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Abstract

A 0-1 matrix M is saturating for a 0-1 matrix P if M does not contain a submatrix that can be turned into P by flipping
any number of its 1-entries to 0-entries, and flipping any 0-entry of M to 1-entry introduces a copy of P. Matrix M is
semisaturating for P if flipping any 0-entry of M to 1-entry introduces a new copy of P, regardless of whether M originally
contains P or not. The functions ex(n; P) and sat(n; P) are the maximum and minimum possible number of 1-entries a n x n
0-1 matrix saturating for P can have, respectively. The function ssat(n; P) is the minimum possible number of 1-entries an
n X n 0-1 matrix semisaturating for P can have. The function ex(n; P) has been studied for decades, while investigation on
sat(n; P) and ssat(n; P) was initiated recently. In this paper, a nontrivial generalization of results regarding these functions
to multidimensional 0-1 matrices is made. In particular, the exact values of ex(n; P, d) and sat(n; P, d) are found when P is
a d-dimensional identity matrix. Finally, a necessary and sufficient condition for a multidimensional 0-1 matrix to have a
bounded semisaturation function is given.
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1. Introduction

Extremal combinatorics on pattern avoidance is a central topic in graph theory and combinatorics. In this broad research
area, the key question usually being asked is: how dense an object could be such that it avoids a forbidden or excluded
object. In this paper, the object of interest are multidimensional 0-1 matrices. A matrix is called a 0-1 matrix if all its
entries are either 0 or 1. We say that a 0-1 matrix A contains another 0-1 matrix P if A has a submatrix that can be
transformed to P by flipping any number of 1-entries to 0-entries. Otherwise, A avoids P. With this context, the density of
concern is the number of 1-entries of a 0-1 matrix, which is sometimes called its weight. Following these, the key question
can be formulated as seeking the asymptotic behavior of function ex(ny,ns,...,ng4; P), defined as the maximum weight
of a d-dimensional n; x ns X ... x ng 0-1 matrix that avoids another d-dimensional 0-1 matrix P. This problem can be
seen as finding the maximum possible weight of a d-dimensional n; x ny x ... x ng 0-1 matrix A that is saturating for
0-1 matrix P, i.e., A does not contain P and flipping any 0-entry of A to 1-entry introduces a copy of P in A. It is then
natural to also ask for the minimum possible weight of a d-dimensional n; x ny x . ..n4 0-1 matrix saturating for P, denoted

sat(ny,na,...,nq; P). A variation of saturation is semisaturation: A is semisaturating for P if flipping any 0-entry of A to
1-entry creates a new copy of P in A. The corresponding extremal function is denoted ssat(ni,na, ..., ng; P): the minimum
possible weight of a d-dimensional n; x ny X ... X ng 0-1 matrix semisaturating for P. When n; = n, = ... = ng4, we use

the simplified notations ex(n; P, d), sat(n; P,d), and ssat(n; P, d). By definition
ssat(ni,na,...,ng; P) < sat(ni,na,...,ng; P) < ex(ny,na,...,ng; P).

In this paper we present two major results. First, for P as a d-dimensional identity matrix we give the exact value of
functions ex(nq1,ns,...,nq; P) and sat(ny,na,...,nq; P), which are shown to be identical. This together with the implied
structure of d-dimensional 0-1 matrices saturating for P generalize the two-dimensional result by Brualdi and Cao [3] and
Tsai’s discovery that every maximal antichain in a strict chain product poset is also maximum [17]. Second, as a partial
extension to Fulek and Keszegh’s constant versus linear dichotomy for semisaturation function of two-dimensional 0-1
matrices [5], we give the necessary and sufficient condition for a d-dimensional 0-1 matrix to have bounded semisaturation
function.

