Research Article

Saturation of multidimensional 0-1 matrices

Shen-Fu Tsai*
Department of Mathematics, National Central University, Taiwan

(Received: 4 September 2022. Received in revised form: 24 October 2022. Accepted: 19 January 2023. Published online: 2 March 2023.)
(C) 2023 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

A 0-1 matrix M is saturating for a $0-1$ matrix P if M does not contain a submatrix that can be turned into P by flipping any number of its 1 -entries to 0 -entries, and flipping any 0 -entry of M to 1 -entry introduces a copy of P. Matrix M is semisaturating for P if flipping any 0 -entry of M to 1-entry introduces a new copy of P, regardless of whether M originally contains P or not. The functions $e x(n ; P)$ and $\operatorname{sat}(n ; P)$ are the maximum and minimum possible number of 1-entries a $n \times n$ $0-1$ matrix saturating for P can have, respectively. The function $\operatorname{ssat}(n ; P)$ is the minimum possible number of 1-entries an $n \times n$ 0-1 matrix semisaturating for P can have. The function $e x(n ; P)$ has been studied for decades, while investigation on $s a t(n ; P)$ and $s s a t(n ; P)$ was initiated recently. In this paper, a nontrivial generalization of results regarding these functions to multidimensional 0-1 matrices is made. In particular, the exact values of $e x(n ; P, d)$ and $\operatorname{sat}(n ; P, d)$ are found when P is a d-dimensional identity matrix. Finally, a necessary and sufficient condition for a multidimensional $0-1$ matrix to have a bounded semisaturation function is given.

Keywords: 0-1 matrix; forbidden pattern; excluded submatrix; multidimensional matrix; saturation.
2020 Mathematics Subject Classification: 05D99.

1. Introduction

Extremal combinatorics on pattern avoidance is a central topic in graph theory and combinatorics. In this broad research area, the key question usually being asked is: how dense an object could be such that it avoids a forbidden or excluded object. In this paper, the object of interest are multidimensional $0-1$ matrices. A matrix is called a $0-1$ matrix if all its entries are either 0 or 1 . We say that a $0-1$ matrix A contains another $0-1$ matrix P if A has a submatrix that can be transformed to P by flipping any number of 1-entries to 0 -entries. Otherwise, A avoids P. With this context, the density of concern is the number of 1-entries of a 0-1 matrix, which is sometimes called its weight. Following these, the key question can be formulated as seeking the asymptotic behavior of function $e x\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)$, defined as the maximum weight of a d-dimensional $n_{1} \times n_{2} \times \ldots \times n_{d} 0-1$ matrix that avoids another d-dimensional 0-1 matrix P. This problem can be seen as finding the maximum possible weight of a d-dimensional $n_{1} \times n_{2} \times \ldots \times n_{d} 0-1$ matrix A that is saturating for $0-1$ matrix P, i.e., A does not contain P and flipping any 0 -entry of A to 1 -entry introduces a copy of P in A. It is then natural to also ask for the minimum possible weight of a d-dimensional $n_{1} \times n_{2} \times \ldots n_{d} 0-1$ matrix saturating for P, denoted $\operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)$. A variation of saturation is semisaturation: A is semisaturating for P if flipping any 0 -entry of A to 1 -entry creates a new copy of P in A. The corresponding extremal function is denoted $\operatorname{ssat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)$: the minimum possible weight of a d-dimensional $n_{1} \times n_{2} \times \ldots \times n_{d} 0-1$ matrix semisaturating for P. When $n_{1}=n_{2}=\ldots=n_{d}$, we use the simplified notations $\operatorname{ex}(n ; P, d)$, sat $(n ; P, d)$, and $\operatorname{ssat}(n ; P, d)$. By definition

$$
\operatorname{ssat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right) \leq \operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right) \leq e x\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)
$$

In this paper we present two major results. First, for P as a d-dimensional identity matrix we give the exact value of functions $e x\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)$ and $\operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)$, which are shown to be identical. This together with the implied structure of d-dimensional 0-1 matrices saturating for P generalize the two-dimensional result by Brualdi and Cao [3] and Tsai's discovery that every maximal antichain in a strict chain product poset is also maximum [17]. Second, as a partial extension to Fulek and Keszegh's constant versus linear dichotomy for semisaturation function of two-dimensional 0-1 matrices [5], we give the necessary and sufficient condition for a dimensional 0-1 matrix to have bounded semisaturation function.

