), and the set of edges of C(G) is the union of the edge
sets of S(G) and G. We can write

C(G) = (V (G) ∪ V (E), E (S(G)) ∪ E(G)).

The central graph is related to the complement graph; in such a direction, it is important to note that hyperbolicity in the
complement graph has been studied in [8,22,36,37]. Next, we expose some of its main results. The following result in [8]
gives a sharp bound for the hyperbolicity constant of the complement of a graph.
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Theorem 2.14. If G is a graph with diamV (G) ≥ 3, then its complement graph G satisfies 0 ≤ δ(G) ≤ 2.

The next theorem about regular graphs can be proved using the following result (see [5]).

Lemma 2.3. Given any graph G, we have δ(G) ≥ 5/4 if and only if there exist a cycle g in G with length L(g) ≥ 5 and a
vertex w ∈ g such that degg(w) = 2.

Theorem 2.15. [36, Theorem 4.3] Let G be a (n − 3)-regular graph with n ≥ 5 vertices. Then δ(G) = 1 if G is a union of
cycle graphs with three vertices, and δ(G) = 5/4 otherwise.

Theorem 2.16. Let G be a regular graph of order n and diamV (G) = 3, then δ(G) ≤ 3
2 . Furthermore, if G is a k-regular

graph with k < n− 2, then δ(G) ≥ 3
4 .

Proof. Suppose that diamV (G) = 3 and diamV (G) ≥ 3, then there exist four different vertices, x, y, w, z ∈ V (G), such that
dG(x, y) = 3 and dG(w, z) = 3; note that uw ∈ E(G) or uz ∈ E(G) for all u ∈ V (G). Without loss of generality suppose
xw ∈ E(G) and so, yz ∈ E(G).

Consider the set S = V (G) − {x, y, w, z}. Let l be the number of edges in E(G) between the vertices of the sets S and
{x, y}, and let m be the number of edges in E(G) between the vertices of the sets S and {w, z}. It is clear that m ≥ l,
deg(w) + deg(z) = m+ 4, deg(x) + deg(y) = l + 2 and deg(w) + deg(z) > deg(x) + deg(y), so G is not regular.

Thus, we have that if G is a regular graph of order n and diamV (G) = 3, then diamV (G) = 2. Since δ(G) ≤ diamV (G)+1
2 ,

the result follows.
Since G is a k-regular graph with k < n− 2, then G is (n− k− 1)-regular graph. Therefore, G is not a tree and G has a

cycle of length at least 3. The result follows because δ(G) ≥ g(G)
4 .

We can write
C(G) := (V ∪ V (E), E(S(G)) ∪ E(G)).

Theorem 2.17. If G = (V,E) is a graph, then diamV (C(G)) ≤ 4 and this bound is sharp.

Proof. Fix two vertices u, v ∈ V (C(G)). We have three cases:

• Case 1: u, v ∈ V . If uv ∈ E(G), then dC(G)(u, v) = 2. If uv 6∈ E(G), then dC(G)(u, v) = 1.

• Case 2: u ∈ V , v ∈ V (E). Consider v1, v2 ∈ V (G) such that v1v, v2v ∈ E(S(G)). We have the following cases:

– Case 2.1: If u = v1 or u = v2, then dC(G)(u, v) = 1.
– Case 2.2: If uv1 6∈ E(G) or uv2 6∈ E(G), then dC(G)(u, v) = 2.
– Case 2.3: If uv1, uv2 ∈ E(G) (i.e. u, v1, v2 induce a subgraph K3), then dC(G)(u, v) = 3.

• Case 3: u, v ∈ V (E). Consider u1, u2, v1, v2 ∈ V (G) such that uiu, viv ∈ E(S(G)) for i = 1, 2. By Case 1, we have

dC(G)(u, v) = 1 + min{dC(G)(ui, vj) : 1 ≤ i, j ≤ 2}+ 1 ≤ 1 + 2 + 1 = 4.

The bound is attained, for example, on the central graph of the complete graph Kn (n ≥ 4) by considering the vertices
obtained by the subdivision of two non-adjacent edges in Kn.

Corollary 2.10. If G is a graph, then diamC(G) ≤ 4.

Proof. Let x, y ∈ C(G) be points such that dC(G)(x, y) = diamC(G). Since the diameter of the graph is reached by consid-
ering the distances between vertices and midpoints of edges, let us consider the following cases:

(i) x, y ∈ V (C(G)). Theorem 2.17 gives dC(G)(x, y) ≤ 4.