In Section 2 we review previous works relevant to our study. Section 3 contains terminologies used throughout the
paper. Our results and proofs are given in Section 4.
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2. Related works

The extremal theory of 0-1 matrix started around 1990 in studies of computational and discrete geometry problems.
Mitchell presented an algorithm for finding the shortest L; path between two points in a rectilinear grid with obstacles [14].
Its time complexity was bounded above via certain matrices’ extremal function exz(n; P) given by Bienstock and Gyéri [2].
In 1959, Erdés and Moser asked for the maximum number of unit distances among the vertices of a convex n-gon [4]. In
1990, Fiiredi gave the first upper bound O(nlog, n) that is tighter than n' < via the extremal theory [6]. Pach and Sharir
used extremal functions ex(n; P) to bound the number of pairs of non-intersecting and vertically visible line segments [15].
One of the latest applications is the resolution of Stanley-Wilf Conjecture in enumerative combinatorics [11,13] in 2004
as Marcus and Tardos showed that every two-dimensional permutation matrix’s extremal function ex(n; P) is linear [13].
After applying to geometry-related problems mentioned previously, Fiiredi and Hajnal [7] and Tardos [16] asymptotically
decide the extremal functions ex(n; P) for every 0-1 matrix with no more than four 1-entries.

The extremal theory also extends from two-dimensional to multidimensional 0-1 matrices. Extending Marcus and
Tardos’ result above on two-dimensional permutation matrices [13], Klazar and Marcus proved that the extremal function
ex(n; P) of a d-dimensional k x ... x k permutation matrix is O(n?~!) [12]. Geneson and Tian gave nontrivial bounds on
the extremal function of block permutation matrices, i.e., Kronecker products of permutation matrices and block matrices
with no 0-entry [10], extending Geneson’s result on two-dimensional tuple permutation matrices [9]. In another direction,
they substantially improved the limit inferior and limit superior of the sequence % for tuple permutation matrices
and permutation matrices.

Recently, Brualdi and Cao initiated the study of the saturation problem for two-dimensional 0-1 matrices [3]. They
proved that every maximal matrix avoiding the identity matrix I, has the same weight. Fulek and Keszegh found a
general upper bound on the saturation function in terms of the dimensions of P, and showed that the saturation function
is either bounded or linear [5]. Geneson found that almost all permutation matrices have bounded saturation function [8],
followed by Berendsohn’s full characterization of permutation matrices with bounded saturation function [1]. In addition
to the above, we are also motivated by Geneson’s result for d-dimensional » x s x 1 x ... x 1 0-1 matrices, and his question
about the saturation function of d-dimensional permutation matrices [8].

3. Notations

For a positive integer d, let [d] denote {1,2,...,d}. We denote a d-dimensional ny x ne X ... x ng matrix by 4 = (az,.... 2,),
where z; € [n;] for each i € [d]. A k-dimensional cross section L of a d-dimensional ny x ny X ... X ng matrix A is the set of
all entries of A whose coordinates of a fixed set C, of d — k dimensions are fixed. A cross section L of matrix A is a face if
for every i € C, the value of the i*" coordinate is fixed to some p; € {1,7;}. An i-row of matrix A is a cross section L with
Cp = [d] — {i}.

Let z and o be an 0-entry and an 1-entry of 0-1 matrices M and P, respectively. If flipping z to 1-entry introduces a new
copy of P in M in which the new 1-entry matches o, then we say z potentially matches o.

Given a d-dimensional matrix A, entries a,,, ., and a,, ., belong to the same diagonal if

T1 —Y1 =22 —Y2=...=Td — Yd-

Diagonal is same as shape in [17]. An n; x ny X ...ng matrix has Hie[d] n; — Hie[d] (n; — 1) diagonals. An entry a,, . .,
is below or above another entry a,, ., if z; > y; for every i € [d] or z; < y; for every i € [d], respectively. An entry
Qyy,...x, 1S semibelow or semiabove another entry a,, . . ., if z; > y,; for every i € [d] or z; < y; for every i € [d], respectively.
Since two-dimensional matrices are imagined as smaller indices being left and top if regarded in geometric space, our
definitions of (semi)above or (semi)below are intuitive. Two entries are comparable if one of them is above the other. A
d-dimensional staircase generalized from [5] and zigzag path in [3] is a set of pairwise incomparable entries in A. When
the set is maximal, it is denoted complete staircase. Note that staircase in [5] means complete staircase here. From [17],
every complete staircase has size Hie[d] n; — Hie[d] (n; — 1) and intersects with every diagonal at exactly one entry, using
the simple to prove fact that a complete staircase contains exactly one 1-entry in every diagonal. An entry e; is above or
below a complete staircase S if S has an entry e, such that e; is above or below e,, respectively. Every entry in A is either
above, below, or part of any complete staircase .S of A. A shell is the unique complete staircase containing the corner entry
Gn,,....ny- Similar to 0-1 matrices, the weight of a staircase is the number of 1-entries it has.
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4. New results

The following extension from Lemma 3.3 of [5] is handy in dealing with d-dimensional identity matrices.