In Section 2 we review previous works relevant to our study. Section 3 contains terminologies used throughout the paper. Our results and proofs are given in Section 4.
*E-mail address: parity@math.ncu.edu.tw

2. Related works

The extremal theory of 0-1 matrix started around 1990 in studies of computational and discrete geometry problems. Mitchell presented an algorithm for finding the shortest L_{1} path between two points in a rectilinear grid with obstacles [14]. Its time complexity was bounded above via certain matrices' extremal function ex $(n ; P)$ given by Bienstock and Győri [2]. In 1959, Erdős and Moser asked for the maximum number of unit distances among the vertices of a convex n-gon [4]. In 1990, Füredi gave the first upper bound $O\left(n \log _{2} n\right)$ that is tighter than $n^{1+\epsilon}$ via the extremal theory [6]. Pach and Sharir used extremal functions $e x(n ; P)$ to bound the number of pairs of non-intersecting and vertically visible line segments [15]. One of the latest applications is the resolution of Stanley-Wilf Conjecture in enumerative combinatorics [11, 13] in 2004 as Marcus and Tardos showed that every two-dimensional permutation matrix's extremal function $e x(n ; P)$ is linear [13]. After applying to geometry-related problems mentioned previously, Füredi and Hajnal [7] and Tardos [16] asymptotically decide the extremal functions $e x(n ; P)$ for every 0-1 matrix with no more than four 1-entries.

The extremal theory also extends from two-dimensional to multidimensional 0-1 matrices. Extending Marcus and Tardos' result above on two-dimensional permutation matrices [13], Klazar and Marcus proved that the extremal function $e x(n ; P)$ of a d-dimensional $k \times \ldots \times k$ permutation matrix is $O\left(n^{d-1}\right)$ [12]. Geneson and Tian gave nontrivial bounds on the extremal function of block permutation matrices, i.e., Kronecker products of permutation matrices and block matrices with no 0-entry [10], extending Geneson's result on two-dimensional tuple permutation matrices [9]. In another direction, they substantially improved the limit inferior and limit superior of the sequence $\frac{e x(n ; P)}{n^{d-1}}$ for tuple permutation matrices and permutation matrices.

Recently, Brualdi and Cao initiated the study of the saturation problem for two-dimensional 0-1 matrices [3]. They proved that every maximal matrix avoiding the identity matrix I_{k} has the same weight. Fulek and Keszegh found a general upper bound on the saturation function in terms of the dimensions of P, and showed that the saturation function is either bounded or linear [5]. Geneson found that almost all permutation matrices have bounded saturation function [8], followed by Berendsohn's full characterization of permutation matrices with bounded saturation function [1]. In addition to the above, we are also motivated by Geneson's result for d-dimensional $r \times s \times 1 \times \ldots \times 10-1$ matrices, and his question about the saturation function of d-dimensional permutation matrices [8].

3. Notations

For a positive integer d, let $[d]$ denote $\{1,2, \ldots, d\}$. We denote a d-dimensional $n_{1} \times n_{2} \times \ldots \times n_{d}$ matrix by $A=\left(a_{x_{1}, \ldots, x_{d}}\right)$, where $x_{i} \in\left[n_{i}\right]$ for each $i \in[d]$. A k-dimensional cross section L of a d-dimensional $n_{1} \times n_{2} \times \ldots \times n_{d}$ matrix A is the set of all entries of A whose coordinates of a fixed set C_{L} of $d-k$ dimensions are fixed. A cross section L of matrix A is a face if for every $i \in C_{L}$, the value of the $i^{\text {th }}$ coordinate is fixed to some $p_{i} \in\left\{1, n_{i}\right\}$. An i-row of matrix A is a cross section L with $C_{L}=[d]-\{i\}$.

Let z and o be an 0-entry and an 1-entry of 0-1 matrices M and P, respectively. If flipping z to 1-entry introduces a new copy of P in M in which the new 1-entry matches o, then we say z potentially matches o.