(ii) x ∈ V (C(G)), y is the midpoint of e = v1v2 ∈ E(S(G))∪E(G). Without loss of generality we can assume that v1 ∈ V (G).
Case 2 in Theorem 2.17 gives dC(G)(x, y) ≤ dC(G)(x, v1) + 1/2 ≤ 7/2.

(iii) x, y are the midpoints of u1u2, v1v2 ∈ E(C(G)), respectively. Without loss of generality we can assume that u1, v1 ∈
V (G). Case 1 in Theorem 2.17 gives dC(G)(x, y) ≤ dC(G)(x, u1) + dC(G)(u1, v1) + dC(G)(v1, y) ≤ 3.

Note that it is not necessarily the case that diamV (C(G)) = diamC(G). For example, if G = P2, then C(P2) = C5 and
diamV (C5) = 2 6= 5/2 = diamC(G). Theorem 2.6 and Corollary 2.10 give the next result.

106



J. A. Méndez, R. Reyes, J. M. Rodrı́guez, and J. M. Sigarreta / Discrete Math. Lett. 11 (2023) 99–110 107

Theorem 2.18. If G is a graph, then δ(C(G)) ≤ 2.

Theorem 2.19. If G is a graph of order n ≥ 2, then the following statements hold:

i. diamV (C(G)) = 1 if and only if E(G) = ∅.

ii. diamV (C(G)) = 2 if and only if G = Sn.

iii. diamV (C(G)) = 4 if and only if G has an induced subgraph K4.

iv. diamV (C(G)) = 3 otherwise.

Proof. i. If diamV (C(G)) = 1, then for each pair of vertices u, v ∈ V (G), we have that uv 6∈ E(G) and so, E(G) = ∅. The
converse is immediate.

ii. Assume now that diamV (C(G)) = 2. IfG has an induced subgraph C3 with vertices v1, v2, v3, then dC(G)(v1, v
2,3) = 3.

If the length of the girth of G is greater than or equal to 4, then there exist two non-adjacent edges u1u2 and v1v2, and
dC(G)(u

1,2, v1,2) = 3. Therefore, G has no cycles, i.e., G is a tree. Since diamV (C(G)) = 2, then each pair of edges in E(G)

has a common vertex in V (G) and so, G = Sn. The converse is immediate.
iii. Finally, assume that diamV (C(G)) = 4. Let u, v ∈ C(G) be such that dC(G)(u, v) = 4. Theorem 2.17 gives u, v ∈ V (E).

Let u1, u2, v1, v2 ∈ V (G) be such that uiu, viv ∈ E(S(G)) for i = 1, 2. Note that u1u2, v1v2 ∈ E(G) and if uivj 6∈ E(G),
i, j ∈ {1, 2}, then dC(G)(u, v) = 3, which contradicts dC(G)(u, v) = 4. Thus u1, u2, v1, v2 induce a complete subgraph K4. Let
us prove now the converse. Let u1, u2, v1, v2 ∈ V (G) be the vertices in an induced subgraph K4 ⊂ G. The argument in the
proof of Theorem 2.17 implies dC(G)(u

1,2, v1,2) = 4 = diamC(G).

Definition 2.2. Let v1, v2, v3, v4 be the vertices in the complete graph K4. We define the subgraphs H0 := K4 \ {v1v4, v2v4}
and H1 := K4 \ {v2v4}.

Theorem 2.20. If G is a graph of order n ≥ 4, then the following statements hold:

i. If diamV (C(G)) = 1, then diamC(G) = 2.

ii. If diamV (C(G)) = 2, then diamC(G) = 3.

iii. If diamV (C(G)) = 3 and G has an induced subgraph H0 or H1, then diamC(G) = 7/2.

iv. If diamV (C(G)) = 3 and G does not have H0 or H1 as induced subgraphs, then diamC(G) = 3.

v. If diamV (C(G)) = 4, then diamC(G) = 4.