Lemma 4.1. Let P be a d-dimensional l; x ... x ly 0-1 matrix with l; > 1 for each i € [d]. The only 1-entry in P’s shell is the
corner py,...1,. Then in any d-dimensional 0-1 matrix M saturating for P there is a d-dimensional complete staircase S that
is all 1, and all entries below S are 0-entries that potentially match py, ..,

Proof. We claim that the set of bottommost 1-entries from all diagonals of M forms a d-dimensional complete staircase.
First we show that if 21, 29, ..., z; are consecutive 0-entries of a diagonal D of M where z; is the bottom entry of D, then
they all potentially match p;, . ;,. This will imply that every diagonal of M contains at least one 1-entry, because the top
entry of any diagonal does not potentially match p;,_;,. Entry z; is not above any other entry of M, so it must potentially
match p;, . ;,. Suppose there is a positive integer i € [k — 1] such that z; potentially matches p;, . ;, and z; ;1 does not. Let
P’ be obtained from P by removing its shell. In M there must be a copy A of P’ that is above z;. There must also be an
l-entry a of M below z;11. The copy A and the 1-entry a form a copy of P, contradicting the assumption that M avoids P.
We are left to prove that no bottommost 1-entry o; of a diagonal D; is above the bottommost 1-entry o, of any other
diagonal D,. If 0, is above 05, then let z; be the 0-entry immediately below o; within D;. Entry z; potentially matches
P, ,...1, and is semiabove 0., thus there is a copy of P in M where o, matches p;, . . O

Let A and B be d-dimensional /1 x [y x...Xx [z and k1 x ko X ... x kg 0-1 matrices, respectively. The diagonal concatenation
M of A and B is a d-dimensional (I; + k1) x (I2 + k2) x ... x (I + kq) 0-1 matrix, such that my, 4, 2, = Qo1 20,0, if T <1
for every i € [d], Myy 2y,...50 = bu1—l1,22—1la,....wa—1y if i +1 < z; for every i € [d], and my, .., = 0 otherwise.

The Lemma below generalizes Theorem 1.9 of [5].

Lemma 4.2. Let A be a d-dimensional 1 x Iy x ... x lg 0-1 matrix, I be a d-dimensional 1 x ... x 1identity 0-1 matrix, P’
be the diagonal concatenation of A and I, and P be the diagonal concatenation of P' and I. Then

sat(ni,na,...,ng; P) = sat(ny — 1,ne — 1,. —1; P+ H n; — H i—1)
1€[d) i€[d]
ex(ny,na,...,ng; P) =ex(ng —1,na — 1,.. —|—Hnl H (n;—1)
1€[d] 1€[d)

where l; + 2 < n; for each i € [d].

Proof. Given a d-dimensional n; x ng x ...ng 0-1 matrix M, let S denote the shell of M and let M’ denote the (n; — 1) x
(ng —1) X ...(nqg — 1) submatrix of M that does not contain any entry of S. We show that if S is all 1 and M’ is saturating
for P’, then M is saturating for P. This implies that

sat(ny,na,...,ng P) < sat(ny — 1,np — -1;P)+ 1_[712 H (n; — 1)
i€[d] i€[d]
and
ex(ni,na,...,ng; P) > ex(ng —1,ny —1,.. )+ Hnl H (n; —1).
i€ld] i€[d]

Indeed, M clearly avoids P. All 0-entries of M lie in M’, so flipping any of them creates a copy P” of P’ in M’. The copy P”
and S filled with 1-entries form a copy of P, so M is saturating for P.
We are left to prove that

sat(ny,na,...,ng; P) > sat(ny — 1,np — -1;P)+ Hnl H (n; — 1)
i€(d] i€[d]
and
ex(ni,na,...,ng; P) <ex(ny —1l,ny —1,.. )+ Hnl H (n; —1).
i€[d] i€[d]