Given a d-dimensional matrix A, entries $a_{x_{1}, \ldots, x_{d}}$ and $a_{y_{1}, \ldots, y_{d}}$ belong to the same diagonal if

$$
x_{1}-y_{1}=x_{2}-y_{2}=\ldots=x_{d}-y_{d} .
$$

Diagonal is same as shape in [17]. An $n_{1} \times n_{2} \times \ldots n_{d}$ matrix has $\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)$ diagonals. An entry $a_{x_{1}, \ldots, x_{d}}$ is below or above another entry $a_{y_{1}, \ldots, y_{d}}$ if $x_{i}>y_{i}$ for every $i \in[d]$ or $x_{i}<y_{i}$ for every $i \in[d]$, respectively. An entry $a_{x_{1}, \ldots, x_{d}}$ is semibelow or semiabove another entry $a_{y_{1}, \ldots, y_{d}}$ if $x_{i} \geq y_{i}$ for every $i \in[d]$ or $x_{i} \leq y_{i}$ for every $i \in[d]$, respectively. Since two-dimensional matrices are imagined as smaller indices being left and top if regarded in geometric space, our definitions of (semi)above or (semi)below are intuitive. Two entries are comparable if one of them is above the other. A d-dimensional staircase generalized from [5] and zigzag path in [3] is a set of pairwise incomparable entries in A. When the set is maximal, it is denoted complete staircase. Note that staircase in [5] means complete staircase here. From [17], every complete staircase has size $\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)$ and intersects with every diagonal at exactly one entry, using the simple to prove fact that a complete staircase contains exactly one 1-entry in every diagonal. An entry e_{1} is above or below a complete staircase S if S has an entry e_{2} such that e_{1} is above or below e_{2}, respectively. Every entry in A is either above, below, or part of any complete staircase S of A. A shell is the unique complete staircase containing the corner entry $a_{n_{1}, \ldots, n_{d}}$. Similar to 0-1 matrices, the weight of a staircase is the number of 1-entries it has.

4. New results

The following extension from Lemma 3.3 of [5] is handy in dealing with d-dimensional identity matrices.
Lemma 4.1. Let P be a d-dimensional $l_{1} \times \ldots \times l_{d} 0-1$ matrix with $l_{i}>1$ for each $i \in[d]$. The only 1-entry in P 's shell is the corner $p_{l_{1}, \ldots, l_{d}}$. Then in any d-dimensional $0-1$ matrix M saturating for P there is a d-dimensional complete staircase S that is all 1 , and all entries below S are 0 -entries that potentially match $p_{l_{1}, \ldots, l_{d}}$.

Proof. We claim that the set of bottommost 1-entries from all diagonals of M forms a d-dimensional complete staircase. First we show that if $z_{1}, z_{2}, \ldots, z_{k}$ are consecutive 0 -entries of a diagonal D of M where z_{1} is the bottom entry of D, then they all potentially match $p_{l_{1}, \ldots, l_{d}}$. This will imply that every diagonal of M contains at least one 1-entry, because the top entry of any diagonal does not potentially match $p_{l_{1}, \ldots, l_{d}}$. Entry z_{1} is not above any other entry of M, so it must potentially match $p_{l_{1}, \ldots, l_{d}}$. Suppose there is a positive integer $i \in[k-1]$ such that z_{i} potentially matches $p_{l_{1}, \ldots, l_{d}}$ and z_{i+1} does not. Let P^{\prime} be obtained from P by removing its shell. In M there must be a copy A of P^{\prime} that is above z_{i}. There must also be an 1-entry a of M below z_{i+1}. The copy A and the 1-entry a form a copy of P, contradicting the assumption that M avoids P.

We are left to prove that no bottommost 1-entry o_{1} of a diagonal D_{1} is above the bottommost 1-entry o_{2} of any other diagonal D_{2}. If o_{1} is above o_{2}, then let z_{1} be the 0 -entry immediately below o_{1} within D_{1}. Entry z_{1} potentially matches $p_{l_{1}, \ldots, l_{d}}$ and is semiabove o_{2}, thus there is a copy of P in M where o_{2} matches $p_{l_{1}, \ldots, l_{d}}$.