Proof. i. If diamV (C(G)) = 1, then C(G) = Kn and so, diamC(G) = diamKn = 2.
ii. Since diamV (C(G)) = 2, Theorem 2.19 gives G = Sn and there are four vertices v0, v1, v2, v3 ∈ V (G) such that

v0vi ∈ E(G), for i = 1, 2, 3. Let x, y ∈ C(Sn) be the midpoints of v1v2 and v0v0,3, respectively. We have dC(G)(v0, {v1, v2}) =

dC(G)(v
0,3, {v1, v2}) = 2 and so, Theorem 2.6 gives

diamC(G) ≥ dC(G)(x, y) = d(x, {v1, v2}) + min{dC(G)(v0, {v1, v2}), dC(G)(v
0,3, {v1, v2})}+ d(y, {v0, v0,3})

= diamV (C(G)) + 1 ≥ diamC(G).

iii. Since diamV (C(G)) = 3, item ii in Proposition 2.10 gives diamC(G) ≤ 7/2. Let v1, v2, v3, v4 ∈ V (G) be such as in
Definition 2.2 and and let Hi ⊂ G, i ∈ {0, 1}. Let x be the midpoint of v3v3,4 ∈ E(C(G)), we have

7/2 ≥ diamC(G) ≥ dC(G)(v
1,2, x) = 7/2.

We prove now the converse. Since diamC(G) = 7/2, there exist v ∈ V (C(G)) and e = u1u2 ∈ E(C(G)) such that if x is
the midpoint of e, then dC(G)(x, v) = 7/2. Note that dC(G)(v, u1) = dC(G)(v, u2) = 3. We can suppose that u1 ∈ V (G). The
argument in the proof of Theorem 2.17 gives v ∈ V (E) and so, there are vertices v1, v2 ∈ V (G) such that vv1, vv2 ∈ E(C(G)),
i.e., v1v2 ∈ E(G) and v = v1,2; therefore, dC(G)(v1, u1) = dC(G)(v2, u1) = 2 and u1v1, u1v2 ∈ E(G). If u2 ∈ V (G), then a
similar argument gives u2v1, u2v2 ∈ E(G) and so, G has an induced subgraph K4 which contradicts item iii of Theorem
2.19. Hence, u2 ∈ V (E) and there exists u3 ∈ V (G) such that u1u3 ∈ E(G) and u2 = u1,3. Since dC(G)(v

1,2, u3) = 2, we have
either v1u3 6∈ E(G) or v2u3 6∈ E(G) and so, v1, v2, u1, u3 induce either the subgraph H0 or H1.

iv. By the previous item, we have
7

2
> diamC(G) ≥ diamV (C(G)) = 3

and so, diamC(G) = 3.
v. Corollary 2.10 gives the result.
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Theorem 2.7 gives the following result.

Theorem 2.21. If G is a graph of order n ≤ 3, then the following statements hold:

i. If n ≤ 2, then δ(C(G)) = 0 .

ii. If G is a set of three isolated vertices, then δ(C(G)) = 3/4.

iii. If G is an edge and an isolated vertex, then δ(C(G)) = 1.

iv. If G = P3, then δ(C(P3)) = 5/4.

v. If G = K3, then δ(C(K3)) = 3/2.

Theorem 2.22. If G is a graph of order n ≥ 4, then

δ(C(G)) =
1

2
diamC(G).

Proof. Since Theorem 2.20 relates diamC(G) and diamV (C(G)), we have the following cases.
Case i. diamV (C(G)) = 1. By the argument in the proof of Theorem 2.20, we have C(G) = Kn and diamC(G) = 2, and

Theorem 2.7 gives δ(C(G)) = 1 = 1
2 diamC(G).

Case ii. diamV (C(G)) = 2. Theorem 2.19 gives G = Sn. Let v0, v1, v2, v3 ∈ V (G) be such that v0vi ∈ E(G) for 1 ≤ i.
Let x, y ∈ C(G) be the midpoints of v1v2 and v0v0,3, respectively. Note that dC(G)(x, y) = 3 = diamC(G). Let P and P ′ be
two geodesics joining x and y such that P ∩ V (C(G)) = {v1, v3, v0,3} and P ′ ∩ V (C(G)) = {v0, v0,2, v2}. Let z and p′ be the
midpoints of P and P ′, respectively, and consider the geodesic triangle T = {[xz], [yz], P ′}. We have

3

2
=

1

2
diamC(G) ≥ δ(C(G)) ≥ δ(T ) ≥ dC(G)(p

′, [xz] ∪ [yz]) = dC(G)(p
′, {x, y}) =

3

2
.