Given a matrix N saturating for P, apply Lemma 4.1 to get a d-dimensional complete staircase 7' of N that is all 1 and
all entries below 1" are 0-entries that potentially match p;, . ;,. The complete staircase T" partitions entries of N into Ny,
N>, and T such that every entry of N; and N; is above and below T, respectively. Obtain a d-dimensional matrix N’ from
N by deleting T followed by shifting every entry of N, upwards along the diagonal it belongs to. It suffices to show that
N’ is saturating for P’. Matrix N’ clearly avoids P’. It could be seen that every 0-entry of N, potentially matches the
corner p; , ,; , of P'. Moreover every 0-entry of V; potentially matches some 1-entry of P, because in N together with
T flipping any of them to 1-entry introduces a copy of P. O



S. F. Tsai / Discrete Math. Lett. 11 (2023) 91-95 94

By successive application of Lemma 4.1 and Lemma 4.2 to the d-dimensional (k+1) x (k+1) x...x (k+1) identity matrix,
we obtain the following generalization of Brualdi and Cao’s result on 0-1 matrices saturating for identity matrices [3]. It
also extends Tsai’s discovery that every maximal antichain in a strict chain product poset is also maximum [17], and implies
that the greedy algorithm to generate 0-1 matrices saturating for identity matrix [3] also works for multidimensional
matrices.

Theorem 4.1. Let P be a d-dimensional (k+1) x (k+1) x ... x (k+ 1) identity matrix. Suppose k < n; for each i € [d] and
k <n. Then

sat(ny,na,...,ng; P) =ex(ni,na,...,ng; P) = H n; — H (n; — k)
i€[d] i€[d]

sat(n; P,d) = ex(n; P,d) = n® — (n — k) = O(nd™1).

Moreover, the 1-entries of every d-dimensional ni; X ny X ... X ng 0-1 matrix saturating for P can be decomposed into k d-
dimensional staircases with weights [ [;c(q ni—IL;c(q)(ni—1), [Licig (ni—1) = TLiciq(ni=2)s - - [igqy (ni—k+1) = T;g (g (ni—k),
respectively.

All remaining results are extended from Fulek and Keszegh’s work on two-dimensional 0-1 matrices [5]. For example,
the following extends the upper bound of O(n) on saturation function of two-dimensional 0-1 matrices to the upper bound
of O(n?~1) on saturation function of d-dimensional 0-1 matrices.

Lemma 4.3. For any d-dimensional 0-1 matrix P, sat(n; P,d) = O(n?™1).

Proof. If P does not contain any 1-entry, then sat(n; P,d) = 0. Otherwise let the dimensions of P be 1 x I3 x ... x l4, and
let py, 2s....2, De an l-entry. Construct a d-dimensional n x n x ... x n 0-1 matrix M saturating for P as follows. For any
entry my; . .1, setit to0if and only if z; < 2} <n—(I; — ;) for each i € [d]. Clearly M avoids P and flipping any 0-entry
of M in l-entry makes it contain P. The weight of M isn? — (n —l; + 1)(n —la +1)...(n — g+ 1) = O(n4=1). O

The result below is naturally extended from two-dimensional 0-1 matrices.

Lemma 4.4. Let P be the diagonal concatenation of non-zero d-dimensional 0-1 matrices A and B. Then sat(n; P,d) =
O(nd-1).

Proof. We show by contradiction that every i-row of a d-dimensional 0-1 matrix M saturating for P contains at least one
1-entry where i € [d]. Suppose M has an i-row r which is all 0. Flipping the first or last entry of r to 1 creates a copy of P
where the new 1-entry matches an 1-entry of A or B, respectively. Thus there exist two adjacent entries z; and z, of r such
that flipping z; to 1-entry creates a copy P’ of P where z; matches an 1-entry of A, and flipping 25 to 1-entry creates a copy
P" of P where z; matches an 1-entry of B. The copy of B in P’ and the copy of A in P” form a copy of P, i.e., M contains
P. L

Fulek and Keszegh showed in [5] that for a two-dimensional 0-1 matrix to have bounded semisaturation function,
it has to have an l-entry that is the only 1-entry in its row and column. Below we present a necessary condition for a
d-dimensional 0-1 matrix to have o(n¢~%) semisaturation function for any d’ € [d — 1].