Let A and B be d-dimensional $l_{1} \times l_{2} \times \ldots \times l_{d}$ and $k_{1} \times k_{2} \times \ldots \times k_{d} 0-1$ matrices, respectively. The diagonal concatenation M of A and B is a d-dimensional $\left(l_{1}+k_{1}\right) \times\left(l_{2}+k_{2}\right) \times \ldots \times\left(l_{d}+k_{d}\right) 0-1$ matrix, such that $m_{x_{1}, x_{2}, \ldots, x_{d}}=a_{x_{1}, x_{2}, \ldots, x_{d}}$ if $x_{i} \leq l_{i}$ for every $i \in[d]$, $m_{x_{1}, x_{2}, \ldots, x_{d}}=b_{x_{1}-l_{1}, x_{2}-l_{2}, \ldots, x_{d}-l_{d}}$ if $l_{i}+1 \leq x_{i}$ for every $i \in[d]$, and $m_{x_{1}, \ldots, x_{d}}=0$ otherwise.

The Lemma below generalizes Theorem 1.9 of [5].
Lemma 4.2. Let A be a d-dimensional $l_{1} \times l_{2} \times \ldots \times l_{d} 0$-1 matrix, I be a d-dimensional $1 \times \ldots \times 1$ identity $0-1$ matrix, P^{\prime} be the diagonal concatenation of A and I, and P be the diagonal concatenation of P^{\prime} and I. Then

$$
\begin{aligned}
& \operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)=\operatorname{sat}\left(n_{1}-1, n_{2}-1, \ldots, n_{d}-1 ; P^{\prime}\right)+\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right) \\
& \operatorname{ex}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)=\operatorname{ex}\left(n_{1}-1, n_{2}-1, \ldots, n_{d}-1 ; P^{\prime}\right)+\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)
\end{aligned}
$$

where $l_{i}+2 \leq n_{i}$ for each $i \in[d]$.
Proof. Given a d-dimensional $n_{1} \times n_{2} \times \ldots n_{d} 0-1$ matrix M, let S denote the shell of M and let M^{\prime} denote the $\left(n_{1}-1\right) \times$ $\left(n_{2}-1\right) \times \ldots\left(n_{d}-1\right)$ submatrix of M that does not contain any entry of S. We show that if S is all 1 and M^{\prime} is saturating for P^{\prime}, then M is saturating for P. This implies that

$$
\operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right) \leq \operatorname{sat}\left(n_{1}-1, n_{2}-1, \ldots, n_{d}-1 ; P^{\prime}\right)+\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)
$$

and

$$
e x\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right) \geq e x\left(n_{1}-1, n_{2}-1, \ldots, n_{d}-1 ; P^{\prime}\right)+\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)
$$

Indeed, M clearly avoids P. All 0-entries of M lie in M^{\prime}, so flipping any of them creates a copy $P^{\prime \prime}$ of P^{\prime} in M^{\prime}. The copy $P^{\prime \prime}$ and S filled with 1-entries form a copy of P, so M is saturating for P.

We are left to prove that

$$
\operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right) \geq \operatorname{sat}\left(n_{1}-1, n_{2}-1, \ldots, n_{d}-1 ; P^{\prime}\right)+\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)
$$

and

$$
e x\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right) \leq e x\left(n_{1}-1, n_{2}-1, \ldots, n_{d}-1 ; P^{\prime}\right)+\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right)
$$

Given a matrix N saturating for P, apply Lemma 4.1 to get a d-dimensional complete staircase T of N that is all 1 and all entries below T are 0 -entries that potentially match $p_{l_{1}, \ldots, l_{d}}$. The complete staircase T partitions entries of N into N_{1}, N_{2}, and T such that every entry of N_{1} and N_{2} is above and below T, respectively. Obtain a d-dimensional matrix N^{\prime} from N by deleting T followed by shifting every entry of N_{2} upwards along the diagonal it belongs to. It suffices to show that N^{\prime} is saturating for P^{\prime}. Matrix N^{\prime} clearly avoids P^{\prime}. It could be seen that every 0 -entry of N_{2} potentially matches the corner $p_{l_{1}-1, \ldots, l_{d}-1}^{\prime}$ of P^{\prime}. Moreover every 0 -entry of N_{1} potentially matches some 1-entry of P^{\prime}, because in N together with T flipping any of them to 1-entry introduces a copy of P.

By successive application of Lemma 4.1 and Lemma 4.2 to the d-dimensional $(k+1) \times(k+1) \times \ldots \times(k+1)$ identity matrix, we obtain the following generalization of Brualdi and Cao's result on $0-1$ matrices saturating for identity matrices [3]. It also extends Tsai's discovery that every maximal antichain in a strict chain product poset is also maximum [17], and implies that the greedy algorithm to generate 0-1 matrices saturating for identity matrix [3] also works for multidimensional matrices.