Case iii. diamV (C(G)) = 3. We have two cases.
Case iii-A. G contains either H0 or H1 as subgraphs. Suppose that H1 ⊂ G. Let x ∈ C(G) be the midpoint of

v3v
3,4 and y = v1,2. Let P and P ′ be geodesics joining x and y such that P ∩ V (C(G)) = {v1,2, v2, v4, v3,4} and P ′ ∩

V (C(G)) = {v1,2, v1, v1,3, v3}. Let z and p′ be the midpoints of P and P ′, respectively, and consider the geodesic trian-
gle T = {[xz], [yz], P ′}. We have

2dC(G)(p
′, [xz] ∪ [yz]) = 2dC(G)(p

′, {x, y}) = dC(G)(p
′, x) + dC(G)(p

′, y) = diamC(G)

and so,
1

2
diamC(G) ≥ δ(C(G)) ≥ δ(T ) ≥ dC(G)(p

′, [xz] ∪ [yz]) =
1

2
diamC(G).

Therefore, δ(C(G)) = 1
2 diamC(G). The proof is similar if H2 ⊂ G.

Case iii-B. G does not contain H0 or H1 as subgraphs. Theorem 2.6 gives δ(C(G)) ≤ 3/2. Let us prove the converse
inequality. Let u, v ∈ V (C(G)) such that dC(G)(u, v) = 3. We have two cases.

Case iii-B-1. v ∈ V (G) and u ∈ V (E). Let u1, u2 ∈ V (G) such that u1u, u2u ∈ E(C(G)). Note that v, u1, u2 are the vertices
in the subgraph K3. Since n ≥ 4, if w ∈ V (G), then vw, u1w, u2w 6∈ E(G). Since C(K3) = C6 is an isometric subgraph in
C(G), Theorem 2.7 and Proposition 2.4 give δ(C(G)) ≥ δ(C6) = 3/2.

Case iii-B-2. u, v ∈ V (E). Let v1, v2, u1, u2,∈ V (G) such that uui, vvi ∈ E(C(G)) for i = 1, 2. Since dC(G)(u, v) = 3, there
exist i, j such that uivj 6∈ E(G). By symmetry, we can assume that u2v2 6∈ E(G).

If u1v1 ∈ E(G), then u1v2, u2v1 6∈ E(G). Let P and P ′ be two geodesics joining u and v such that P ∩ V (C(G)) =

{u, u1, v2, v} and P ′ ∩ V (C(G)) = {u, u2, v1, v}. If u1v1 6∈ E(G), consider P and P ′ such that P ∩ V (C(G)) = {u, u1, v1, v} and
P ′ ∩ V (C(G)) = {u, u2, v2, v}. Let p and z be the midpoints of P and P ′, respectively, and consider the geodesic triangle
T = {[uz] ∪ [vz] ∪ P}. We have

δ(C(G)) ≥ δ(T ) ≥ dC(G)(p, [uz] ∪ [vz]) =
3

2
=

1

2
diamC(G).

Case iv. diamV (C(G)) = 4. Let v1, v2, v3, v4 ∈ V (G) be the vertices in the induced subgraph K4 ⊂ G. Let P be
the geodesic joining v1,2 and v3,4 such that P ∩ V (C(G)) = {v1,2, v1, v1,4, v4, v3,4}. If we consider the geodesic triangle
T = {[v1,2v2,3], [v2,3v3,4], P}, then

1

2
diamC(G) ≥ δ(C(G)) ≥ δ(T ) ≥ dC(G)

(
v1,4, [v1,2v2,3] ∪ [v2,3v3,4]

)
= dC(G)(v

1,4, {v1,2, v3,4}) = 2 =
1

2
diamC(G).
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Theorems 2.19, 2.20 and 2.22 have the following consequence.

Theorem 2.23. The following graphs have the following values of δ:

• The path graph Pn satisfies δ(C(Pn)) = 3/2 for every n ≥ 4.

• The cycle graph Cn satisfies δ(C(Cn)) = 3/2 for every n ≥ 3.

• The complete graph Kn satisfies δ(C(Kn)) = 2 for every n ≥ 4.

• The complete bipartite graph Km,n satisfies δ(C(Km,n)) = 3/2 for every m, n ≥ 2.

• The wheel graph Wn satisfies δ(C(Wn)) = 7/4 for every n ≥ 5.

• The star graph Sn satisfies δ(C(Sn)) = 3/2 for every n ≥ 4.

• The Petersen graph P satisfies δ(C(P )) = 3/2.
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