Lemma 4.5. Let d’ < d. If a non-zero d-dimensional 0-1 matrix P does not have any 1-entry which is the only 1-entry in
every d'-dimensional cross section of P it belongs to, then ssat(n; P,d) = Q(n%= ).

Proof. Suppose M is semisaturating for P. Say a 0-entry and an 1-entry of M are connected if they are in the same d’-
dimensional cross section of M. Each 0-entry is connected with at least one 1-entry, and each 1-entry is connected with at
most (%)(n? — 1) 0-entries. So the weight of M is at least

nd

—_— = ndid, .
@y o)

With the above result, we characterize d-dimensional 0-1 matrices with bounded semisaturation function.

Theorem 4.2. Given a d-dimensional pattern P, ssat(n; P,d) = O(1) if and only all the following properties hold for P:

(i) For any d' € [d — 1], every d'-dimensional face f of P contains an l-entry o that is the only l-entry in every (d — 1)-
dimensional cross section that is orthogonal to f and intersects f at o. (ii) P contains an 1-entry that is the only 1-entry in
every (d — 1)-dimensional cross section it belongs to.
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Proof. Let M be a d-dimensional 0-1 matrix saturating for P. Suppose P does not have property (i), i.e., for some d’' € [d—1]
P has a d’-dimensional face f that does not contain any 1-entry o that is the only 1-entry in every (d — 1)-dimensional cross
section that is orthogonal to f and intersects f at o. Let the counterpart of f in M be f’. If f is all 0, then f’ must be all 1.
Otherwise, we say a 0-entry in f” is connected to an 1-entry in M — f’ if they are in the same (d—1)-dimensional cross section.
Each 0-entry of f’ is connected to at least one 1-entry. Each 1-entry of M — f’ isin d’ (d — 1)-dimensional cross sections
that is orthogonal to f’, and each of them contains at most n? ~! 0-entries of f’. Thus each 1-entry of M — f’ is connected
to at most d’(n? 1) 0-entries in f’. Suppose f’ has a O-entries, then M has at least (n? — ) + d,(ni‘,,l) > d,(sz,/,l) = 0O(n)
1-entries. Otherwise suppose P does not have property (ii), i.e., it does not contain any 1-entry that is the only 1-entry in

every (d — 1)-dimensional cross section it belongs to. By Lemma 4.5 ssat(n; P,d) = Q(n).

We are left to prove that ssat(n; P,d) = O(1) if P has all the properties. Suppose P’s dimensions are l; x I X ... X lg.
We construct an n x n x ... x n 0-1 matrix M’ semisaturating for P with O(1) 1-entries as follows. Entry mg,l Ay, 181 if
and only if for each i € [d], I} < l; or n + 1 —I; < I;. Let an 1-entry of P with property (ii) be p,, o,,....0,- For a given 0-entry

"\ 22.....24» SUppose flipping it to 1-entry produces another matrix M". If z; € [l;,n + 1 — [;] for each i € [d] then for each
dimension i we slice M" by indices {1,2,...,0, — 1,z;,n —1l; +0; + 1,n—1; + 0; + 2,...,n}, and the resulting I; x ... x Iy

submatrix contains P.
If z; ¢ [l;,n + 1 —[;] for some i € [d], there exists a partitioning [d] = X UY U Z such that X UY # 0, Z # (), and Vi € [d]

zi <, ifieX
n+1-1 <z, ifieY

z; € [li,n+1—1;], otherwise

Let f be the face of P whose i*" coordinate is fixed to 1 or [; if i € X or i € Y, respectively, and for each i € Z let the it
coordinate of the 1-entry contained in f with property (i) be /. We then slice M by indices I; for each i € [d] to obtain a
ly X ...lg submatrix containing P: foreachi € X, I; = {z;,n—1;+2,n—1;+3,...,n};foreachi € Y, I, = {1,2,...,l; — 1, z;};
otherwise I, = {1,2,...,l/ — 1,z;,n—0; + 1/ +1,...,n}. O

It would be interesting to investigate what the dichotomy of constant versus linear translates to when moving from
(semi)saturation function of two-dimensional 0-1 matrices to (semi)saturation function of higher dimensional 0-1 matrices.
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