Theorem 4.1. Let P be a d-dimensional $(k+1) \times(k+1) \times \ldots \times(k+1)$ identity matrix. Suppose $k \leq n_{i}$ for each $i \in[d]$ and $k \leq n$. Then

$$
\begin{aligned}
& \operatorname{sat}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)=\operatorname{ex}\left(n_{1}, n_{2}, \ldots, n_{d} ; P\right)=\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-k\right) \\
& \operatorname{sat}(n ; P, d)=e x(n ; P, d)=n^{d}-(n-k)^{d}=\Theta\left(n^{d-1}\right)
\end{aligned}
$$

Moreover, the 1-entries of every d-dimensional $n_{1} \times n_{2} \times \ldots \times n_{d} 0-1$ matrix saturating for P can be decomposed into $k d$ dimensional staircases with weights $\prod_{i \in[d]} n_{i}-\prod_{i \in[d]}\left(n_{i}-1\right), \prod_{i \in[d]}\left(n_{i}-1\right)-\prod_{i \in[d]}\left(n_{i}-2\right), \ldots, \prod_{i \in[d]}\left(n_{i}-k+1\right)-\prod_{i \in[d]}\left(n_{i}-k\right)$, respectively.

All remaining results are extended from Fulek and Keszegh's work on two-dimensional 0-1 matrices [5]. For example, the following extends the upper bound of $O(n)$ on saturation function of two-dimensional 0-1 matrices to the upper bound of $O\left(n^{d-1}\right)$ on saturation function of d-dimensional 0-1 matrices.

Lemma 4.3. For any d-dimensional 0-1 matrix P, sat $(n ; P, d)=O\left(n^{d-1}\right)$.
Proof. If P does not contain any 1-entry, then $\operatorname{sat}(n ; P, d)=0$. Otherwise let the dimensions of P be $l_{1} \times l_{2} \times \ldots \times l_{d}$, and let $p_{x_{1}, x_{2}, \ldots, x_{d}}$ be an 1-entry. Construct a d-dimensional $n \times n \times \ldots \times n 0-1$ matrix M saturating for P as follows. For any entry $m_{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{d}^{\prime}}$, set it to 0 if and only if $x_{i} \leq x_{i}^{\prime} \leq n-\left(l_{i}-x_{i}\right)$ for each $i \in[d]$. Clearly M avoids P and flipping any 0 -entry of M in 1-entry makes it contain P. The weight of M is $n^{d}-\left(n-l_{1}+1\right)\left(n-l_{2}+1\right) \ldots\left(n-l_{d}+1\right)=O\left(n^{d-1}\right)$.

The result below is naturally extended from two-dimensional 0-1 matrices.
Lemma 4.4. Let P be the diagonal concatenation of non-zero d-dimensional $0-1$ matrices A and B. Then sat $(n ; P, d)=$ $\Theta\left(n^{d-1}\right)$.

Proof. We show by contradiction that every i-row of a d-dimensional 0-1 matrix M saturating for P contains at least one 1-entry where $i \in[d]$. Suppose M has an i-row r which is all 0 . Flipping the first or last entry of r to 1 creates a copy of P where the new 1-entry matches an 1-entry of A or B, respectively. Thus there exist two adjacent entries z_{1} and z_{2} of r such that flipping z_{1} to 1-entry creates a copy P^{\prime} of P where z_{1} matches an 1-entry of A, and flipping z_{2} to 1-entry creates a copy $P^{\prime \prime}$ of P where z_{2} matches an 1-entry of B. The copy of B in P^{\prime} and the copy of A in $P^{\prime \prime}$ form a copy of P, i.e., M contains P.

Fulek and Keszegh showed in [5] that for a two-dimensional 0-1 matrix to have bounded semisaturation function, it has to have an 1-entry that is the only 1-entry in its row and column. Below we present a necessary condition for a d-dimensional 0-1 matrix to have $o\left(n^{d-d^{\prime}}\right)$ semisaturation function for any $d^{\prime} \in[d-1]$.

Lemma 4.5. Let $d^{\prime}<d$. If a non-zero d-dimensional 0-1 matrix P does not have any 1-entry which is the only 1-entry in every d^{\prime}-dimensional cross section of P it belongs to, then ssat $(n ; P, d)=\Omega\left(n^{d-d^{\prime}}\right)$.

Proof. Suppose M is semisaturating for P. Say a 0-entry and an 1-entry of M are connected if they are in the same d^{\prime} dimensional cross section of M. Each 0-entry is connected with at least one 1-entry, and each 1-entry is connected with at $\operatorname{most}\binom{d}{d^{\prime}}\left(n^{d^{\prime}}-1\right) 0$-entries. So the weight of M is at least

$$
\frac{n^{d}}{1+\binom{d}{d^{\prime}}\left(n^{d^{\prime}}-1\right)}=\Theta\left(n^{d-d^{\prime}}\right)
$$

With the above result, we characterize d-dimensional 0-1 matrices with bounded semisaturation function.
Theorem 4.2. Given a d-dimensional pattern P, ssat $(n ; P, d)=O(1)$ if and only all the following properties hold for P :
(i) For any $d^{\prime} \in[d-1]$, every d^{\prime}-dimensional face f of P contains an 1-entry o that is the only 1-entry in every $(d-1)$ dimensional cross section that is orthogonal to f and intersects f at o. (ii) P contains an 1-entry that is the only 1-entry in every $(d-1)$-dimensional cross section it belongs to.

Proof. Let M be a d-dimensional 0-1 matrix saturating for P. Suppose P does not have property (i), i.e., for some $d^{\prime} \in[d-1]$ P has a d^{\prime}-dimensional face f that does not contain any 1-entry o that is the only 1-entry in every $(d-1)$-dimensional cross section that is orthogonal to f and intersects f at o. Let the counterpart of f in M be f^{\prime}. If f is all 0 , then f^{\prime} must be all 1 . Otherwise, we say a 0 -entry in f^{\prime} is connected to an 1-entry in $M-f^{\prime}$ if they are in the same $(d-1)$-dimensional cross section. Each 0-entry of f^{\prime} is connected to at least one 1-entry. Each 1-entry of $M-f^{\prime}$ is in $d^{\prime}(d-1)$-dimensional cross sections that is orthogonal to f^{\prime}, and each of them contains at most $n^{d^{\prime}-1} 0$-entries of f^{\prime}. Thus each 1-entry of $M-f^{\prime}$ is connected to at most $d^{\prime}\left(n^{d^{\prime}-1}\right) 0$-entries in f^{\prime}. Suppose f^{\prime} has $\alpha 0$-entries, then M has at least $\left(n^{d^{\prime}}-\alpha\right)+\frac{\alpha}{d^{\prime}\left(n^{d^{\prime}-1}\right)} \geq \frac{n^{d^{\prime}}}{d^{\prime}\left(n^{d^{\prime}-1}\right)}=\Theta(n)$ 1-entries. Otherwise suppose P does not have property (ii), i.e., it does not contain any 1-entry that is the only 1-entry in every $(d-1)$-dimensional cross section it belongs to. By Lemma $4.5 \operatorname{ssat}(n ; P, d)=\Omega(n)$.

We are left to prove that $\operatorname{ssat}(n ; P, d)=O(1)$ if P has all the properties. Suppose P 's dimensions are $l_{1} \times l_{2} \times \ldots \times l_{d}$. We construct an $n \times n \times \ldots \times n 0-1$ matrix M^{\prime} semisaturating for P with $O(1) 1$-entries as follows. Entry $m_{l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{d}^{\prime}}^{\prime}$ is 1 if and only if for each $i \in[d], l_{i}^{\prime}<l_{i}$ or $n+1-l_{i}<l_{i}^{\prime}$. Let an 1-entry of P with property (ii) be $p_{o_{1}, o_{2}, \ldots, o_{d}}$. For a given 0 -entry $m_{z_{1}, z_{2}, \ldots, z_{d}}^{\prime}$, suppose flipping it to 1-entry produces another matrix $M^{\prime \prime}$. If $z_{i} \in\left[l_{i}, n+1-l_{i}\right]$ for each $i \in[d]$ then for each dimension i we slice $M^{\prime \prime}$ by indices $\left\{1,2, \ldots, o_{i}-1, z_{i}, n-l_{i}+o_{i}+1, n-l_{i}+o_{i}+2, \ldots, n\right\}$, and the resulting $l_{1} \times \ldots \times l_{d}$ submatrix contains P.

If $z_{i} \notin\left[l_{i}, n+1-l_{i}\right]$ for some $i \in[d]$, there exists a partitioning $[d]=X \cup Y \cup Z$ such that $X \cup Y \neq \emptyset, Z \neq \emptyset$, and $\forall i \in[d]$

$$
\begin{cases}z_{i}<l_{i}, & \text { if } i \in X \\ n+1-l_{i}<z_{i}, & \text { if } i \in Y \\ z_{i} \in\left[l_{i}, n+1-l_{i}\right], & \text { otherwise }\end{cases}
$$

Let f be the face of P whose $i^{\text {th }}$ coordinate is fixed to 1 or l_{i} if $i \in X$ or $i \in Y$, respectively, and for each $i \in Z$ let the $i^{\text {th }}$ coordinate of the 1-entry contained in f with property (i) be $l_{i}^{\prime \prime}$. We then slice $M^{\prime \prime}$ by indices I_{i} for each $i \in[d]$ to obtain a $l_{1} \times \ldots l_{d}$ submatrix containing P : for each $i \in X, I_{i}=\left\{z_{i}, n-l_{i}+2, n-l_{i}+3, \ldots, n\right\}$; for each $i \in Y, I_{i}=\left\{1,2, \ldots, l_{i}-1, z_{i}\right\}$; otherwise $I_{i}=\left\{1,2, \ldots, l_{i}^{\prime \prime}-1, z_{i}, n-l_{i}+l_{i}^{\prime \prime}+1, \ldots, n\right\}$.

It would be interesting to investigate what the dichotomy of constant versus linear translates to when moving from (semi)saturation function of two-dimensional 0-1 matrices to (semi)saturation function of higher dimensional 0-1 matrices.

References

[1] B. A. Berendsohn, An exact characterization of saturation for permutation matrices, arXiv:2105.02210 [math.CO], (2021).
[2] D. Bienstock, E. Györi, An extremal problem on sparse 0-1 matrices, SIAM J. Discrete Math. 4 (1991) 17-27.
[3] R. A. Brualdi, L. Cao, Pattern-avoiding (0,1)-matrices and bases of permutation matrices, Discrete Appl. Math. 304 (2021) 196-211.
[4] P. Erdős, L. Moser, Problem 11, Canadian Math. Bull. 2 (1959) 43-43.
[5] R. Fulek, B. Keszegh. Saturation problems about forbidden 0-1 submatrices, SIAM J. Discrete Math. 35 (2021) 1964-1977.
[6] Z. Füredi, The maximum number of unit distances in a convex n-gon, J. Combin. Theory Ser. A $\mathbf{5 5}$ (1990) 316-320.
[7] Z. Füredi, P. Hajnal, Davenport-Schinzel theory of matrices, Discrete Math. 103 (1992) 233-251.
[8] J. Geneson, Almost all permutation matrices have bounded saturation functions, Electron. J. Combin. 28 (2021) \#P2.16.
[9] J. T. Geneson, Extremal functions of forbidden double permutation matrices, J. Combin. Theory Ser. A 116 (2009) 1235-1244.
[10] J. T. Geneson, P. M. Tian, Extremal functions of forbidden multidimensional matrices, Discrete Math. 340 (2017) 2769-2781.
[11] M. Klazar, The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture, In: D. Krob, A. A. Mikhalev, A. V. Mikhalev (Eds.), Formal Power Series and Algebraic Combinatorics, Springer, Berlin, 2000, 250-255.
[12] M. Klazar, A. Marcus, Extensions of the linear bound in the Füredi-Hajnal conjecture, Adv. Appl. Math. 38 (2007) 258-266.
[13] A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A 107 (2004) 153-160.
[14] J. S. B. Mitchell, L_{1} shortest paths among polygonal obstacles in the plane, Algorithmica 8 (1992) 55-88.
[15] J. Pach, M. Sharir, On vertical visibility in arrangements of segments and the queue size in the Bentley-Ottmann line sweeping algorithm, SIAM J. Comput. 20 (1991) 460-470.
[16] G. Tardos, On 0-1 matrices and small excluded submatrices, J. Combin. Theory Ser. A 111 (2005) 266-288.
[17] S. F. Tsai, Two properties of maximal antichains in strict chain product posets, Contrib. Discrete Math. 15 (2020) 130-132.

